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Distortion Model Based on Word Sequence Labeling
for Statistical Machine Translation

ISAO GOTO, National Institute of Information and Communications Technology and Kyoto University
MASAO UTIYAMA, EIICHIRO SUMITA, and AKIHIRO TAMURA, National Institute of
Information and Communications Technology
SADAO KUROHASHI, Kyoto University

This article proposes a new distortion model for phrase-based statistical machine translation. In decod-
ing, a distortion model estimates the source word position to be translated next (subsequent position; SP)
given the last translated source word position (current position; CP). We propose a distortion model that
can simultaneously consider the word at the CP, the word at an SP candidate, the context of the CP and
an SP candidate, relative word order among the SP candidates, and the words between the CP and an SP
candidate. These considered elements are called rich context. Our model considers rich context by discrimi-
nating label sequences that specify spans from the CP to each SP candidate. It enables our model to learn
the effect of relative word order among SP candidates as well as to learn the effect of distances from the
training data. In contrast to the learning strategy of existing methods, our learning strategy is that the
model learns preference relations among SP candidates in each sentence of the training data. This leaning
strategy enables consideration of all of the rich context simultaneously. In our experiments, our model had
higher BLUE and RIBES scores for Japanese-English, Chinese-English, and German-English translation
compared to the lexical reordering models.
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1. INTRODUCTION

Estimating appropriate word order in a target language is one of the most difficult
problems for statistical machine translation (SMT). This is particularly true when
translating between languages with widely different word orders.

To address this problem, there has been a lot of research done into word reorder-
ing: lexical reordering model [Tillman 2004], which is one of the distortion models,
reordering constraints [Zens et al. 2004], pre-ordering [Xia and McCord 2004],
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2:2 I. Goto et al.

hierarchical phrase-based SMT [Chiang 2007], and syntax-based SMT [Yamada and
Knight 2001].

In general, source language syntax is useful for handling long distance word reorder-
ing. However, obtaining syntax requires a syntactic parser, which is not available for
many languages. Phrase-based SMT [Koehn et al. 2007] is a widely used SMT method
that does not use a parser.

Phrase-based SMT mainly1 estimates word reordering using distortion models.2
Therefore, distortion models are one of the most important components for phrase-
based SMT. There are methods other than distortion models for improving word
reordering for phrase-based SMT, such as pre-ordering or reordering constraints.
However, these methods also use distortion models when translating by phrase-based
SMT. Therefore, distortion models do not compete against these methods and are com-
monly used with them. If a distortion model improves, it will improve the translation
quality of phrase-based SMT and will benefit the methods using distortion models.

In decoding by phrase-based SMT, a distortion model estimates the source word
position to be translated next (SP) given the last translated source word position (CP).
In order to estimate the SP given the CP, many elements need to be considered: the
word at the CP, the word at an SP candidate (SPC), the words surrounding the CP and
an SPC (context), the relative word order among the SPCs, and the words between
the CP and an SPC. In this article, these elements are called rich context. The major
challenge of distortion modeling is consideration of all of the rich context.

Previous distortion models could not consider all of the rich context simultaneously.
This is because the learning strategy for existing methods was that the models learned
probabilities in all of the training data. This meant that the models did not learn pref-
erence relations among SPCs in each sentence of the training data. Consequently, it
is hard to consider all of the rich context simultaneously using this learning strat-
egy. The MSD lexical reordering model [Tillman 2004] and a discriminative distortion
model [Green et al. 2010] could not simultaneously consider both the word specified
at the CP and the word specified at an SPC, or consider relative word order. There is
a distortion model that used the word at the CP and the word at an SPC [Al-Onaizan
and Papineni 2006], but this model did not use context, relative word order, or words
between the CP and an SPC. All of these elements are important, and the reasons for
their importance will be detailed in Section 2.

In this article3, we propose a new distortion model consisting of one probabilistic
model and which does not require a parser for phrase-based SMT. In contrast to the
learning strategy of existing methods, our learning strategy is that the model learns
preference relations among SPCs in each sentence of the training data. This leaning
strategy enables consideration of all of the rich context simultaneously. Our proposed
model, the sequence model, can simultaneously consider all of the rich context by iden-
tifying the label sequence that specifies the span from the CP to the SP. It enables our
model to learn the effect of relative word order among the SPCs as well as learn the
effect of distances from the training data. Experiments confirmed the effectiveness of

1A language model also supports estimation.
2In this article, reordering models for phrase-based SMT, which are intended to estimate the source word
position to be translated next in decoding, are called distortion models. This estimation is used to produce a
hypothesis in the target language word order sequentially from left to right.
3This article is based on a presentation given at the ACL 2013 conference [Goto et al. 2013]. Additional ma-
terial includes experiments on Chinese-English translation using an NIST dataset and on German-English
translation using the Europarl corpus; evaluations and analyses based on RIBES; and investigation of the
effects of context, the effects of part of speech, the relation between data sizes and the translation quality,
and the relation between distortion limits and translation quality without the effects of differences in the
SMT weighting parameters.

ACM Transactions on Asian Language Information Processing, Vol. 13, No. 1, Article 2, Publication date: February 2014.
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Distortion Model Based on Word Sequence Labeling 2:3

Fig. 1. An example of left-to-right translation for Japanese-English. Boxes represent phrases and arrows
indicate the translation order of the phrases.

our method for Japanese-English, Chinese-English, and German-English translation
using NTCIR-9 Patent Machine Translation Task data [Goto et al. 2011], NIST 2008
Open MT task data, and WMT 2008 Europarl data [Callison-Burch et al. 2008].

2. DISTORTION MODELS FOR PHRASE-BASED SMT

A Moses-style phrase-based SMT [Koehn et al. 2007] generates target hypotheses se-
quentially from left to right. Therefore, the role of the distortion model is to estimate
the source phrase position to be translated next whose target side phrase will be lo-
cated immediately to the right of the already generated hypotheses. An example is
shown in Figure 1. In Figure 1, we assume that only the kare wa (English: “he”) has
been translated. The target word to be generated next will be “bought”, and the source
word to be selected next will be its corresponding Japanese word katta. Thus, a distor-
tion model should estimate phrases including katta as a source phrase position to be
translated next.

To explain the distortion model task in more detail, we need to redefine two terms
more precisely, the current position (CP) and subsequent position (SP) in the source
sentence. CP is the source sentence position corresponding to the rightmost aligned
target word in the generated target word sequence. SP is the source sentence position
corresponding to the leftmost aligned target word in the target phrase to be generated
next. The task of the distortion model is to estimate the SP4 from SP candidates (SPCs)
for each CP.5

It is difficult to estimate the SP. Figure 2 shows examples of sentences that are sim-
ilar yet have different SPs, with the superscript numbers indicating the word position
in the source sentence.

In Figure 2(a), the SP is 8. However, in 2(b), the word (kare) at the CP is the same as
2(a), but the SP is different (the SP is 10). From these example sentences, we see that
distance is not the essential factor in deciding an SP. We can also see that the word at
the CP alone is not enough to estimate the SP. Thus, it is not only the word at the CP,
but also the word at an SP candidate (SPC) that should be considered simultaneously.

In Figures 2(c) and 2(d), the word (kare) at the CP is the same and karita (borrowed)
and katta (bought) are at the SPCs. Karita is the word at the SP for 2(c), while katta,
not karita, is the word at the SP for 2(d). One of the reasons for this difference is
the relative word order between words. Thus, we can see that considering relative

4SP is not always one position, because there may be multiple correct hypotheses.
5This definition is slightly different from that of existing methods, such as Moses [Koehn et al. 2007] and
Green et al. [2010]. In existing methods, CP is the rightmost position of the last translated source phrase
and SP is the leftmost position of the source phrase to be translated next. Note that existing methods do not
consider word-level correspondences.

ACM Transactions on Asian Language Information Processing, Vol. 13, No. 1, Article 2, Publication date: February 2014.
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2:4 I. Goto et al.

Fig. 2. Examples of CP and SP for Japanese-English translation. The upper sentence is the source sentence
and the sentence underneath is a target hypothesis for each example. The SP is in bold, and the CP is in
bold italics. The point of an arrow with an × mark indicates a wrong SP candidate.

word order, not just looking at what the word at the SP is, is important for estimating
the SP.6

In Figures 2(d) and 2(e), kare (he) is at the CP for both, and the word order between
katta and karita are the same. However, the word at the SP for 2(d) and the word
at the SP for 2(e) are different, which shows us that selecting a nearby word is not
always correct. The difference is caused by the words surrounding the SPCs (context),
the CP context, and the words between the CP and the SPC. Thus, these should all be
considered when estimating the SP.

In order to estimate the SP, the following should be considered simultaneously: the
word at the CP, the word at an SPC, the relative word order among the SPCs, the

6We checked the probability of a relatively close word position being the SP by using the NTCIR-9 JE data
[Goto et al. 2011]. We made lists of words at the SP for each word at the CP in the training data. When
a sentence contains two or more words that are included in the list for each word at the CP, and their
orientations are the same as that of the SP, we extracted those word pairs from these words. For example,
when Figures 2(c) and 2(d) are the training data, the list of words at the SP for kare at the CP consists of
karita and katta. We extract karita6 and katta10 as the word pair from Figure 2(c), and extract katta6 and
karita10 as the word pair from Figure 2(d). For Figure 2(c), the word position relatively close to the CP in
the extracted pair is 6 (karita6). The probability of a word position relatively close to the CP in the extracted
pairs being the SP was 81.2%.

ACM Transactions on Asian Language Information Processing, Vol. 13, No. 1, Article 2, Publication date: February 2014.
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Distortion Model Based on Word Sequence Labeling 2:5

words surrounding the CP and an SPC (context), and the words between the CP and
an SPC. In other words, rich context should be considered simultaneously.

Returning back to the distribution models, there are distortion models that do not
require a parser for phrase-based SMT. The linear distortion cost model used in Moses
[Koehn et al. 2007], whose costs are linearly proportional to the reordering distance, al-
ways gives a high cost to long distance reordering, even if the reordering is correct. The
MSD lexical reordering model [Tillman 2004; Koehn et al. 2005; Galley and Manning
2008] only calculates probabilities for the three types of phrase reorderings (monotone,
swap, and discontinuous), and does not consider relative word order or words between
the CP and an SPC. Thus, these models are not sufficient for long-distance word re-
ordering.

Xiong et al. [2006] proposed distortion models that used context to predict the orien-
tations {left, right} of the SP for their CYK-style decoder. Zens and Ney [2006] proposed
distortion models that used context to predict four classes {left, right}×{continuous,
discontinuous}. Green et al. [2010] extended the distortion models to use finer classes.
Green et al.’s [2010] model (the outbound model) estimates how far the SP should be
from the CP using the word at the CP and its context.7 Feng et al. [2013] also predicted
those finer classes using a CRF model. These models do not simultaneously consider
both the word specified at the CP and the word specified at an SPC, nor do they con-
sider relative word order.

Al-Onaizan and Papineni [2006] proposed a distortion model that used the word at
the CP and the word at an SPC. However, their model did not use context, relative
word order, or words between the CP and an SPC.

There is a method that adjusts the linear distortion cost using the word at the CP
and its context [Ni et al. 2009]. This model does not simultaneously consider both the
word specified at the CP and the word specified at an SPC.

In contrast, our distortion model, the sequence model, addresses the aforementioned
issues and utilizes all of the rich context.

3. PROPOSED METHOD

In this section, we first define our distortion model and explain our learning strategy.
Then, we describe two models: the pair model and the sequence model. The pair model
is our base model and the sequence model is our main proposed model.

3.1. Distortion Model and Learning Strategy

Our distortion model is defined as the model calculating the distortion probability. In
this article, distortion probability is defined as

P(X = j|i, S), (1)

which is the probability of j being the SP, where i is a CP, j is an SPC, S is a source
sentence, and X is the random variable of the SP.

7They also proposed another model (the inbound model) that estimates reverse direction distance. Each SPC
is regarded as an SP, and the inbound model estimates how far the corresponding CP should be from the SP
using the word at the SP and its context.

ACM Transactions on Asian Language Information Processing, Vol. 13, No. 1, Article 2, Publication date: February 2014.
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2:6 I. Goto et al.

We train this model as a discriminative model that discriminates the SP from SPCs.
Let J be a set of word positions in S other than i. We train the distortion model
subject to ∑

j∈J

P(X = j|i, S) = 1.

The model parameters are learned to maximize the distortion probability of the SP
among all of the SPCs J in each source sentence. This learning strategy is a type of
preference relation learning [Evgeniou and Pontil 2002]. In this learning, the distor-
tion probability of the actual SP will be relatively higher than those of all the other
SPCs J.

This learning strategy is different from that of Al-Onaizan and Papineni [2006] and
Green et al. [2010]. Green et al. [2010], for example, trained their outbound model
subject to

∑
c∈C P(Y = c|i, S) = 1, where C is a set of nine distortion classes8 and

Y is the random variable of the correct distortion class that the correct distortion is
classified into. Distortion is defined as j − i − 1. Namely, the model probabilities that
they learned were the probabilities of distortion classes in all of the training data, not
the relative preferences among the SPCs in each source sentence.

3.2. Pair Model

The pair model, which is our base model, utilizes the word at the CP, the word at an
SPC, and the context of the CP and the SPC simultaneously to estimate the SP. This
can be done using our distortion model definition and the learning strategy described
in the previous section.

In this work, we use the maximum entropy method [Berger et al. 1996] as a dis-
criminative machine learning method. The reason for this is that a model based on the
maximum entropy method can calculate probabilities. However, if we use scores as an
approximation of the distortion probabilities, various discriminative machine learning
methods can be applied to build the distortion model.

Let s be a source word and sn
1 = s1s2...sn be a source sentence. We add a beginning

of sentence (BOS) marker to the head of the source sentence and an end of sentence
(EOS) marker to the end, so the source sentence S is expressed as sn+1

0 (s0 = BOS,
sn+1 = EOS). Our distortion model calculates the distortion probability for an SPC
j ∈ { j|1 ≤ j ≤ n + 1 ∧ j �= i} for each CP i ∈ {i|0 ≤ i ≤ n}

P(X = j|i, S) = 1
Zi

exp
(
wTf

(
i, j, S, o, d

))
, (2)

where

o =
{

0 (i < j)
1 (i > j)

,

d =
⎧⎨
⎩

0 (| j − i| = 1)

1 (2 ≤ | j − i| ≤ 5)

2 (6 ≤ | j − i|)
,

Zi =
∑

j∈{ j|1≤j≤n+1 ∧ j �=i}
exp

(
wTf

(
i, j, S, o, d

))
,

8(−∞, −8], [−7, −5], [−4, −3], −2, 0, 1, [2, 3], [4, 6], and [7, ∞). In Green et al. [2010], −1 was used as one of
distortion classes. However, −1 represents the CP in our definition, and CP is not an SPC. Thus, we shifted
all of the distortion classes for negative distortions by −1.

ACM Transactions on Asian Language Information Processing, Vol. 13, No. 1, Article 2, Publication date: February 2014.
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Table I. Feature Templates

Template

〈o〉, 〈o, si+p〉1, 〈o, sj+p〉1, 〈o, ti〉, 〈o, tj〉, 〈o, d〉, 〈o, si+p, sj+q〉2, 〈o, ti, tj〉, 〈o, ti−1, ti, tj〉,
〈o, ti, ti+1, tj〉, 〈o, ti, tj−1, tj〉, 〈o, ti, tj, tj+1〉, 〈o, si, ti, tj〉, 〈o, sj, ti, tj〉

Note: t is the Part of Speech for s.
1 p ∈ {p| − 2 ≤ p ≤ 2}
2 (p, q) ∈ {(p, q)| − 2 ≤ p ≤ 2 ∧ −2 ≤ q ≤ 2 ∧ (|p| ≤ 1 ∨ |q| ≤ 1)}

Table II. The “C, I, and S” Label Set

Label Description
C The current position (CP).
I A position between the CP and an SPC.
S A subsequent position candidate (SPC).

w is a weight parameter vector, and each element of f(·) is a binary feature function
which returns 1 when its feature is matched and if else, returns 0. Zi is a normalization
factor, o is an orientation of i to j, and d is a distance class.

Table I shows the feature templates used to produce features. A feature is defined
as an instance of a feature template. Using example (a) from Figure 2 will show some
instances of each variable, where i = 2 and j = 8: o = 1, si = kare, si+1 = wa,
sj = katta, ti = NOUN, and d = 2. t is the part of speech for s. In this case, a feature
of 〈o, si, sj〉 is 〈o = 1, si = kare, sj = katta〉 and a feature of 〈o, si+1, sj〉 is 〈o = 1, si+1 =
wa, sj = katta〉.

In Equation (2), i, j, and S are used by the feature functions. Thus, Equation (2) can
utilize features consisting of both si, which is the word specified at i, and sj, which
is the word specified at j, or both the context of i and the context of j simultaneously.
Distance is considered using the distance class d. Distortion is represented by distance
and orientation. The pair model considers distortion using six joint classes of d and o.

3.3. Sequence Model

The pair model does not consider relative word order among the SPCs nor all the words
between the CP and an SPC. Our main proposed model, the sequence model, which is
described in this section, considers rich context, including relative word order among
the SPCs and including all the words between the CP and an SPC.

In Figures 2(c) and 2(d), karita (borrowed) and katta (bought) both occur in the
source sentences. The pair model considers the effect of distances using only the dis-
tance class d. If these positions are in the same distance class, the pair model cannot
consider the differences in distances. In this case, these are conflict instances during
training and it is difficult to distinguish the SP for translation. However, this problem
can be solved if the model can consider the relative word order.

The sequence model considers the relative word order. It does this by discriminating
the label sequence corresponding to the SP from the label sequences corresponding to
each SPC in each sentence. Since each label sequence corresponds to one SPC, if we
can identify the label sequence that corresponds to the SP, then we can obtain the SP.
The label sequences specify the spans from the CP to each SPC using three kinds of
labels that indicate the type of word positions in the spans. The three kinds of labels,
“C, I, and S,” are shown in Table II. Figure 3 shows examples of the label sequences
for Figure 2(c). The label sequences are represented by boxes and the elements of the
sequences are labels. The SPC is used as the label sequence ID for each label sequence.

The label sequence can handle relative word order. Looking at Figure 3, the label
sequence ID of 10 knows that karita exists to the left of the SPC of 10. This is because

ACM Transactions on Asian Language Information Processing, Vol. 13, No. 1, Article 2, Publication date: February 2014.
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Fig. 3. Example of label sequences that specify spans from the CP to each SPC for the case of Figure 2(c).
The labels (C, I, and S) in the boxes are the label sequences.

karita6 carries a label I, while katta10 carries a label S, and a position with label I is
defined as relatively closer to the CP than a position with label S. By utilizing the label
sequence and corresponding words, the model can reflect the effect of karita existing
between the CP and the SPC of 10 on the probability.

Karita (borrowed) and katta (bought) in Figures 2(c) and 2(d) are not conflict in-
stances in training for the sequence model, whereas they are conflict instances in
training for the pair model. The reason is because it is necessary to make the prob-
ability of the SPC of 10 smaller than that of the SPC of 6. The pair model tries to
make the weight parameters for features with respect to katta smaller than those for
features with respect to karita for 2(c), but it also tries to make the weight parameters
for features with respect to karita smaller than those for features with respect to katta
for 2(d). Since they have the same features, this causes a conflict. In contrast, the se-
quence model can give negative weight parameters for the features with respect to the
word at the position of 6 with label I, instead of making the weight parameters for the
features with respect to the word at the position of 10 with label S smaller than those
of 6 with label S.

We use a sequence discrimination technique based on CRF [Lafferty et al. 2001] to
identify the label sequence that corresponds to the SP.9 There are two differences be-
tween our task and the CRF task. One difference is that CRF identifies label sequences
that consist of labels from all of the label candidates, whereas we constrain the label
sequences to sequences where the label at the CP is C, the label at an SPC is S, and the
labels between the CP and the SPC are I. The other difference is that CRF is designed
for discriminating label sequences corresponding to the same object sequence, whereas
we do not assign labels to words outside the spans from the CP to each SPC. However,
when we assume that another label such as E has been assigned to the words outside
the spans and there are no features involving label E, CRF with our label constraints

9The critical difference between CRFs and maximum entropy Markov models is that a maximum entropy
Markov model uses per-state exponential models for the conditional probabilities of next states given the
current state, while a CRF has a single exponential model for the joint probability of the entire sequence of
labels given the observation sequence [Lafferty et al. 2001].

ACM Transactions on Asian Language Information Processing, Vol. 13, No. 1, Article 2, Publication date: February 2014.
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can be applied to our task. In this article, the method designed to discriminate label
sequences corresponding to the different word sequence lengths is called partial CRF.

The sequence model based on partial CRF is derived by extending the pair model.
We introduce the label l and add two extensions to the pair model to identify the label
sequences corresponding to the SP. One of the extensions uses labels and the other
uses sequence. For the extension using labels, we suppose that label sequences specify
the spans from the CP to each SPC using the labels in Table II. We conjoin all the
feature templates in Table I with an additional feature template 〈li, lj〉 to include the
labels into features, where li is the label corresponding to the position of i. For example,
a feature template of 〈o, si+1, sj, li, lj〉 is derived by conjoining 〈o, si+1, sj〉 in Table I with
〈li, lj〉. The other extension uses sequence. In the pair model, the position pair of (i, j)
is used to derive features. In contrast, to discriminate label sequences in the sequence
model, the position pairs of (i, k), k ∈ {k|i < k ≤ j ∨ j ≤ k < i} and (k, j), k ∈ {k|i ≤
k < j ∨ j < k ≤ i} are used to derive features. Note that in the feature templates
in Table I, i and j are used to specify two positions. When features are used for the
sequence model, a value of k is used as one of the two positions. For example, for the
position pairs of (i, k), the value of sk is used as the value of sj and the value of lk is
used as the value of lj in the feature template of 〈o, si+1, sj, li, lj〉 to obtain a feature
for each k. This is conducted by interpreting the parameters of f(·) as f(i, j, S, o, d, li, lj)
when the feature templates are used to derive features in the following Equations (3)
and (4).

The distortion probability for an SPC j being the SP given a CP i and a source sen-
tence S is calculated as

P(X = j|i, S) =
1
Zi

exp
( ∑

k∈M∪{ j}
wTf

(
i, k, S, o, d, li, lk

) +
∑

k∈M∪{i}
wTf

(
k, j, S, o, d, lk, lj

))
, (3)

where

M =
{{m|i < m < j} (i < j),
{m| j < m < i} (i > j),

and

Zi =
∑

j∈{ j|1≤j≤n+1 ∧ j �=i}
exp

( ∑
k∈M∪{ j}

wTf
(
i, k, S, o, d, li, lk

) +
∑

k∈M∪{i}
wTf

(
k, j, S, o, d, lk, lj

))
.

(4)

Since j is used as the label sequence ID, discriminating X = j from X �= j also means
discriminating the label sequence ID of the SP from the label sequence IDs of the
non-SPs.

The first term in exp(·) in Equation (3) considers all of the word pairs located at i
and other positions in the sequence, and also their context. The second term in exp(·)
in Equation (3) considers all of the word pairs located at j and other positions in the
sequence, and also their context.

By designing our model to discriminate among different length label sequences, our
model can naturally handle the effect of distances. Many features are derived from a
long label sequence because it will contain many labels between the CP and the SPC.
On the other hand, fewer features are derived from a short label sequence because a

ACM Transactions on Asian Language Information Processing, Vol. 13, No. 1, Article 2, Publication date: February 2014.
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2:10 I. Goto et al.

Fig. 4. Examples of supervised training data. The lines represent word alignments between source words
and target words. The English side arrows point to the nearest word aligned on the right.

short label sequence will contain fewer labels between the CP and the SPC. The bias
from these differences provides important clues for learning the effect of distances.10

3.4. Training Data for Discriminative Distortion Model

In order to train our discriminative distortion model, supervised training data built
from a parallel corpus and word alignments between corresponding source words and
target words is necessary. Figure 4 shows examples of this training data. We create the
training data by selecting the target words aligned to the source words sequentially
from left to right (target side arrows), then deciding on the order of the source words
in the target word order (source side arrows). The source sentence and the source side
arrows are the training data.

4. EXPERIMENT

In order to confirm the effects of our distortion model, we conducted a series of
Japanese to English (JE), Chinese to English (CE), and German to English (GE) trans-
lation experiments.11

4.1. Data

We used the patent data from the NTCIR-9 Patent Machine Translation Task [Goto
et al. 2011] for JE and CE translation. There were 2,000 sentences for the test data
and 2,000 sentences for the development data. The reference data is single reference.
The translation model was trained using sentences of 40 words or less from the train-
ing data. So approximately 2.05 million sentence pairs consisting of approximately 54
million Japanese tokens whose lexicon size was 134k and 50 million English tokens
whose lexicon size was 213k were used for JE. Approximately 0.49 million sentence
pairs consisting of 14.9 million Chinese tokens whose lexicon size was 169k and 16.3
million English tokens whose lexicon size was 240k were used for CE.

We also used the newswire data from the NIST 2008 Open MT task12 for CE
translation. There were 1,357 sentences for the test data. The reference data is multi-
reference (4 references). We used the NIST 2006 test set consisting of 1,664 test sen-
tences as the development data. The translation model was trained using sentences of

10Note that the sequence model does not only consider larger context than the pair model, but that it also
considers labels. The pair model does not discriminate labels, whereas the sequence model uses label S and
label I for the positions except for the CP, depending on each situation. For example, in Figure 3, at position
6, label S is used in the label sequence ID of 6, but label I is used in the label sequence IDs of 7 to 11. Namely,
even if they are at the same position, the labels in the label sequences are different. The sequence model
discriminates the label differences.
11We conducted JE, CE, and GE translation as examples of language pairs with different word orders and
of languages where there is a great need for translation into English.
12To reduce the computational cost, we did not use the comparable corpus (LDC2007T09), the UN corpus
(LDC2004E12), or hansard and law domains in the Hong Kong corpus (LDC2004T08).
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Distortion Model Based on Word Sequence Labeling 2:11

40 words or less from the training data. So approximately 2.19 million sentence pairs13

consisting of 18.4 million Chinese tokens whose lexicon size was 907k and 20.7 million
English tokens whose lexicon size was 932k were used.

We used the Europarl data from the WMT 2008 [Callison-Burch et al. 2008] trans-
lation task for GE translation. There were 2,000 sentences for the test data. The refer-
ence data is single reference. We used the WMT 2007 test set consisting of 2,000 test
sentences as the development data. The translation model was trained using sentences
of 40 words or less from the training data. So approximately 1.00 million sentence pairs
consisting of 20.4 million German tokens whose lexicon size was 226k and 21.4 million
English tokens whose lexicon size was 87k were used.

4.2. Common Settings

MeCab14 was used for the Japanese morphological analysis. We adjusted the tokeniza-
tion of the alphanumeric characters in Japanese to be the same as for the English.
The Stanford segmenter15 and tagger16 were used for Chinese segmentation and POS
tagging and for German POS tagging. GIZA++ and grow-diag-final-and heuristics were
used to obtain word alignments. In order to reduce word alignment errors, we removed
articles {a, an, the} in English, particles {ga, wo, wa} in Japanese, and articles {der, die,
das, des, dem, den, ein, eine, eines, einer, einem, einen} in German before performing
word alignments because these function words do not correspond to any words in the
other languages (JE and CE) or articles do not always correspond like content words or
prepositional words (GE). After word alignment, we restored the removed words and
shifted the word alignment positions to the original word positions. We used 5-gram
language models with modified Kneser-Ney discounting [Chen and Goodman 1998] us-
ing SRILM [Stolcke et al. 2011]. The language models were trained using the English
side of each set of bilingual training data.

We used an in-house standard phrase-based SMT system compatible with the Moses
decoder [Koehn et al. 2007]. The phrase table and the lexical distortion model were
built using the Moses tool kit. The SMT weighting parameters were tuned by MERT
[Och 2003] using the development data. The tuning was based on the BLEU score
[Papineni et al. 2002]. To stabilize the MERT results, we tuned the parameters three
times by MERT using the first half of the development data and we selected the SMT
weighting parameter set that performed the best on the second half of the development
data based on the BLEU scores from the three SMT weighting parameter sets.

We compared systems that used a common SMT feature set from standard SMT
features and different distortion model features. The common SMT feature set consists
of four translation model features, phrase penalty, word penalty, and a language model
feature. The compared different distortion model features are as follows.

— The linear distortion cost model feature (LINEAR)
— The linear distortion cost model feature and the six MSD bidirectional lexical dis-

tortion model [Koehn et al. 2005] features (LINEAR+LEX)
— The outbound and inbound distortion model features discriminating nine distortion

classes [Green et al. 2010] (9-CLASS)

131.27 million sentence pairs were from a lexicon (LDC2002L27) and a Named Entity list (LDC2005T34).
14http://mecab.sourceforge.net/
15http://nlp.stanford.edu/software/segmenter.shtml
16http://nlp.stanford.edu/software/tagger.shtml
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2:12 I. Goto et al.

— The proposed pair model feature (PAIR)
— The proposed sequence model feature (SEQUENCE)

4.3. Training for the Proposed Models

Our distortion model was trained as follows: We used 0.2 million sentence pairs and
their word alignments from the data used to build the translation model as the training
data for our distortion models. The features that were selected and used were the ones
that had been counted17, using the feature templates in Table I, at least four times
for all of the (i, j) position pairs in the training sentences. We conjoined the features
with three types of label pairs 〈li = C, lj = I〉, 〈li = I, lj = S〉, or 〈li = C, lj = S〉
to produce features for SEQUENCE. The L-BFGS method [Liu and Nocedal 1989] was
used to estimate the weight parameters of maximum entropy models. The Gaussian
prior [Chen and Rosenfeld 1999] was used for smoothing.18

4.4. Training for the Compared Models

For 9-CLASS, we used the same training data as for our distortion models. We used
the following feature templates to produce features for the outbound model: 〈si−2〉,
〈si−1〉, 〈si〉, 〈si+1〉, 〈si+2〉, 〈ti〉, 〈ti−1, ti〉, 〈ti, ti+1〉, and 〈si, ti〉, where ti is the part of speech
for si. These feature templates correspond to the components of the feature templates
of our distortion models. In addition to these features, we used a feature consisting
of the relative source sentence position as the feature used by Green et al. [2010].
The relative source sentence position is discretized into five bins, one for each quintile
of the sentence. For the inbound model19, i of the feature templates was changed to
j. Features occurring four or more times in the training sentences were used. The
maximum entropy method with Gaussian prior smoothing was used to estimate the
model parameters.

The MSD bidirectional lexical distortion model was built using all of the data used
to build the translation model.

4.5. Results and Discussion

We evaluated translation quality based on the case-insensitive automatic evaluation
score BLEU-4 [Papineni et al. 2002] and RIBES v1.01 [Isozaki et al. 2010a]. RIBES is
an automatic evaluation measure based on word order correlation coefficients between
reference sentences and translation outputs. We used distortion limits of 10, 20, 30,
and unlimited (∞), which limited the number of words for word reordering to a max-
imum number for JE and CE. We used distortion limits of 6, 10, and 20 for GE. Our
main results are presented in Tables III to VI. The values given are case-insensitive
scores. Bold numbers indicate no significant difference from the best result in each
language pair and in each evaluation measure using the bootstrap resampling test at
a significance level α = 0.01 [Koehn 2004].

17When we counted features for selection, we counted features that were from all of the feature templates
in Table I when j was the SP, but we only counted features that were from the feature templates of 〈si, sj〉,
〈ti, tj〉, 〈si, ti, tj〉, and 〈sj, ti, tj〉 in Table I when j was not the SP, in order to avoid increasing the number of
features.
18Let Lw be the log likelihood of the training data, arg maxw(Lw − 1

2σ2 wTw) is used to estimate w. σ2 =
0.01 was used for all of the experiments.
19The inbound model is explained in footnote 7.
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Distortion Model Based on Word Sequence Labeling 2:13

Table III. Japanese-English Translation Evaluation Results for NTCIR-9 Data

BLEU RIBES
Distortion limit 10 20 30 ∞ 10 20 30 ∞
LINEAR 27.98 27.74 27.75 27.30 67.10 67.00 65.89 63.53
LINEAR+LEX 30.25 30.37 30.17 29.98 68.62 68.33 67.31 64.56
9-CLASS 30.74 30.98 30.92 30.75 70.43 69.11 67.97 65.60
PAIR 31.62 32.36 31.96 32.03 70.71 72.04 70.14 68.19
SEQUENCE 32.02 32.96 33.29 32.81 71.14 72.78 72.86 70.55

Table IV. Chinese-English Translation Evaluation Results for NTCIR-9 Data

BLEU RIBES
Distortion limit 10 20 30 ∞ 10 20 30 ∞
LINEAR 29.18 28.74 28.31 28.33 75.24 73.46 72.27 71.27
LINEAR+LEX 30.81 30.24 30.16 30.13 75.68 73.54 71.58 70.20
9-CLASS 31.80 31.56 31.31 30.84 77.05 74.43 72.92 71.30
PAIR 32.51 32.30 32.25 32.32 77.75 76.14 74.75 73.93
SEQUENCE 33.41 33.44 33.35 33.41 78.57 77.67 77.15 76.64

Table V. Chinese-English Translation Evaluation Results for NIST 2008 Data

BLEU RIBES
Distortion limit 10 20 30 ∞ 10 20 30 ∞
LINEAR 22.50 21.98 21.92 22.09 74.41 71.85 70.92 69.61
LINEAR+LEX 23.29 22.53 23.14 22.85 75.00 72.24 70.67 71.17
9-CLASS 23.30 23.16 22.89 22.98 75.28 73.47 70.26 69.51
PAIR 24.25 23.53 23.87 23.63 75.88 73.43 71.20 69.97
SEQUENCE 24.67 24.47 24.18 24.34 75.92 73.75 72.42 72.40

The proposed SEQUENCE outperformed the baselines for Japanese to English, Chi-
nese to English, and German to English translation for both BLEU and RIBES.20 This
demonstrates the effectiveness of the proposed SEQUENCE.21 The proposed method is
thought to be better than the compared methods for local word ordering since BLEU is
sensitive to local word order. The proposed method is also thought to be better than the
compared methods for global word ordering since RIBES is sensitive to global word or-
der. The BLEU and RIBES scores of the proposed SEQUENCE were higher than those
of the proposed PAIR. This confirms its effectiveness in considering relative word or-
der and words between the CP and an SPC. The proposed PAIR outperformed 9-CLASS

20In order to verify the performance of our decoder, we also conducted several experiments for baselines of
LINEAR and LINEAR+LEX using the Moses phrase-based decoder. The scores for Moses are follows. LINEAR
achived a BLEU score of 27.78 and a RIBES score of 67.08 for JE at distortion limit of 10. LINEAR+LEX
achieved a BLEU score of 30.62 and a RIBES score of 69.03 for JE at distortion limit of 20. LINEAR achieved
a BLEU score of 22.64 and a RIBES score of 74.73 for CE (NIST 2008) at distortion limit of 10. LINEAR+LEX
achieved a BLEU score of 22.85 and a RIBES score of 75.58 for CE (NIST 2008) at distortion limit of 10.
These scores and the scores for our decoder were similar.
21There are differences in the improvements of the scores from the baselines between the NTCIR-9 results
and the NIST 2008 results for CE translation. However, note that when the rates of gains from the baselines
are compared, the differences were smaller than the differences of the absolute scores. We think that one of
the reasons for the differences is that patent translation is more literal than news translation. If translations
are literal, then predicting the subsequent position is easier than with non-literal translations, because there
are smaller variations in the translations. This results in a consistency in the subsequent positions in the
training data and between the training data and the test set.
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Table VI. German-English Translation Evaluation Results for WMT 2008
Europarl Data

BLEU RIBES
Distortion limit 6 10 20 6 10 20
LINEAR 26.89 26.59 25.92 78.26 77.83 75.54
LINEAR+LEX 27.09 26.13 26.26 78.38 77.23 75.56
9-CLASS 27.38 27.51 26.97 78.88 78.41 76.04
PAIR 27.87 27.76 26.89 78.88 78.64 75.32
SEQUENCE 27.88 28.04 27.60 79.06 78.78 76.74

Table VII. Evaluation Results for Hierarchical Phrase-Based SMT

BLEU RIBES

HIER

Japanese-English (NTCIR-9) 30.47 70.43
Chinese-English (NTCIR-9) 32.66 78.25
Chinese-English (NIST 2008) 23.62 75.86
German-English (WMT 2008) 27.93 78.78

for both BLEU and RIBES in most cases22, confirming that considering both the word
specified at the CP and the word specified at the SPC simultaneously was more effec-
tive than that of 9-CLASS.

For translating between languages with widely different word orders such as
Japanese and English, a small distortion limit is undesirable because there are cases
where correct translations cannot be produced with a small distortion limit, since the
distortion limit prunes the search space that does not fit within the constraint. There-
fore, a large distortion limit is required to translate correctly. For JE translation, our
SEQUENCE achieved significantly better results at distortion limits of 20 and 30 than
that at a distortion limit of 10 for both BLEU and RIBES, while the baseline sys-
tems of LINEAR, LINEAR+LEX, and 9-CLASS did not achieve this. This indicates that
SEQUENCE could treat long distance reordering candidates more appropriately than
the compared methods.

We also tested hierarchical phrase-based SMT [Chiang 2007] (HIER) using the Moses
implementation [Hoang et al. 2009]. The common data was used to train HIER. We
used unlimited max-chart-span for the system setting. Results are given in Table VII.
Our SEQUENCE outperformed HIER for JE and achieved better than or comparable to
HIER for CE and GE. Since phrase-based SMT generally has a faster decoding speed
than hierarchical phrase-based SMT, there is merit in achieving better or comparable
scores.

To investigate how well SEQUENCE learns the effect of distance, we checked the
average distortion probabilities for large distortions of j − i − 1. Figure 5 shows three
types of probabilities for distortions from 3 to 20 for Japanese-English translation.
One type is the average distortion probabilities in the Japanese test sentences for
each distortion for SEQUENCE, and another is this for PAIR. The third (CORPUS) is the
probabilities for the actual distortions in the training data that were obtained from the
word alignments used to build the translation model. The probability for a distortion
for CORPUS was calculated by the number of the distortion divided by the total number
of distortions in the training data.

Figure 5 shows that when a distance class feature used in the model was the same
(e.g., distortions from 5 to 20 had the same distance class feature), PAIR produced

22There were two cases in which PAIR was worse than 9-CLASS, in Table V at a distortion limit of 20 and in
Table VI at a distortion limit of 20. We think that these were caused by the differences in the SMT weight
parameters tuned by MERT.
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Distortion Model Based on Word Sequence Labeling 2:15

Fig. 5. Average probabilities for large distortions in Japanese-English translation.

Table VIII. Japanese-English Evaluation Results without and with the Words
Surrounding the SPCs and the CP (context)

BLEU RIBES
PAIR without surrounding words 30.01 69.02
PAIR (with surrounding words) 32.36 72.04
SEQUENCE without surrounding words 31.72 70.71
SEQUENCE (with surrounding words) 33.29 72.86

Note: The best distortion limit of 20 for PAIR and the best distortion limit of
30 for SEQUENCE in Table III were used. The “without” results used the same
SMT weighting parameters as those of the “with” results to avoid the effects
of differences in SMT weighting parameters.

average distortion probabilities that were almost the same. In contrast, the average
distortion probabilities for SEQUENCE decreased when the lengths of the distortions
increased even if the distance class feature was the same, and this behavior was the
same as that of CORPUS. This confirms that the proposed SEQUENCE could learn the
effect of distances appropriately from the training data.23

To investigate the effect of using the words surrounding the SPCs and the CP (con-
text), we conducted experiments without using the words surrounding the SPCs and
the CP for PAIR and SEQUENCE. The models without using the surrounding words
were trained using only the features that did not contain context. Table VIII shows

23We also checked the average distortion probabilities for the 9-CLASS outbound model in the Japanese
test sentences for Japanese-English translation. We averaged the average probabilities for distortions in a
distortion span of [4, 6] and also averaged those in a distortion span of [7, 20], where the distortions in each
span are in the same distortion class. The average probability for [4, 6] was 0.058 and that for [7, 20] was
0.165. From CORPUS, the average probabilities in the training data for each distortion in [4, 6] were higher
than those for each distortion in [7, 20]. However, the converse was true for the comparison between the two
average probabilities for the outbound model. This is because the sum of probabilities for distortions from
7 and above was larger than the sum of probabilities for distortions from 4 to 6 in the training data. This
comparison indicates that the 9-CLASS outbound model could not appropriately learn the effects of large
distances for JE translation.
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Table IX. Japanese-English Evaluation Results without and with Part of Speech
(POS) Tags

BLEU RIBES
PAIR without POS 31.41 70.62
PAIR (with POS) 32.36 72.04
SEQUENCE without POS 32.79 72.21
SEQUENCE (with POS) 33.29 72.86

Note: The best distortion limit of 20 for PAIR in Table III and the best distor-
tion limit of 30 for SEQUENCE were used. The “without” results used the same
SMT weighting parameters as those of the “with” results to avoid the effects
of differences in SMT weighting parameters.

the results for Japanese-English translation.24 Both the BLEU and RIBES scores for
SEQUENCE without using the words surrounding the SPCs and the CP (context) were
lower than those for SEQUENCE using the words surrounding SPCs and the CP (con-
text). There was a 1.5 point difference in the BLEU scores for SEQUENCE. This result
confirms that using the words surrounding the SPCs and the CP (context) was very
effective.

To investigate the effect of using part of speech tags, we conducted experiments
without using part of speech tags for PAIR and SEQUENCE. The models without using
part of speech tags were trained using only the features that did not contain part of
speech tags. The results of this experiment for Japanese-English translation are shown
in Table IX. Both the BLEU and RIBES scores for SEQUENCE without using part of
speech tags were slightly lower than those using part of speech tags. There was a 0.5
point difference in the BLEU scores for SEQUENCE. This result confirms that using
part of speech tags was slightly effective for SEQUENCE.

To investigate the training data sparsity tolerance, we reduced the training data
for the sequence model to 100,000, 50,000, and 20,000 sentences for Japanese-English
translation.25 Figure 6 show the results for PAIR and SEQUENCE. The best distortion
limit of 20 for PAIR and the best distortion limit of 30 for SEQUENCE in Table III were
used. To avoid effects from differences in the SMT weighting parameters, the same
SMT weighting parameters used in Table III were used for each method. SEQUENCE
using only 20,000 training sentences achieved a BLEU score of 32.22 and a RIBES
score of 71.33. Although the scores are lower than the scores of SEQUENCE with a
distortion limit of 30 in Table III, the scores were still higher than those of LINEAR,
LINEAR+LEX, and 9-CLASS for JE in Table III. This indicates that the sequence model
also works even when the training data is not large. This is because the sequence
model considers not only the word at the CP and the word at an SPC but also rich
context, and rich context would be effective even on a smaller set of training data.

24Since both the distortion model features with and without the surrounding words represent the same
probability shown by Equation (1), the same SMT weighting parameters can be used for these features. This
was confirmed using SEQUENCE and PAIR, which are also different distortion model features and represent
the same probability shown by Equation (1). The scores for PAIR with a distortion limit of 30 in Table X
are higher than those in Table III. SEQUENCE was used to tune the SMT weighting parameters in Table X,
whereas PAIR was used to tune the SMT weighting parameters in Table III, which indicates that the same
SMT weighting parameters can be used for features representing the same probability. However, the SMT
weighting parameters tuned by MERT differed for each tuning, and these differences had an effect on the
results. For example, the scores for SEQUENCE with a distortion limit of 20 in Tables III and X differ. This
difference was caused by the difference in the SMT weighting parameters. It is therefore important to avoid
the effects of differences in SMT weighting parameters for comparison.
25We did not conduct experiments using larger training data because there would have been a very high
computational cost to build models using the L-BFGS method.
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Fig. 6. Relation between the BLEU/RIBES scores and the number of training sentences of the distortion
models for Japanese-English translation.

Table X. Japanese-English Translation Evaluation Results Using the Same SMT
Weighting Parameters

BLEU RIBES
Distortion limit 10 20 30 ∞ 10 20 30 ∞
PAIR 31.34 32.29 32.17 32.18 71.12 72.00 70.77 69.16
SEQUENCE 32.24 33.35 33.29 33.33 71.86 73.75 72.86 71.60

To investigate the effect of distortion limits for PAIR and SEQUENCE for Japanese-
English translation more precisely, we conducted experiments using the same SMT
weighting parameters to avoid the effects of differences in SMT weighting parame-
ters. For all of the distortion limits of PAIR and SEQUENCE, we used the same SMT
weighting parameters that were used for SEQUENCE with a distortion limit of 30 in
Table III, which achieved the best scores in Table III. The results of this are given in
Table X.

In Table III, the BLEU score for SEQUENCE with an unlimited distortion was lower
than that with a distortion limit of 30. However, Table X shows that SEQUENCE with
an unlimited distortion achieved almost the same BLEU score as that achieved by
SEQUENCE with a distortion limit of 30. This indicates that the difference in BLUE
scores for SEQUENCE between a distortion limit of 30 and an unlimited distortion in
Table III was mainly caused by the difference in SMT weighting parameters. How-
ever, although the RIBES score for SEQUENCE with an unlimited distortion in Table
X was higher than that in Table III, the RIBES score for SEQUENCE with an unlim-
ited distortion was still lower than that with a distortion limit of 30 in Table X. The
RIBES score for SEQUENCE with a distortion limit of 30 was also lower than that with
a distortion limit of 20 in Table X. This indicates that SEQUENCE could not sufficiently
handle long distance reordering over 20 or 30 words. For such long distance reorder-
ing, incorporation with methods that consider sentence-level consistency, such as ITG
constraint [Zens et al. 2004], would be useful.

5. RELATED WORK

In this section, we will discuss related work other than that discussed in Section 2.
There is a method that uses SMT sparse features to improve reordering in
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phrase-based SMT [Cherry 2013]. However, since the training for this method depends
on the SMT weight parameter tuning, the sparse features can only learn from the de-
velopment data for the SMT weight parameter tuning and cannot utilize a large supply
of word aligned training data. Thus, they viewed the sparse features as complemen-
tary to existing distortion models. In contrast, our model utilizes a large supply of word
aligned training data for training, and it can be built independently of the SMT weight
parameter tuning. In addition, SMT sparse features do not calculate the probability of
an SPC, whereas our model does. Since Cherry’s [2013] sparse features learn from the
development data and our model learns from the training data with word alignments,
if they are used together, then the SMT system can utilize both the development data
and the training data with word alignments to learn reorderings.

There are also reordering models that use a parser: a linguistically annotated ITG
[Xiong et al. 2008], a model predicting the orientation of an argument with respect to
its verb using a parser [Xiong et al. 2012], and an MSD reordering model using a CCG
parser [Mehay and Brew 2012]. However, none of these methods consider reordering
distances. Structural information such as syntactic structures and predicate-argument
structures are useful for reordering, but orientations do not handle distances. A
distortion model considering distances of distortions is also useful for methods pre-
dicting orientations using a parser when a phrase-based SMT is used, which means
that our distortion model does not compete against methods predicting orientations
using a parser, but would assist them if used together.

There are word reordering constraint methods that use ITG for phrase-based SMT
[Cherry et al. 2012; Feng et al. 2010; Zens et al. 2004]. These methods consider
sentence level consistency with respect to ITG. The ITG constraint does not consider
distances of reordering and is used with other distortion models. Our distortion model
does not consider sentence level consistency, so our distortion model and ITG con-
straint methods are thought to be complementary.

There are pre-ordering methods using a supervised parser [Dyer and Resnik 2010;
Ge 2010; Genzel 2010; Isozaki et al. 2010b; Wang et al. 2007; Xia and McCord 2004]
and methods that do not require a supervised parser [DeNero and Uszkoreit 2011;
Neubig et al. 2012; Visweswariah et al. 2011]. These methods are not distortion mod-
els, and a distortion model would be useful for their methods when a phrase-based
SMT is used for translation.

There are also tree-based SMT methods [Chiang 2007, 2010; Galley et al. 2004;
Huang et al. 2006; Liu et al. 2006, 2009; Shen et al. 2008; Yamada and Knight 2001].
In many cases, tree-based SMT methods do not use distortion models that consider
reordering distance apart from translation rules, because using distortion scores that
consider the distances for decoders which do not generate hypotheses from left to right
is not trivial. Our distortion model might contribute to tree-based SMT methods if it
could be applied to these methods. Investigating the effects will be for future work.

6. CONCLUSION

This article described our distortion models for phrase-based SMT. Our sequence
model consists of only one probabilistic model, but it can consider rich context. In con-
trast to the learning strategy of existing methods, our learning strategy is that the
model learns preference relations among SPCs in each sentence of the training data.
This leaning strategy enables consideration of all of the rich context simultaneously.
Experiments indicated that our models achieved better performances as measured by
both BLEU and RIBES for Japanese-English, Chinese-English, and German-English
translation, and that the sequence model could learn the effect of distances appropri-
ately. Since our models do not require a parser, they can be applied to many languages.
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Future work includes application to other language pairs, incorporation into ITG con-
straint methods and other reordering methods, and application to tree-based SMT
methods.
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