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(Received 1 October 2013; published 10 March 2014)

We derive the master equation that completely determines the time evolution of the density matrix of the
Unruh-DeWitt detector in an arbitrary background geometry. We apply the equation to reveal a
nonequilibrium thermodynamic character of de Sitter space. This generalizes an earlier study on the
thermodynamic property of the Bunch-Davies vacuum that an Unruh-DeWitt detector staying in the
Poincaré patch and interacting with a scalar field in the Bunch-Davies vacuum behaves as if it is in a
thermal bath of finite temperature. In this paper, instead of the Bunch-Davies vacuum, we consider a class
of initial states of scalar field, for which the detector behaves as if it is in a medium that is not in
thermodynamic equilibrium and that undergoes a relaxation to the equilibrium corresponding to the Bunch-
Davies vacuum. We give a prescription for calculating the relaxation times of the nonequilibrium processes.
We particularly show that, when the initial state of the scalar field is the instantaneous ground state at a
finite past, the relaxation time is always given by a universal value of half the curvature radius of de Sitter
space. We expect that the relaxation time gives a nonequilibrium thermodynamic quantity intrinsic to de

Sitter space.

DOI: 10.1103/PhysRevD.89.064024

I. INTRODUCTION

The concept of particles is known to depend on
observers. Even in the Poincaré-invariant Minkowski
vacuum, an observer with constant acceleration sees a
thermal particle spectrum [1]. The Unruh-DeWitt detector
[1,2] was introduced as a tool of thought experiment to give
an intuitive understanding of such thermal character of
spacetime (see also [3,4], and references therein). This is a
detector weakly interacting with a matter quantum field in a
certain vacuum state, and one can study the thermal
character of spacetime through the density distribution of
the detector.

Various spacetimes have been examined with the
Unruh-DeWitt detector, including de Sitter space.
Although a free scalar field in de Sitter space has a large
family of de Sitter—invariant vacua (called the a vacua)
[5,6], the Bunch-Davies vacuum (or the Euclidean vacuum)
[7] is regarded as the most natural vacuum, because this
satisfies the Hadamard condition. It is actually only the
Bunch-Davies vacuum which exhibits a thermal property
[3,8—11]; if one places a detector at x = 0 in the Poincaré
patch,
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—dn? + dx?
ds?> = 2 —

n

(—o0 < <0), ey

where the scalar field is initially in the Bunch-Davies
vacuum, then the density distribution of the detector
evolves through the interaction with the scalar field and
eventually reaches the Gibbs distribution of temperature
T =1/2z¢ (¢ being the curvature radius of de Sitter
space), irrespectively of the initial form of the density
distribution [see Fig. 1(a)]. This implies that the detector
behaves as if it is in a thermal bath of temperature 7' =
1/27¢ when it is placed in the Bunch-Davies vacuum.

The specialty of the Bunch-Davies vacuum may be
understood as follows. We first notice that there is no
global timelike Killing vector in the Poincaré patch, and
thus the Hamiltonian of the scalar field has an explicit
time dependence. This implies that one cannot define a
time-independent ground state and can only introduce
the instantaneous ground state |0,) at each instant 7.
As is investigated in detail in Ref. [12], the Bunch-
Davies vacuum |BD) can be characterized as the ground
state at the infinite past: [BD) = lim,_,_|0,). Thus, one
may regard the Bunch-Davies vacuum as a medium
(surrounding the detector) which already undergoes a
sufficiently long time evolution to reach a thermodynamic
equilibrium state.

If instead the scalar field is initially in a certain class of
states, the Unruh-DeWitt detector may behave as if it is

© 2014 American Physical Society
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FIG. 1 (color online). The Unruh-DeWitt detector in the
Poincaré patch. The scalar field is initially in (a) the Bunch-
Davies vacuum or (b) a class of states deviated slightly from the
Bunch-Davies vacuum.

surrounded by a medium that is not in thermodynamic
equilibrium and that undergoes a relaxation to the equi-
librium corresponding to the Bunch-Davies vacuum [see
Fig. 1(b)]. It should be possible to investigate the relaxation
process of the surrounding medium by observing the time
evolution of the density distribution of the detector. This
analysis may give useful information on the nonequilibrium
thermodynamic character intrinsic to de Sitter space.

The main purpose of this paper is to develop a machinery
for describing such nonequilibrium dynamics and to
calculate the relaxation times of the surrounding media.
For this, we first develop a general framework to treat an
Unruh-DeWitt detector in arbitrary background geometry
and derive the master equation which completely deter-
mines a finite time evolution of the density matrix of the
detector. We then apply this framework to a detector in de
Sitter space. We show that if the initial state of the scalar
field is chosen such that its Wightman function has the
same short distance behavior as that of the Bunch-Davies
vacuum, then the density distribution of any detector placed
there exhibits a relaxation to the Gibbs distribution, with a
relaxation time proportional to # (measured in the proper
time of the detector). In particular, if we take the initial state
as the instantaneous ground state at a finite past (say, at ),
the relaxation time is always given by a universal
value 7/2.

In order to avoid possible confusions, we here stress that
there can be two kinds of relaxation times. The first is the
relaxation time that may exist even when the detector is
placed in a thermal bath [see Fig. 1(a)]. This is the period of
time it takes for the detector to reach the Gibbs distribution
from a given initial density distribution. This kind of
relaxation time can be neglected if one considers an ideal
detector which can get adjusted to its environment instan-
taneously. Another kind of relaxation time, in which we are
interested, is the period of time it takes for the non-
equilibrium environment to reach a thermodynamic equi-
librium state [see Fig. 1(b)]. This relaxation time should not
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depend on details of the detector or on the form of
interaction between the detector and the scalar field and
is related to the nonequilibrium dynamics intrinsic to de
Sitter space.

This paper is organized as follows. In Sec. II, adopting
the method of the projection operator [13], we first derive
the master equation which describes the time evolution
of the density matrix of the detector. Then, after justifying a
Markovian approximation, we derive a simplified form of
the master equation which enables us to study the relax-
ation behavior of the density distribution analytically. In
Sec. III, we apply the framework to an Unruh-DeWitt
detector in the Poincaré patch of de Sitter space. We
consider a situation where the initial state of the scalar
field is chosen such that its Wightman function has the
same short distance behavior as that of the Bunch-Davies
vacuum. We compute the transition rate matrix of the
density distribution of the detector and show that the
density distribution exhibits the expected relaxation to
the equilibrium corresponding to the Bunch-Davies vac-
uum with the relaxation time of the form #/a, where the
constant « is determined by the asymptotic form of the
change of the Wightman function from that of the Bunch-
Davies vacuum. In Sec. IV, we consider a particular case
where the initial state of the scalar field is the instantaneous
ground state |0, ) at a finite past # = 77y and show that the
relaxation time is always given by a universal value £/2,
irrespectively of the value of 7, or the form of interaction
between the detector and the scalar field. Section V is
devoted to discussions and conclusion. We collect
miscellaneous formulas in the Appendixes.

II. MASTER EQUATION FOR THE DENSITY
MATRIX OF AN UNRUH-DEWITT DETECTOR

A. Setup

We consider an Unruh-DeWitt detector in d-dimensional
spacetime with background metric ds? = g, (x)dx*dx”
(u, v=0,1,...,d—1), the detector interacting with a
scalar field ¢(x) of mass m. We assume that the detector
has a sufficiently large mass so that it can be treated as
moving along a classical trajectory' x*(z) = (1(7),x(z)),
where 7 is a proper time of the trajectory (see Fig. 2).

For a quantum mechanical description of the system, we
introduce the Hilbert space ', which is the tensor product
of those of the detector and the field:

©=H' @ H”. 2

The total Hamiltonian then takes the following form in the
Schrodinger picture:

'We also write the trajectory as x*(z) = (¢,x(r)) by using the
functional relation ¢ = #(z) or = = 7(¢) with d¢/dz > 0.

064024-2
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FIG. 2. The trajectory of an Unruh-DeWitt detector, which
starts interacting with a scalar field ¢(x) at time #,. The time
coordinate ¢ will be denoted by # when it is the conformal time in
the Poincaré patch.

H"'(t) = HddZ—(;) L+1QH 1)+ V(). (3)

Here, HY is the Hamiltonian of the detector associated with
its proper time, and we assume that H¢ does not depend on
7 (or on ), denoting its eigenstates and eigenvalues by |m)
and E,, respectively: HYm) = E,|m). H?(t) is the
Hamiltonian of the free scalar field and may depend on
time explicitly through an explicit time dependence of the
metric. V(7) stands for the interaction between the detector
and the field, and we assume that it suddenly starts at time
t, in the form of a monopole interaction,’

v =D o pmo—n). @

Here, A is a dimensionless coupling constant, x() repre-
sents the position of the detector at time ¢ (see footnote 1),
and y is an operator acting on ¢, which we again assume
to be time independent. The time evolution of the total
density matrix p™'(¢) is given by

plot(t) — Utm(t, l/)ptO[(t/)[U[Ot(t, t/)]fl , (5)

where U''(z,7') is the time evolution operator in the
Schrodinger picture,

Ul (1, 7) =T exp (—i / ’ dt’H““(t’)). ©)

“Recall that this is in the Schrodinger picture. We later shall
take an average over the startup time ¢, since one usually needs a
certain period of time to specify the initial density distribution of
the detector.

PHYSICAL REVIEW D 89, 064024 (2014)

We consider a situation where one can measure only
observables associated with the detector, such as the matrix
elements u,,, = (m|u|n). Then the maximum information
one can get from the system is the reduced density matrix
p(t), which is defined as the partial trace of the total density
matrix p'°(z) over H?:

plt) = Tryp (o). )

The time evolution of p(z) should be uniquely determined
once one specifies the form of interaction and the initial
condition for p''(¢). Since there had been no interaction
between the detector and the field before time 7, we may
let the total density matrix take the following factorized
form at 7;:

Pn) =) ® p? (1) = p(1) @ p?(11).  (B)

The latter equality can be easily seen by noting
that p(,) = Tryp' (1)) = p*(1)).

B. Master equation

The time evolution of p(7) can be best analyzed if we go
over to the interaction picture by decomposing the total
Hamiltonian to

HY'\(1) = HO'(1) + V (1), 9)
HY'(1) = Hdd;—(tt) ®1+1Q®H (1) (10

and treat V(¢) as a perturbation. The time evolution
operator U'"(¢, 1) is then decomposed to the unperturbed
and perturbed parts as

UtOt(t,fl) == UBOt(t, tl)UtIOt(t, tl) (11)

with

t
US(1,1,) = Texp (—i / dt’H};’t(t’)>

n

_ e_in'(T_Tl) Q Te—i j;’l dt’H’/)(t!)’ (12)

Uv(t,1,) = Texp (—i/ldt’Vz(t’)) (13)

Here, V(¢) is defined by

064024-3
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Vi(1) = [US (e 0)]| V(O U (t.11)
d

=2 (0) ® i (x(0)0(t 1), (14)
where y;(7) is given by

/"I(T) = ein~(‘r—‘L'1)Iue—in-(‘r—‘rl)

—Ze D | m) (] (15)

and the operator

¢1(x(7)) = ¢y (1. x(1))
= e O (T

—i T A gd (4
¢ j;ldtH (1) (16)

satisfies the free Klein-Gordon equation associated with
the metric ds?* = g, (x)dx*dx*. Accordingly, the density
matrix in the interaction picture is given by

pi(e) = (UG (t. 1) P (U (2. 11)

= UP'(t.0)p ! (1) [UP(£.11)]7! (17)
and satisfies the von Neumann equation of the form

d

370 = —ilVi(0). o ()] = —iady, (P (1), (18)

This von Neumann equation can be rewritten to an
equation involving only p,(t) = Tr,p}" () by adopting the
projection operator method (see, e.g., [13]). We first
introduce a linear operator P: End H'* — End H'*', which
acts linearly on elements belonging to End H'' (the set of
linear operators acting on H'*") and has the form

P: 0PO = (Tr,0) ® X (0 € EndH™). (19)

Here, X? € End’H? can be any operator acting on H? as
long as it satisfies

Tr,X? = 1 (20)
J
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and does not depend on time. From (20) one can easily see
that P is a projection operator, P> = P. For O = p'°\(t), we
obtain

Pp!(1) = (Trypi'(1) @ X = py(1) @ X?. (21)

We further introduce Q = 1 — P, which is also a projection
operator, Q> = Q, and satisfies PQ = 0 = QP.

Using the fact that operator X¢ can be chosen arbitrarily
without changing the time evolution of p;(¢) (as far as it
satisfies the aforementioned conditions), we here set
X =p?(t)) = p}/’(tl ). This certainly satisfies the condition
(20), and due to the initial condition (8) the following
equations hold:

Po(n) = o (1),

Then, if the one-point function of scalar field vanishes
(as we assume hereafter),

Oplt(t) =0.  (22)

Try (¢ (x(2))p] (1)) = 0, (23)

we obtain the equation

d t ! —i ! ! a "
%p ® pf (1)) = —Pady, / drTe Jo 4 Qv
1

x ady, i (p () ® P;/)(fl))- (24)

We give a proof of Eq. (24) in Appendix A. This is the
master equation which with the initial condition (8) and the
assumption (23) completely determines the time evolution
of the reduced density matrix p;(7).

C. Approximation of the master equation

We expand the right-hand side of (24) to the second
order in perturbation to obtain

dp; (1)
dr

= —Tr(/) <advl (1)

+ O, (25)

/[df'advl(t’) (pi(') ®p1¢(t1))>

51

This can be further rewritten in terms of the proper time 7 to
the following form [denoting p(#(z)) by p(z) and deriva-
tives with respect to = by dots]:

pi(t) = =22 /T de'Try[u;(7) ® ¢i(x(7)), [1s(7') ® ¢y (x(7)), ps(7) ® pf (11)]] + O(2)

=2 [ ((0). 1 (O (]G (52 0)) = (0. ()or ()]G () x() + O, 20

064024-4
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where

Gy (x.x') = Try(¢1(x)s(x')p] (71)) 27)

is the Wightman function of the free scalar field with
respect to the density matrix X% = p‘,/’ (71)-

Since the reduced density matrix in the interaction
picture, p;(7), is related to that in the Schrodinger picture,

p(7), as

pi(r) = e =) p(g) et em), (28)

we can rewrite (26) to the following form in the
Schrodinger picture:

p(z) +i[H, p(7)]

:/12/ dr’Dte_in'<T_’/)p(r’),uein‘“_T’)G;g(x(r’),x(r))

71
+ e ) o (2 e G (x(7), x(7)
e a5 G (). x(2)
SH=) o () ) G (x(2), x(7))] + O(A).
(29)

—iHY (r—
_elH(T

— pe

The integro-differential equation (29) can be further
simplified as follows. Since the Wightman function
Gy (x(7),x(7')) in the integral is singular at 7/ =7 and
decreases exponentially for large separations of 7 and 7/,
the main contributions to the integral should come only
from the region 7’ ~ 7. This implies that the memory effect
in the equation is highly suppressed, and thus we may
replace py,(7') in the integral by its boundary value py,(7) to
a good accuracy, assuming that p(7’) slowly changes.
Equation (29) can thus be rewritten (in terms of matrix
elements) as

pmn(T) +1(E —E )pmn(T)

=Y [ (G2

+ €_I(E”’_E1)(T_T/),umk//’lnpkl(T)G;(_ (x(2).x(7'))

(E=En) =0 stk (7) G (x(2'), x(7))
/)/‘mkﬂklpln (T>G;? (x(7),x(7"))]. (30)

—e

_ i) (e

*We see in Appendix D that for a scalar field in de Sitter space
the Wightman function certainly exhibits this property if the mass
is large enough. In general, there can be a case where the
Wightman function has a long tail and one needs to take account
of memory effects carefully. We do not deal with such cases in the
present paper.

PHYSICAL REVIEW D 89, 064024 (2014)

If the off-diagonal elements of p(z) can be further
neglected,4 then (30) becomes

= Z[ank(f’ 71)Puk(7) = Wi (2. 71) P (7))

k#m

Pm (7)
(31

Here, we have introduced the transition rate matrix

wX (1,1)) = Pl > Fx(E, — Eit.ty),  (32)

where

Fu(aEnn) = [ a6 (a(e).x(7)

71

TG () X)) (33)

Equation (31) now has the standard form of the master
equation.

If, in partlcular FU(AE) = lim,_ Tl_,oo]-'X(AE;r,Tl)
satisfies the relation’

F(AE)

: = ¢ PAE, (34)
FH(—AE)

the transition rate matrix satisfies the relation

W@ T1) etz (e, £ (35)
Wim (T; T

Then, the distribution of the detector in equilibrium, p®,
may be determined by the detailed balance condition
limT—T1—>oonk (T; 71 ),02% = lim1—11—>oowkn1 (T; 71 )pfi?m’ and
we obtain

e_ﬂEm

e
prr(llm =

<z = Zeﬁ5n>, (36)

which is nothing but the Gibbs distribution at temperature
1/p.

We close this section by making a comment on the
relationship between our formalism and the literature. One

can easily show that the transition rate matrix w¥,, (32), is
the 7 derivative of
}“2|/’lmk|2fX(Em - Ek; 7,7 )’ (37)

“We will see in Sec. IVD that the off-diagonal elements
of p(z) can be set to zero without losing generality if the detector
is a two-level system and p has an off-diagonal form.

>The relation (34) indeed holds with f = 27Z when p? (1)
corresponds to the Bunch-Davies vacuum in de Sitter space.
See Eq. (57).

064024-5
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where

fX(AE;TyTl) = /TdT//TdTﬂe_iAE(T’_T”)G;’E(x(T/),}C(T”>).
7 7
(38)

In the literature (e.g., [3]), one often considers a process
from an initial state |k) ® |a) at time #; (usually taken to be
the infinite past) to a final state |m) ® |f) at time ¢ and
sums over the final states |$) of the scalar field. The
transition probability has the same form as (37) if we set
X =p?(1)) = p‘,b(tl) = |a){a| for which the Wightman
function becomes Gy (x, x') = (a|¢;(x)¢;(x')|a). We thus
again see that (32) represents the transition probability per
unit proper time of the detector. Fy in (38) is often called
the response function (see, e.g., [3]). As we have seen, Fy
or its derivative Fy does not depend on details of the
detector and can be thoroughly determined by the
Wightman function of the free scalar field.

III. UNRUH-DEWITT DETECTOR
IN DE SITTER SPACE

In this section, we consider an Unruh-DeWitt detector
in d-dimensional de Sitter space, which is weakly interact-
ing with a massive scalar field ¢(x) of mass m. We
exclusively consider the Poincaré patch, denoting the time
variable by #:

—dn? + dx?
7

ds? = ¢2 (—o0<n<0),  (39)

and set the classical trajectory of the detector to be the
geodesic

(1) = (=te ™7, 0). (40)

We denote by #; the time when the detector starts the
interaction with the field ¢(x) = ¢(n,x), which has the
following form in the interaction picture [see (14)]:

dz(n)
dn

Vi(n) = Ay (7) ® ¢y (x(2))0(n —m). (41

We will show that the density distribution of the detector
exhibits a relaxation to the Gibbs distribution with § = 2z¢
when the initial condition X? = p(i,) satisfies the con-
dition (23) and the corresponding Wightman function
Gy(x,x') has the same short distance behavior
(Jx —=x’| = 0 with n =#') as that of the Bunch-Davies
vacuum, Gyp(x,x'). In the following, we set the curvature
radius 7 = 1.

Let the initial density matrix X¢ = p'f(r]l) of the scalar
field have the form

X% = IBD)(BD| + AX?, 42)

PHYSICAL REVIEW D 89, 064024 (2014)

for which the Wightman function takes the form

Gy (x,x') = Try (¢ (x)¢bs (x')X7)
= Gip(x,x') + AG T (x,x). 43)
We assume that the deformed Wightman function is

invariant under spatial translations and rotations for fixed
n and 7' and write its Fourier transform as (k = |k|)

k. ,
G;(r/,x, n.x')= / (2”)&1 e]k'(x_x)G;k(”’ ')

d-1g
=/<2ﬂ.)d—l e
X [Gip (1) + AG (n.17)]. (44)

This takes the following form for the geodesic (40)
[with # = —e7 and #/ = —e 7]

ik-(x—x")

d—1
G (x(2). x(?)) = / éﬂ—y,’flcgkm,n')

2

- « dkki2Gt , /
e, ek

= Gyp(x(7), x(7))
+ AGT (x(7), x(7)). (45)

Note that both Gy, (n.7') and Gfp (n.7) [and thus
AG} (n.1') also] satisfy the homogeneous Klein-Gordon
equation #°f (i) + (d — 2)nf(n) + (K + m?)f(n) = 0,
with respect to each of the arguments # and #. The
solutions to this equation are given by linear combinations

of (=) @V2H (—ky) (a = 1,2), where H\"?)(2) are the
Hankel functions and

(46)

S
Il

().

Thus the Wightman function is generically given by a linear
combination of

(=) (=)= HS (k) HY (—kn)  (a,b = 1,2). (47)
For example, G, ,(n.7') is given by (see [3,7,12])

1

(=) (= )'TH (~ k) B (ko).
(48)

GED,k(’]? n) =

Because of the condition that Gy (x,x') and Ggp(x,x')
have the same short distance behavior, AG;(n, 1) takes the

064024-6
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following form (¢, is a constant with the dimension
of time):

AG{ () = [(=m) (=)=

2
< 3" Faplco) H (—kn)HY (~kn')  (49)
a,b=1

with®

fap(z) = constz % [1 +O(z7 )] (ay >0). (50)

Note that we require only that the leading singularities be
the same for Gy (x,x’) and Gip(x,x) and the functions
fan(2) control the subleading singularities.

The derivative of the response function, Fy [defined in
Eq. (33)], can now be written as

Fx(AE;7, 7)) = Fpp(AE;7,7,) + AF(AE;7,7,), (51)

where

0 :

- dse 2B G (x(7 + 5), x(7))

-1,

=) iaEs

+ ; dse 2GRy (x(7), x(7 — 5)),

(52)
|

Fep(AE;7. 7)) = /

PHYSICAL REVIEW D 89, 064024 (2014)

: 0 .
AF(AE;z, 7)) = / dse AESAGT (x(7 + 5), x(7))

(r—71)
(r—71) )
+ / " dse B AGH (x(1), x(1 — 5)).
0

(53)

The integrals can be evaluated analytically as shown in
Appendix E, and we find that they take the following
asymptotic forms in the limit 7 — oo [see Egs. (E26) and
(E19)]:

Fep(AE;7,7) ~ F(AE) + const e~ (‘THHAE)(r-11)
(54)

AF(AE;z,7,) ~ const e + const ¢~ (‘T HHAE) (r=7))
(55)

with @ = min, , (). )
The z-independent term F*I(AE) is given by
[see Eq. (E21)]

FU(AE) =

which agrees with the known result obtained in

Refs. [14,15] (we have restored the curvature radius ).
One easily finds that this satisfies the relation

F(AE)
F(—AE)

— e—Zth’AE‘ (57)

Thus, from the argument following (34), we confirm
that, as = becomes large, the density distribution p,,, ()
approaches the Gibbs distribution at temperature
1/2xn¢:

®a,, will need to be integers when imposing analyticity on the
Wightman functions.

d—1 i d—1_,, 1 e d—1_,,
e,,,fAEF(’Z‘JruzﬂfAE)F( - p;rlfAE F(g'ﬂz lfAE)F( + 1/2 IL”AE) 56
Sﬂ%r(%) '
|
. e—ZHfEm
= (2= ) e
n
The 7-dependent terms e~@"/¢ and e~ |(‘5#¥)/7HALE jp the

asymptotic forms (54) and (55) represent relaxation modes
of the detector with relaxation times ¢/a and
|(d —1)/2 4+ Rev|~'#, respectively. Note that the modes
with the latter relaxation time exist even when the initial
state is the Bunch-Davies vacuum, in which we are not
interested here. On the other hand, the mode with relaxation
time ¢/« arises only when the initial state of the scalar field
is deviated from the Bunch-Davies vacuum. We thus
identify with #/a the relaxation time for the surrounding
medium [see Fig. 1(b)] which relaxes from a nonequili-
brium state to the equilibrium of temperature 1/2z¢.

We close this section with writing down the full
expression of (54) for comparison with the known results
in the literature [see Eq. (E20)]:
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A . eiﬂ%eiﬂye—(
Fpp(AE,7,71) = FH(AE) +

St y—iAE) (r—1y)

PHYSICAL REVIEW D 89, 064024 (2014)

indsL —iny o= (GF—v—iAE)(r—1y)

e”2e

827 T (%) sin(zv)

SﬂTF(dT) sin(—zv)

efi/r%efim/e*(dz;]JrquiAE)(TfT] )

Sﬂd_EIF(%) sin(zv)

d—1

e~ gl p—(GF—HAE) (1-1)

8717%1—‘(%) sin(—zv)

If we set d = 4 and v = 1/2, Eq. (59) correctly reproduces
the result obtained in Sec. IV D of Ref. [14], where the case
7y = —oo is considered so that the higher-order corrections
AF(AE,7,7,) are all zero.

IV. THE CASE OF THE INSTANTANEOUS
GROUND STATE AT A FINITE PAST

In this sectlon we consider the case where the initial
state X% = pf (7]1) is the instantaneous ground state at an
earlier time 7. In this case, AF (AE;7,7,) can be calcu-
lated explicitly, and we will see that the relaxation time
takes a universal value £/2 (i.e., a« = 2), irrespectively of
the values of 7, and #; or the form of interaction between
the detector and the scalar.

A. The instantaneous ground states

Let |0, .79) denote the Schrodinger picture state which is
the instantaneous ground state at an early time 7, (see
Fig. 3). We then introduce the state |0, ) = [0,,,7;) as an
interaction picture state (or as a Heisenberg picture state of
the free field theory) which is obtained by applying the
free-field time evolution operator from 75 to #:
10,,) = Texp(—i [ dn' H?(i'))|0,,.m0). In  this section,

=
I
o

«// 7-

T |O770> = |O770>771>

A= |0170 ) 770>

FIG. 3. The trajectory of an Unruh-DeWitt detector in the
Penrose diagram of de Sitter space. The shaded region corre-
sponds to the Poincaré patch, and the dashed line represents the
future event horizon for the detector. The scalar field is in the
ground state at time 7.

. d—1 ‘IT—H/ —iAE d—1+
2 2 ‘e —2(r—11)
1+ -H/ 1AE ’
2

d-1 FvoisE g1
fal _947__ . 72 g
3F2( 2 . 24 ZAE ;e Tl))

d—1 B
d—1 S HvHAE 41
A — Sty
3F2< 2 ’1 2 L) ;6—2(1—71)>

L34 UHAE
+ v, 2
d—1 GvHAE g
ﬁ' 2 2 T TV 21 (59)
302 | 2 yiap 0€ .
—_— l/, f
|
we set X? = pf(n,) = [0,,)(0,,|- See [12] for a detailed

discussion on defining such time-dependent ground states
for a free scalar field in curved spacetimes.

Note that the one-point function vanishes:
Try (¢ (x)X?) = (0,,|#/(x)]0,,) = 0. Then, with the
approximations made in Sec. IIC, we have the master
equation of the form [see (31)—(33)]

/bmm (T) = Z[ka (Tv 715 nO)pkk (T) — Wim (Tv 715 nO)pmm (T)]
k#m

(60)

with the transition rate matrix

ka(T, 71;710) = /12|/’tmk|2j:(Em - Ek; 7,715 ’70)' (61)

Here, the derivative of the response function is given by

F(AE: 7, 115m0) = / 4[4 G (x(2'), x(2): o)

71

+ e DG (x(0), x(7)imo)] - (62)
with the Wightman function

G (x.x"sm0) = Oy, |hr (x) 1 (x)[0,)- (63)
In the following, we compute G (x, x; 179 for finite 7, by

using a technique developed in [12] and will find that
G (x,x';ny) indeed has the form (43) and (49) with

fule) = fa(0) = (457) 2 + 06

f1(2) = fa(z) = 0(z™). (64)
Thus, @ = 2 in this model, and the relaxation time of a
medium surrounding the detector is given by £/2. Since an
explicit functional form can be obtained for AG™ (x, x’; 179)
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in this model, we can further determine the coefficients of
the damping term ¢~ %" in Eq. (55).

We comment that the instantaneous ground states |0, )
differ from the adiabatic vacuum state [16,17] (see also
[3,18]) at second adiabatic order for finite #,. This rapid
departure may be expected from the fact that the condition
of the validity of adiabatic approximation [w; > @;/wy
with w;, given by (73)] does not hold for some modes k if 7
is finite. Actually, while the adiabatic vacuum state has the
same asymptotic expansion as the Bunch-Davies vacuum,
the wave function of an instantaneous ground state agrees
with that of the Bunch-Davies vacuum only at the leading
asymptotic order [see (C4)]. This observation then means
that we cannot use the adiabatic subtraction scheme to
regularize the expectation value of the energy-momentum
tensor, (7,,), for instantaneous ground states. In fact, it is
shown in Refs. [19,20] that, in order for a state in
d-dimensional de Sitter space to admit such adiabatic
regularization of (T, ), the state must be of dth or higher
adiabatic order; in other words, the wave function ¢, (1) of
the state must have the form

oi(n) = (=) [ () HY (—kn) + c3 (k) HY (—kn)]
(65)

with ¢ (k) = const + o(k~?) and ¢, (k) = o(k~9),” which
is clearly different from the form given in (C4). We expect
that one can yet use the point-splitting regularization to
remove divergences of (T,,) for instantaneous ground
states, although one then needs to establish an algorithm
to determine the finite part of (T,,). This issue is beyond
the scope of this paper and is left for future work.

B. Wightman function for the instantaneous
ground state

In the Poincaré patch, there is a translational invariance
in the spatial directions, and we assume that all spatial
directions are compactified with radius L/ 278 Then the
wave vector k takes discrete values k = (2z/L)n with
ne Z%'. We denote k > 0 (or k < 0) if the first non-
vanishing element of the vector k = (ky, ko, ..., ks_;) is
positive (or negative). Now, we consider the mode
expansion

¢()C) = ¢('1’x) = Zz¢k.a(n)yk.a(x)7 (66)

k>0 a
where the mode functions {Y; ,(x)} are given by

"For such states, the exponents @, in (50) are greater than d,
and thus the relaxation time will take a value less than £/d.

The introduction of L is for dealing with the zero mode
carefully. L will be taken to infinity in the end.

PHYSICAL REVIEW D 89, 064024 (2014)
1
VvV

2
k>0:Y;.—1(x)= \/;cos(k - X),

Yiam(x) = \/gsin(k-x), (68)

k=0: Yy = (V=L%", (67)

which form a complete set of (real-valued) eigenfunctions
of the spatial Laplacian A, | = > 97 37. Then, the
Wightman function (27) is given by

Gy (x.x') =Y Gyilnn ZYka X)Yyq(x

k>0

B 1

B (27)T|x —x'|'T
« / K= T skl — X' )G (n) (69)

0 ? '
with
G;(r,k(”v 77/) = <07[0|¢k.a(’7)¢k,a(’7/)|0m)>7 (70)

where we have taken the limit L — oo and integrated over
angular variables in the second equality of Eq. (69).

With the mode expansion (66), the Hamiltonian (in the
Heisenberg picture of the free field theory) is expressed
as a sum of the Hamiltonians for independent harmonic
oscillators:

= wx(n)aj ,(Magq(n) +const,  (71)

d

o

() = % (02 (r) + i () ba (1),
(72)
wp(n) = \/m?*(—n)~ + k2. (73)

The instantaneous ground state |0, ) is then defined by the
condition that ay ,(179)|0,,) = 0 (¥ k,a).

By expanding the operator ¢ ,(7) using the annihilation
and creation operators a; ,(1) and a,:a(no) as

Do) = (3 n0)ar o (10) + @5 (1 ﬂo)a;a(’?o)’ (74)

the ground state wave function ¢y (n;179) is given by
(see [12])
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R S ) S
@i (11:10) 2\/m(_%)_%[ oo (=kn)
— uoN, (—kn)], (75)

where J,(x) and N, (x) are the Bessel and Neumann
functions, respectively, and u, and v, are given by

g = —(—n0)~% [(% tv+ 1wk(’70)’70) v (—kno)

+ k770]l+u(_k’70):| , (76)

G?(n,n’;no)—%[(—11)(—77’)]%{Hﬁl)(—kﬂ)ng)(—k’?/)+<¥>2 T

+H

(=) HL (—ken)]

)
2 (-1
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vo = —(—10)™ 112]|:<%+1/+1wk(770)’70) o(—kp)

+ k’?oN1+u(—k’10)] : (77)

If we expand the wave function ¢, (1; 19) around ny = —oo,
we find that the Wightman function for each mode,

<07/0 |¢k a( )¢k,a (’7/) |Ol10>
= @r(m:m0)9;(1'sm0), (78)

G (non'sng) =

takes the following form (see Appendix C):

(k) HY (~kn)

(—k’?o)

-3 - ()’ -

+ eZI[k}’]OJr l+2p)] |:1 d +
4(—kno)
d—2

L (P-De-3) - (42

gD (g
DI ) kil

+ —21[1(}1 42420 (l+2b)] |:_1
4(—kno)

T 0<<—kno>3>}.

Here, the first term, which can be written as
lim, o Gy (n.7:79), is the Wightman function for the
Bunch-Davies vacuum, Ggp, (17.7'). The last two terms
include rapidly oscillating factors e*2%0 and can be
dropped from the expression, because they do not contrib-
ute to the integral in (69) for a sufficiently large |17o|. We
thus find that the Wightman function has the form

Gy(m1'sm0) = Gip(n.0') + AGE (n.7'3m9)  (80)

with’

[(=n) (=)= f (— ko)
x [H (—ekn)H,Y (-

AG; (n.1'3m0) =
eii‘gkﬂ/)

+ H (—e ek HY (—ekon)
+ O((—kng) ™). 81)
o (d—-2\% %
flz) = I (T) . (82)

*Terms of order (—kng)~3 also disappear, since they neces-
sarily include the rapidly oscillating factors.

22 _ 2
} (ko) B2 (—e)

4(— k’?o)

(79)

|

Here, an infinitesimal positive constant ¢ is introduced in
order to make the k integration in Eq. (69) finite (see
footnote 11 in Appendix D). Then, comparing (81) and (82)
with (50), we find that « = 2 and thus the relaxation time is
¢ /a = /2. Note that the reason why the relaxation time is
given by /2 (not by ¢) is the disappearance of the
order (—kng)~! terms from (79) due to highly oscillatory
integrals.

We close this subsection with a comment that the state
|0,,) does not have a de Sitter invariance, since it introduces
an extra scale 7 as a cutoff [even though the corresponding
Wightman function has the same short distance behavior
as Gfp(x,x')]. This can be seen from the fact that
G*(x,x;ny) does not have a de Sitter—invariant form
(see Appendix D).

C. Higher-order corrections in F

With the Wightman function (80), F defined in (62)
takes the form

F(AE, 7, 71;n0) = Fp(AE;7,71) + AF(AE; 7,715 10),

(83)

where Fpp(AE;z,7,) and AF(AE;7,7,:n,) are given
by the integrals (52) and (53), respectively. The integrals
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can again be performed analytically as is done in
Appendix E, and we obtain [see (54) and (55) and recall
that a = 2]

Fpp(AE, 7,7)) ~ FY(AE) + const e~ (‘T =HAE) (=71)

(84)

. d— 2 2 1 . 42 ei”” N
AFO(AE) = iwz? F
FU(AE) ( 4 > 25 45 lr(dz >{e 2 Lin(ﬂ’/)3 2(

i d—3 d-3 I lnind
—i0 2| € (T T 2 i0
e + e T | — F, e
sin(zv) ? 431y 2 AE
| 4y, T AT

d=3 d=3 _, ‘Fv2-iAE
302 ’ 2
E_y—2—iAE

D. Thermalization of a two-level detector
in de Sitter space

As we discussed in the preceding subsections, if we take
the initial state for the scalar field to be the instantaneous
ground state at a finite past, there exists a damping term in
F with the relaxation time /2. This behavior of Fis
expected to represent the relaxation of the surrounding
medium. In this subsection, as an analytically tractable
example, we consider the case where the detector is a two-
level system with energy eigenvalues E; and E,, with
AE=E, — E; >0, and describe how the density distri-
bution of the detector approaches the Gibbs distribution
with relaxation time £/2.

To proceed with the analysis, we set the following
assumptions:

(i) The initial distribution of the detector, p(z;), is
averaged over the initial proper time 7z, for the duration
At > 1/AE. This is for describing distributions at
different energy levels to a good accuracy. As a
consequence, the off-diagonal elements of p(z;) can
be effectively set to zero, because they are oscillatory
during that time.

(i1) The energy difference should be much larger than
the natural energy scale of de Sitter space,
AE > ¢! =1, in order for relaxation modes with
relaxation times of order £ to be observed.

(iii) The operator y is off diagonal with respect to the basis
|m) (m =1, 2):

p= () = (0 2). s

Hio

This is simply for making the following analysis much
easier.

-3 d-3
43434y,
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Aj:(AE, T,T13M0) ~ e—2=10) A F(0) (AE)

4 const ef(%iuiiAE) (z—11) , (85)

where 75 = —log(—) and the coefﬁ01ent of the leading
term in AF(AE, z,7,:7,) is given by

Slty—2—iAE

2 2 . ,—i0
e
454)-2—iAE
V2

) 2iAE

2

;eio)} } + (AE - —AE). (86)

[

One can easily show that the master equation (30)
decomposes into the diagonal and off-diagonal parts under
assumption (iii). The off-diagonal part is given by linear
differential equations of the form

(?12(7)) . M(T,ﬁ)<p'2(fg>, (88)

p21(7) (7

M(z,7)

— <1AE— |/4.12|2-7:(0;7771 ;770)

ﬂ12]:<0 7,71310) )
13 F (03z,713m0)

—I1AE— |ﬂ12|2]:(0 7,71510)
(39)

which can be integrated to

(ZZE:;) = Texp <Lfdr’/\/l(1’,rl)> (2?8) (90)

Since we can effectively set pj,(7;) = pay(7;) = 0 due to
assumption (i), we can also set p»(7) = poi(z) =0
[assuming that M (7’,7;) changes slowly when averaging
over 7;].

10 F » is defined from the generalized hypergeometric function

3, (see Appendix B) as
. I'(a,)T(ay)T
LB, (01,027613 ;Z> = (a)I(a2)I (a3) % SFZ(azlazb,:B ;Z).

by, by ['(by)T(b,)
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The diagonal part can then be obtained from (31) and
(32) as

(/i’n(f)) _ <—W21(T,T1;770) wi2(7,71310) ) <,011(T)>
P2 (7) wa(z,715m0)  —wia(z,713m0) ) \ P22 (7)
o1
with
Wik (2. 71310) = P\t P F(Ey — Egi v 7i3m0). (92)
Using Egs. (83)—(85) together with assumptions (i) and (ii),

one can easily show that 7 comes to take the following
form after averaging over z;:

1 7,+At
F o (AE; T51) /1 e\ F(AE; 7,745 1)
7 /s

— F« (AE) + e 2 70) A F(© )( E)
+ O(e~4r=m)), (93)

where F “I(AE) and AF© (AE) are given by (56) and (86),
respectively. Note that the uninteresting 7,-dependent terms
proportional to e~ (‘THvHAE)(r—n)
from F due to the averaging procedure [see (84) and (85)]
Replacing F(AE;7,7,:1) in (92) by Foo(AE; 731), W
obtain the master equation for the diagonal elements of the

have totally disappeared

form
pi(e)\ _ (—wi(mn) w(niz) \(,u(o)
<,0;;(T)> B ( w(1370) —W(T§TO)> <Pzz(7)>
94)
with
w(1:70) = 2|up [ FYEAE) 4+ e 2 AFO(£AE)

+ O(e=4F=))]. (95)

From a general argument following (56), we have
already seen that, as 7 becomes large, the density distri-
bution p,,,(7) approaches the Gibbs distribution at
temperature 1/27¢:

e—2ﬂfEm

Z

/)?;lm — (Z — ¢ 27CE, + e—ersz)' (96)

In order to investigate how the detector relaxes to this
equilibrium, we expand p,,,(7) as P (7) = pmm +
Ap,m(7) and keep small quantities to the first order,
assuming that Ap,,,,/pmn < 1 and e 2(*"%) <« 1. Then
(94) becomes

PHYSICAL REVIEW D 89, 064024 (2014)

d
&APII(T) = —22|upaPle2) AF ) (AE) tanh(zAE)

+ (F(AE) + F(—AE))Apyi (7). (97)

We used the fact that AF®) (AE) is an even function of AE
[see (86)] and Ap;; = —Ap,,. This equation can be solved
easily, and we find that the relaxation behavior of the
density distribution is given by

Apyi(z) = e helAREE=m) Ap , (ry)
2lupPAFO(AE
- 2|/412|2 F L )tanh(zz'AE)(e_2<T_T2>
ZlunPAAE) —2
— e—/lz\ﬂlz\ZA(AE)(T—Tz)—Z(Tz—To)>' (98)
Here,
A(AE) = FY(AE) + FN(—AE), (99)

and 7, is an arbitrary proper time after 7, (z, > 7;), where
the linear approximation is well justified.

We note that the function A(AE) has the following
asymptotic form for large |AE|:

|AE|d73

A(AE) ~ —————
(AE) 242771 (4Y)

(JAE| - o0), (100)

as can be easily shown by using the asymptotic form of the
Gamma function (Eq. 8.328-1 of [21]),

lim |[(x 4 iy)| ~ V2ze Ply[2  (x,y € R). (101)
[se]

[y[—

We now consider a detector that satisfies the inequality

Plup)P(AE) 3¢ > 1. (102)
Then, by wusing the asymptotic form (100),
A(AE) ~|AE|473, and the inequality (102), the damping

terms in (98) which are proportional to ¢~ M2 "AAE)(7—72)

rapidly disappear from the expression, leaving only the
term proportional to e~2(*~72);

AFO(AE)
= tanh(zfAE)e 27 (103

Apyy () ~ —
where we have restored the curvature radius . Note that the
coefficient AF”) (AE)/A(AE) does not depend on details
of the detector (such as A,). The remaining damping term
in (103) corresponds to the desired relaxation mode with
the relaxation time /2. Since only those rapidly disap-
pearing terms depend on details of the detector, one may
say that such a detector under consideration is an ideal
detector, in the sense that it quickly loses its own
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nonequilibrium properties and gets adjusted to its environ-
ment almost instantaneously.

V. CONCLUSION AND DISCUSSIONS

In this paper, we have considered an Unruh-DeWitt
detector staying in the Poincaré patch of de Sitter space.
The main difference of our setup from those in the
literature is that the scalar field (before interacting with
the detector) is not in the Bunch-Davies vacuum (nor in
the @ vacuum). Then the Unruh-DeWitt detector behaves
as if it is in a nonequilibrium environment. In order to
deal with such situations, we first derived the master
equation which describes a finite time evolution of the
density matrix of an Unruh-DeWitt detector in arbitrary
geometry.

We then applied the framework to de Sitter space. We
showed that there exists a damping term in F with a
relaxation time of the form ¢/« if the initial state of the
scalar field is chosen such that the Wightman function takes
the form (43) with (49) and (50). In particular, if we take the
initial state to be the instantaneous ground state at a finite
past, the relaxation time is always given by /2. We further
gave an explicit description of the relaxation process for a
two-level detector.

We here should stress again that we are not considering
just the thermalization process of a detector dipped in a
thermal bath. In fact, since the initial state is chosen to be
different from the Bunch-Davies vacuum, the detector
should initially behave as if it is in a medium which is
not in thermodynamic equilibrium. As time goes on,
the detector comes to behave as if it is in a thermal
bath, since the difference of the initial state from the
Bunch-Davies vacuum becomes irrelevant at later times
(ie., AF/Fpgp < 1 at later times).

In reality, there can be many relaxation processes for
such a detector, some of which are simply the processes
where the detector gets adjusted to its environment.
However, these processes usually depend on details of
the detector and thus can be neglected by considering an
ideal detector which quickly responds to changes in its
environment. The terms proportional to ¢~ 2l"A(AE)
(98) actually represent such processes. On the other hand,

there are terms including the factors e~ (Z=Re)7 jn F.
This kind of term always exists even when the initial state
is the Bunch-Davies vacuum and thus does not have
relevance to the relaxation of the nonequilibrium medium
depicted in Fig. 1(b). For the case of the two-level
detector considered in Sec. IV D, such damping terms
disappear from the expression after taking an average
over the startup time 7;. There is also a damping term
proportional to e~*/? [see (55)], which appears only
when the initial state is different from the Bunch-Davies
vacuum and thus describes the nonequilibrium dynamics
of the surrounding medium. In particular, the relaxation

PHYSICAL REVIEW D 89, 064024 (2014)

time takes a universal value /2 (i.e., « =2) for the
instantaneous ground states at finite pasts. We expect
that the relaxation time #/2 gives a quantity representing
the nonequilibrium thermodynamic character intrinsic
to de Sitter space, just as the temperature of the final
Gibbs distribution represents the Gibbons-Hawking
temperature intrinsic to de Sitter space.

In the previous studies, thermal properties of de Sitter
space have been investigated mainly in the context of
equilibrium thermodynamics. The relaxation processes
discussed in this paper may serve as examples related to
the nonequilibrium dynamics of de Sitter space.
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APPENDIX A: DERIVATION OF THE
MASTER EQUATION

In this Appendix, we derive the master equation (24).

Since pi*(r) satisfies the time evolution equation (18),

Ppl(r) and Qpi'(t) satisfy the differential equations (note
that P+ Q =1)

d . .
" Ppi(t) = —iP advl(,)Pp}"‘(t) —iPady,;)Q P(t),
(A1)

d . .
q; Qe (1) = —iQady, () Ppi!(r) —i Qady, () Qpf (7).
(A2)

The solution of (A2) is given by

t S g0 -
Qpi(t) = —i/ df'Te™ f/ dr Qddv’('”>Qadvl(,/)PptIOt(l‘/)
h

—i—Te_ift'l dﬂQadvl(,/)thlot(tl),
(A3)

and, substituting this to (A1) and using (d/df)Pp'(r) =
(dp,(t)/dt) ® X?, we obtain
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dp, (1
pd;lg) ® X? = —iP advl(,)Pp}Ot(t) —iP advl(,)

Loy
X Te_lj:l A Qv Qpr'(t)

t P
— Pady,(, / dr Te ™ Jr o Qv

LA

x Q advl(,r) Pptlm(t/). (A4)

This equation can be simplified by noticing that X# can be
chosen arbitrarily without changing the time evolution of
pi(1). If we set X? = p?(1,) = p?(1,), we have Eq. (22):
PpPi(t,) = piP(2,), Qpt(#;) = 0. Thus, the second term
on the right-hand side of (A4) vanishes. Furthermore, since
the interaction has the factorized form V,(¢) = 2§ (7) ®
¢1(x(7))0(t — t;) [Eq. (14)], we obtain

Try (a0 Py (1) =25 (€)1 ()] Ty (x(2)) o (1),
(A5)

which vanishes when the condition (23) holds. We thus find
that the first term in (A4) also vanishes:

Pady,yPpi'(t) = Try(ady,Ppi'(r)) ® X? = 0. (A6)

The last equation (A6) shows that Qady,Ppi (1) =

ady, (Po (1) = ady, (ps(1) ® pf (1)), and, thus, (A)
becomes the master equation (24).

APPENDIX B: MEIJER’S g FUNCTION AND
GENERALIZED HYPERGEOMETRIC FUNCTION

Meijer’s G function G (O0<m<g, 0<n<p)is
defined by (see Sec. 9.302 of [21] for details on the choice
of the contour C)

mn al,...,ap

Gralz

P <Z’b1,...,bq>

:/ds [T5 0 =) [T T —a;+s)
2]}, T(1=b;+s) [}, T(a;—s)

. (Bl)

This function is invariant under the arbitrary permutation
of a set {ay,....a,}, {ays1.....a,}, {by.....b,}, or
{byi1,....b,}. As a special case of the G function, the
generalized hypergeometric function is defined by
(Eq. 9.34-8 of [21])
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al9 .y ap.
PF‘1<b1,...,bq’Z>
_ ?:lr(bi)Gl,p ., l-ap,...1-a,
C 12, T(a) P! 0.1 —=by,....1=b,
CIT(b) [ ST Tats)
i1 T(a;) Jo2mi .,0(b;+s) ’

(B2)

For convenience, we define the following functions using
the generalized hypergeometric functions:

P
~ (ay,....a I T(ay) ap,...,a
F p. = l F p. .
p q(bl,...,bq’z> CT(b) " I\ bro.b, "

(B3)

If no two b; (1 <i<m) differ by an integer,
Meijer’'s G function G,y with p <g, or p=g¢g and
m—+n>p,or p=g and m+n=p and |z| <1, can
be expanded by using the generalized hypergeometric
functions [22]:

mon al,...,al,

P4\ \by.....b,

_ . i D(bi=b ) [T T(1—a;+by)
k=1 Hf:nJrlF(ai_bk) ?:erlr(l _bi+bk)

l—a,+b,....1—a,+b

X Fo_i P PR (g ),
p 1—b1+bk,...,*,...,1—bq+bk

(B4)

br

where * means that the kth term has been omitted. In
particular, G%j% is expanded as

ap,ap,ds
G2’2<z )
3 by,by,bs
_ b]F(bz—bl)F(l—bz—l—bl)
[(az—b)(1—a3+by)
~ 1—a1+b1,1—a2+b1,1—a3+b1
X3F2 —zZ
1—by+by,1—bs+b,
U(by—by)T(1—=by+b,)
[(a3—by)l'(1—a3+b,)
. (1—a,+b),1—ar,+br,1—as+b
- 2( 1 +by 2+by 3 2‘—Z>. (BS)
1—b,+by,1—bs+b,

s

+zb2

)}

Furthermore, one can show
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G2'3< al,az,a3,a4> bll“(bz—bl)l“(l—szrbl) A (1—a1+b1,l—a2+b1,l—a3+b1,1—a4+b1 )
Z = »—<
U\ by, by b3, a4 T(as—b)(1—ag+b) "’ I—by+ by 1 —by+ b1 —ay + b
F(b]—bz)r(l—b1+b2) A (1—(11+b2,1—a2+b2,1—a3+b2,1—a4—|—b2 >
s — %
T(ay — bo)T(1—ay + by)*' 3 1—by+ by 1 —bs+ by, 1 —ay + by
p T(by = b )T(1 —by+ by) (1—a1+b1,1—a2+b1,1—a3+b1 )
= 1 s —Z
T(ay—b)T(1—as+ b)) ° Il —by,+ by, 1 —b3+ by
szF(b1—b2)F(1—b1+b2)3A2<1—a1+b2»1—a2+b2»1—a3+b2;_z>
['(ay = by)I'(1 — as + by) 1=by+0by,1—03+ by

+ 722

(BO)
by using the following identity [which can be derived from (B2)]:
ay,dp,ds, ayg .\ _ ap, az, as,
4F3< b],bz,a4 7Z)3F2< b],b2 7Z> (B7)

From the above identities, one can show the following relations for ¢, ¢/ = *1, and a € R:

_d—g=3 ZPHVHAE g3
G2-2 _e—(a—a’)iOx 2 2 ’ 2
3.3 a—dz;]+viiAE
U’ O?f
d—1 B
—(6—c") i . 11— —1— —1— S+v—aFiAE
(—e (o 5)10x>u Sm(”d 1 ay d L a d A i N
= — 2 F . ,—(6—0")i0
B sin(zv) . 4B 4y —aFiAE ¢ *
1 4p, 2222
2
. . 11— 4l aFiAE
sin(gd=le=2y | od=lza dolma g 900 i
> 2 JF - g~ (0=0)i0 (B8)
- 3l 3 AE ; )
sin(—zv) | — ) Brvasi
s
2
_d—g=3 OZFHVHAE  gg3 | d-g-4
G23 [ —e—lo-0)i0, 2 2 ’ 2 2
44 a—SL v HAE —a—4
v.0 2 U— d—a
b b 2 b 2
d—1 B
—(6—0c")i 11— d—l1—a d—1— SHv—aFiAE
(—e~ (=) 0x ) cos(z=1=2) R e .
= 2 JF, . p—(0=0)i0,
sin(zv) | 4y FrvoaFiaE
9
2
d—1 H
] —a— d—l—a d—1— S —v—aFiAE
cos(xg&=1=a=2ry e ey N
2 . ,—(0—06")i0
+ 1 3F2 d+3 : > € X (B9)
sin(—zv) | . FovaFiak
’ 2
from which we obtain the following formula for x > 0:
_d—g=3 OPHAERY  gg-3 _d—q=3 OZFHVHAE  dg3  d-ad
, —i(o—o’ 2 2 J 2 . “i(o—o’ 2 2 ’ 2 2
G%%(—e i(0—0")0 . ) + 10-G4217431 (_e i(0—0')0, o )
o a—S>FH1AE+y ’ a—S>+v+ti d—a—4
v,0,———-1 v,0,————-1Lv—=F—
d1 .
—(6—0")i0\v v d=l-a d—l-a S rv—aFIAE
_ eﬂiﬂ% (_e ( ) ) X i(_' 2 ) 2 +I/7 2 . —i((f—ﬂ/)o
o i 302 i13 . > € X
sin(zv) s i
) 2
iy d-l-a d-l-a_, Sl—y—aFiAE
¢ 7 202 ’ 2 . ,—i(6—0')0
+— 3F2 ,e X . (BIO)
d+3 .
sin(—nv) 4B _oFiAE
l—v,——
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Another useful formula can be obtained by using the identities [23]

by.b, [(by —a))l(by — ay) aj—ay+1l,ay—az+1
I'a,))T'(a;, —a>)'(a; —a ar,a,—by+1,a, — by, +1
+(=2) (a2)T(a )T (a3 2) F( 2,42 1 2 2 ;Z—1>
F(bl — (lz)F(bz - (12) a, — ay + 1, a, — djz +1
IN'lay)T(a; —a3)T(a, —a as,az—b;+1,a3— by + 1
+(=2)® (a3)[(a; 3) (@, 3)3F( 343 1 3 2 ;zl>
F(bl—a3)F(b2—a3) a3—a1+1,a3—a2+1
[a; — a7, a, — az¢Z,a, — az¢Z, and z¢(0,1)],

A (ap,an,a r I'a, —a)T'(as — ay,a;,—b;+1,a,—by, + 1
3F2< 1, a2 3;z>=(—z)_”‘ (a))(ay —ay)I(aj a1)3F< 1,a; — by 1— by ;Z_1>

(B11)

al,az,O. .
3F2< b],bz ’Z> - 1’ (B12)

from which one can show

_ _ S HvHAE _ . AE AEN 2=l ) GAE 4l ) GAE
> d2 d : Tv 1/2 1 . _ 7l(ﬂiu+iAE) . %:Fl/ + IAE F( - +D+l )F( szd )F( : +”2 l )F( : 1/2 : )
3F> v ;7] = (—2)2% sin (7
SEHv+HAE
1+, 2005

T

. _ 1 d— Clry—iAE

_easin(rE) LG Sy 2 -

+(=2)77 —————"3F ;
sin(Fzv)

d— d_ d—1 Eliy—iAE
+ <_Z) EEESH Sln(”T) ( 2 2 v, 2 ;Z_l) )
1

(B13)
sin 454 —iAE
()’ gy
Using this equality, the following formula can be shown to hold:
—in( ) | /d=1 d—1 Sl yHAE ‘ —in(l) | yd=1 d—1 _ Sl HAE '
_e-—23F2 702 +H‘2 2 el 6.73];2 202 Y 2 el
sin(zv) 14 L sin(—zv) 1— y’+‘
d—1 d—1 - rd— a1, 3
o F( +L/2+1AE>1_,( 112+1AE)F( +1/2 1AE>F( 1/21AE) em<%+l’) . %’%4—”’ d21+l/2 1AE‘ o
+ = 3F a3y, iag €
m sin(zv) 14y, T 22E
elr:(ﬂ—y) R % d;l —v ﬂ*”z*iAE o0
— 3 F ’ b3 ;e ). B14
+ sin(—zv) 2( -2 ok ‘ ) Bl
APPENDIX C: DERIVATION OF EQ. (79)
We derive the asymptotic form (79) of the Wightman function for each mode:
G (.13 10) = @i (mmo0) e (' 1o)- (Ch

By introducing z = —k#, and 6(z) =z — (z/4)(1 + 2v), and using the asymptotic form of the Bessel and Neumann
functions around z = oo (i.e., 175 = —o0) (see Sec. 8.451 of [21]), uy has the expansion

2k o - P-HP-i-(d-2)-2m?
up =i —(—no)—%{e—lﬂ(Z){l—i—iz ;Z ) =) 48Z2< ) )

+eie<z>[ d-2 (vz——)(d 4) — 2m2]+0(z_3)}‘

C2
4z 872 €2
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vy can be obtained from this expression by replacing 6(z)
with 6(z) — z/2:

2k S - (P~
vy = — ;(—ﬂo)%{ele@ [1 + 1%

P =PP—3-d-2)— ZmZ)}
822
e [_i d-2 (1/2 —bd—-4)- ZmT
4z 872

(C3)

With the u, and v, given above, the wave function (75) is
written as

22—

T _
o (mm0) = \/7. (—'1)%{ —i6() [1 +i 5
Z

P -Hr-t—(d- |
(=) = (d 2))} HY (k)
_ 0 [_i d=2 (P -(d—4) - ZmT
4z 822
x H? (—kn) + O(z3)}. (C4)

Then, by substituting this to (C1), we obtain Eq. (79).

APPENDIX D: WIGHTMAN FUNCTION

1. Analytic expression for the Wightman function

The Wightman function for the instantaneous ground
state,

1
n) = [

< [T sk = #1)GE ),
0

G (x.x'sm9) =

(D1)
has the expansion of the form
(x,x'310) Z c"l)7 (10)G, 3, (x,x), (D2)
n=0 a,b=1

where

G (x. ) = AL

d—1

A= / dkk'T =" T (klx — ']
2r) T —x'[T Jo

x H (—eieekn)HY

_eiabsk’,]/)’ (D3)
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0 0 0 0 1
ca=r/4 ) =c=c3=0. c=0,

2 2 VA d—2 2 2 2
cha=i=g(T) CwE o di=eh=0  ©4
with

_[+1 (a=1),
Oa = {—1 (a=2). ®3)

Here, an infinitesimal positive constant ¢ is introduced in
order to make the k integration finite."' Note that the n = 1
terms will totally disappear as a consequence of ignoring
the highly oscillating terms.

In the following, we derive an analytic expression for the
integral (D3). We take care of only terms with a # b, since
terms with @ = b do not contribute to the Wightman
function at least for n < 2 [see (D4)].

By using the identity K, (e7i957) =
(ic,m/2)e’ ¥ H\" (2), we first obtain the relation

/ dkk'T = T (ke — ') HL (— k) HY (—kar')
0

46,0y, o

= ——2 L e~(Cutor)¥ / kKT s (Kl — X))
T 0

x K, <—ei"u%kn) K, <—ei”b§k71’) .

Then, using the formula [29]

(D6)

/ " dkk K, (ak) K, (bK)T, (ck)
0

p=l=n_ p

Tt )% [(a/b)’T(E)T(E + v)I'(—v)
X Fy(EE+ vl +p, 1 +v;—c?/b?; a0/ b?)

+ (a/) TOTE - DTW)

X Fy(é,E—vi 1+ u, 1 —v;—c?/b?;a | b?)]

E=u+1-(n/2),v¢Z], D7)

we obtain the following expression for GEZ‘}), (x,x'):

"1t is known that a delicate treatment is required in regular-
izing the integral to obtain the response function F [24-28].
However, we expect that the current regularization is sufficient to
obtain its derivative F, since it gives a de Sitter—invariant form in
the limit 7y, — —oo and reproduces all the known results in the
literature as special cases. See comments following (86) and (59).
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(—040p)e”

(Ua +Gb) 2 _7] %
d+3 oo d— l e rd—1 ( /> <_77/)”
Y F(T) -n

. v iy d - 1 -
X |:(__:77,> e_(tfg—ﬁh)Tr (% + y>

G nl),(x,x’)

cp (Ao, d=l-nd—1
4 2 v, 2 s 2 ) 129

—16,0[y __ /]2 e~i0am 2

e |x/ 2x| . _16”( '7/) >—|—(l/—>—l/):|
(=) e (—n')?

(D8)

Here, F4(a,b;c,d;x,y) is Appell’s hypergeometric func-
tion given by

Fy(a,b;c,d;x,y)

E § m+n m+n xmyn
m!n!(c

m=0 n=0 ”
[x['/2 + [y['/* < 1}, (D9)
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(x), =T(x+n)/T(x). (D10)

For Z(x,X)= [ +n*—|x—=x']*]/2n') <1, the
series in (D9) does not converge, and the analytic con-
tinuation should be performed (see Eq. 9.185 of [21]
for the integral representation of the Mellin-Barnes
type).

In the limit |[x —x’| — 0, one can show, by using the
identity

> (a)n(b>n n

a, b
“ > i, =

(D11)

that the Wightman function takes the form

—(04+0,)% —_n\ &t —n\ v o—(0a—0,)% d=l-n d=l=n  ,—io,(7—0)(_;)2
e n\7z " n\"e 2 A + v, e n
e [0 2t e () \ —if ) sin(aw) 1+v em 0 (=)
o-a—a,,)' ﬁ d é n_y, d—1—n e—io-“(zz—()) (_’7)2
< ) sin(—mv) > 1( 1—v ’ei””(ﬂo)(—ﬂ/)zﬂ
4 (—0,0,) 5ot ) (d=1=n) R R a2 BTN
= (=) (=1)]22F - ; ' (D12)
™ (4m)ir(45h) =k 2
|
with Here, in the last equality, we have used formulas 9.132-2
and 9.134-3 of Ref. [21].
—io,(7—0) (- )2 4 o-ion(x-0) (- ,)2 We comment that (D12) can be obtained more directly
Uy = ¢ T oe / " (D13) by performing an integration (D3) with setting |[x —x'| =0
2e~i(Cutan)m=0) (—p)(—n) in advance:
|
2(=m) (=)=

lim G(al),(x X)) =

[x—x'|—0 (4ﬂ)TF(— 0

iy

(—o40y)e o T (e

d—l—n)l—*(d—é—n _ I/)

— dl)/ dkde nH ( ewask;,]) ()( eigbgkl’],>,

dﬁéin e(ga _O'b)i%

(_;,]) n eirma

d+3

2T (4L

5 __’7 &1y I’} d— é nyy, d—é—n' . e—io‘b(fr—O)(_n/)Z
_rl/ 201 1 +v ’ e—iaa(ﬂ—O)(_n)Z ’

where we have used formula 6.576-4 of [21]. It
can be found that the last expression actually coincides
with the first line on the right-hand side of (D12) by using
formula 9.132-1 of [21].

g

(D14)

Note that the nth-order Wightman function Gﬁf},(x, x')is
not de Sitter invariant for n > 0, because it has an extra
factor [(—#)(—#)]"/* which multiplies a function of the de
Sitter—invariant variable u,, .
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FIG. 4 (color online).
v = 20i (heavy mass case), and 7 — 7, = 50.
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-100*-

FIG. 5 (color online).
v=0, and 7 — 7y = 50.

2. Behavior of the Wightman function

In order to understand the behavior of the Wightman
function'?

(D15)

">The Wightman function has the following asymptotic form
for large s:

eIl - L)
43% N
—in(GHv)(d=1 _
N e “IT(%5 dH—}— v)I'(—v) ol
iy
which becomes oscillatory for the heavy mass case
m > (d — 1)/2. The behavior for small s is given by

—v)s

G (x(z), x(z = 5)3m0) ~

d—

s
G (x0)x(e— 9im) = L (s o0

PHYSICAL REVIEW D 89, 064024 (2014)

\/ O,V 1.0 1.5
-1

The real part (left) and the imaginary part (right) of the Wightman function G*(x(7), x(7 — 5);179) for d = 4,

-10+

The real part (left) and the imaginary part (right) of the Wightman function G (x(7), x(z — 5);179) for d = 4,

we give plots of the Wightman function for three typical
cases of d=4 with v=20i [heavy mass case;
m> (d—1)/2=3/2, Fig. 4], v =0 [m = 3/2, Fig. 5],
and v = 1.4 [light mass case; m < 3/2, Fig. 6]. It is clear
from these examples that, for the cases other than the light
mass case (i.e., for the cases described in Figs. 4 and 5), the
Wightman function G (x(7), x(7 — s5);179) takes significant
values only around the coincident point s = 0. On the other
hand, as can be seen in Fig. 6, the Wightman function has a
longer-range correlation as the mass m decreases. Thus, in
the light mass case, we may not be able to neglect memory
effects, and the Markovian approximation used in (30) may
not be valid.

APPENDIX E: CALCULATION OF F

In this Appendix, we calculate the derivative of the
response function

. 0
]:a(fl))(AE,T,Tl) = /
—(e—71)

(+=n1) «
+ /O " dse BE G (x(7),x(r —

dse1AEs Gsfl), (x(z+5),x(7);n0)

5)3M0)
(ED)
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0.101

0.05[

-0.051

-0.10

FIG. 6 (color online).
v = 1.4 (light mass case), and 7 — 7y = 50.

associated with the Wightman function [on the trajectory
(40)] of the form

G\ (x,x)
2[(=n)(=1))F aapy @ ()
= BT r(d-)/ dkk®2=H (=kn)Hy” (=kiy').
(E2)

Recall that F associated with the Wightman function (43)
is given by a linear combination of F., (a wb
The first term in (E1) is rewritten to

0 .
/ dse G (x(z + 5), x())
—(r—11) '

Ze—a‘[

T

X . .
x / dyy= =TS H (eey).
e~ (TT1)yx

/ dxXxX= 23+1AEH( )( ioaex)
(E3)

Here, we have defined new variables X = ke~ (715
and y=ke ", and the order of integration has been
changed. In a similar way, the second term in (El) is
rewritten to

A " dse 2B G (x(2). x(z — 5))
2 —QarT .
_ de] / dx x‘THaE g (b )( iohex)
(47)7 (5

X 43 0 4HiAE (@) Jic e
% dyy 5 HI/ (e a y)’ (E4)
e~ (=)

where we have defined X = ke~ ") and y = ke™* and
again the order of integration has been changed.

The y integration in (E3) and (E4) can be performed by
using the following formula with p = 1 and g = ¢~ (*"7):

PHYSICAL REVIEW D 89, 064024 (2014)
0.101

-0.05

-0.10%

The real part (left) and the imaginary part (right) of the Wightman function G (x(7), x(z — s5);179) for d = 4,

/‘px dy ydzi—a:FiAEHl(f’)(eibey)
gx

216 iz i(7—2e)

_ _76—0,,2 /PX dyy@7(1¢iAEK ( —op 5 y)
oy, oo { / px)? / ] —famE
x K ( ~o Y ) (y=V7)

T 0
ax\/_ ) (p— q)]
—1'
_ _21/ 10y, |:(pX)d |y aFiAE

T

_ L2ioye 2
21 (—e” " (ax)
X G1,3 <74

X K,,( —oy*

u——-‘ra:tlAE

’ —(p—q)
0 y—u+ailAE ’
l/’ b 2
(ES)

In the last equality, we have used the following formula
[see Eq. (6.592-2) of [21]]:

! y) v—1,—v 2.1 a? 54
| dxx*K, (av/x) = 2" 'a Gy P 02—2—1
R
[Re,1>—1+| qu (E6)

If ¢ # 0, the condition Red > —1 + (|Rev|/2)[<(d —
1)/2 > |Rev| + a] is not necessary.

In order to perform the X integral in (E3) and (E4),
we use
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0 2 a 0 wx? a
dxx* 1 H (x) G2 (ﬂ l ) / dxx'J, (x)G*} (— ! )
/ WG (G, o 0 WG (0
_atv=2 a _a—v=2 _atv—2 a _a—uv—2
— ga-1|G22 SRR P =2%71G33 (w‘ bbby ) =
[ S\ bbby >3 by, by, bs

_ (1+§—2 _ (1—;—2 a, — (1—12/—3
+ioaG§j<a)‘ s )] (E7) © 2 (@X°] a
by. by, by, — % | XTNDGG T ) by, by

23 (l+l/ 2 _1171/72 a _a—uv—3

o — s 2 ) ) 2

=276 @) 2y g s . (E9)
1. Y2,U3, — 2

which can be derived from formulas 7.821-1 and 7.821-2
of [21]: We thus have

2e™ 3 . X d-3 : b, -
dXX > ilAEH( a) L% / d > 7a:|:1AEH£ ) P
(471_)%1_,((1;1) / (e ) . Yy ( y)

1S4 ati _3—a
e A B =
- atl ;B d=1 x |G35| —e oo v~ g HAE
22T (45)) y. 0,5k o
_d-3—a _ d—3—a U*%JrailAE _d—4—a
+i0,G73 (—e—zim—ane > e y)
’ v o HAE _ d—4—a
v,0, 5 , 4+
_d-3—q v teHiAE By
—e —(G—v—aFiAE) (r—1) G2,2 —e2i(0,—0y)e p=2(7—1/) 2 7 2 ’ Ty
3.3 0 L/—";+0d:1AE
v, 2
d-3-a _ d—3-a v atAE g
. - ,— +v, ,— +v
+ igaGij <_621(”a”b)662<771) 2 2 g 2 2 > }:| . (E10)
L/,O,U_TJ;a 1 —E=ae
Combining (E1), (E3), (E4), (E10), and (B10), b(al;l) =_(— e—(aa—ab)iO)v oFHv—a—iAE)z,
we finally obtain the following expression for “ )
F(AE,7,7)): X F (v, AE; e72770), (E13)
.F((l><AE z, Tl) _ b(“ 0) —ar =+ b(’1’1>e—(%+v—iAE)T
+ ba b e— (GF—v—iAE)r
a2) _ —o i (G —v—a—i T a . ,—2(t—1
Ry A = el SR A )
El4
+ b ’14) —( 1/+1AE) (E11) ( )
where b;}f) =_(— e(aa—o'b)iO)l/ o GHrv—a+AE)T,
bgal;o) = (_e—((yd—gh)iO)nga; (l/, AE: 1) X Fg”(z (l/, —AE; e—2<T—T1))’ (E15)
+ e“’ai””Ff}Z(—y, AE; 1)
+ <_e<aa_gb)iO)UF§:t)z (y, —AE; 1) bfza;) = _e—bin:z/e(""l v—a-+AE)z F( )( ,—AE; €_2<T_Tl)),
+ e EY) (—y, —AE; 1), (E12) (E16)
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(a) .
F, (v, AE;x)
eaaiﬂ%e—dbi%

20+ 75T (451 sin(aw)

d—1 B
1= 11— S +v—a—iAE
. d é a’d é a v, 2 5

F
x3h 34y a—iAE
1 —‘l_ l/, zf

) ei<0410b)0x> .

(E17)

Since b\ is independent of 7, and 5\ (i = 1,2, 3, 4)

become independent of 7 in the limit 7 — oo, we find F gal),
to take the following asymptotic form at later times:

(GHEVHAE) (1-1))

J”:(aal), ~ conste™* 4 conste™ (E18)

Then, for the Wightman function AG] (n,7') given in
(49), the derivative of the response function becomes

constF l(la,jh )

NE

AF(AE;7,7)) ~

&=
I
-

a

[conste™%7 4 conste~ (‘T HHAE) (r-71)]

1

~

]

a

&>
I

~conste—% 4 const e~ (‘FHEVHAE) (1))

(E19)
with a = min, ,(a,,).

The derivative of the response function for the Bunch-
Davies vacuum, Fgp, can also be calculated from (E11) by
setting a=1,b =2, and a = 0:

‘7.:BD(AE’ T, Tl) == %Fgog(AE, T, Tl)

_j:eq AE b< ) (G H4+v—iAE)e
(a8) + 2

(0.2) —(45l—v—iAE)z
+— b12
4
+ = b12 e——+v+1AE)r

Sy HAE):
9

+— b, 2 (E20)
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where
FeU(AE)
_r (00)
=T
4
_— Ly HAE ——l/ 1AE 1y AE 1y JAE
:eAEF(+2+l)( SN ()N (=)
827 T(4h) ’
(E21)
bgozl) _ _eiﬂpe(%-&-v—iAE)rlF(l(g (1/, AE; 6_2(7_71)), (E22)

b20é2> _ _e—im/e(d Ly~ 1AE)11F( )( —u, AE; 6_2(T_Tl)>,
(E23)

b(]023) — i (G HAE)T Féol) (y’ —AE; e—2(r—rl))’
(E24)

bﬁ?{” — i e(%—v+iAE>rlF(2(?2<_y’ _AE: e—z(f—ﬁ))_

(B25)

We have used (B14) to obtain (E21). Equations (E20)-
(E25) give Eq. (59), which shows that Fgp(AE,7,7;) has
the following asymptotic form for 7 — oo:

~ FY(AE) + const e~ (‘T HHAE)T
(E26)

fBD(AE, T,T])
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