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ABSTRACT 

The trinarization of micro-computed tomography (CT) images for partially saturated soils at 

different water-retention states has been performed to clearly identify the three phases, i.e., the 

soil particles, the pore water and the pore air. We have proposed a trinarization technique for 

partially saturated soils whose histograms of the gray values for the three phases overlap each 

other. The segmentation method used in this study is the region growing method that ensures 

the spatial continuity of the phases extracted by the segmentation. Micro CT images of a dense 

sand specimen during the wetting process in a water retention test have been obtained. It has 

been found that the trinarization of the CT images in a high pore saturation regime provides 

reasonable results, while that in a low pore saturation regime overestimates the local void ratio. 

This is because the gray values of the mixels of the soil particle phase and the air phase, due to 

the partial volume effect, are similar to those of the water phase. It is necessary, therefore, to 

validate the trinarization results, by a comparison with the test results, because it is difficult to 

theoretically evaluate the partial volume effect. The correction of the tolerance value for the low 

pore saturation case with validation has provided better trinarization results. Through the 

trinarized CT images, the form of the existing pore water at different water-retention states has 

been discussed.  
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1. INTRODUCTION 

Partially saturated soils are composed of soil particles, pore water and pore air. It is well known 

that the pore water between the soil particles of partially saturated soils exists in the form of 

menisci for which the pore water pressure is negative when the air pressure is zero. The 

negative pressure, namely, suction, provides an increase in the inter-particle force, which in turn 

causes an increase in the strength and the deformation characteristics of the partially saturated 

soils. On the other hand, an increase in the water content brings about a loss in suction due to 

the infiltration of water and/or shearing, which causes the degradation of the strength and 

stiffness and often leads to the brittle behaviour of partially saturated soils, such as the collapse 

of embankments. Hence, to understand the mechanical behaviour of partially saturated soils, it is 

important to know the relation between the suction and the water content, i.e., the 

water-retention curve, which is also closely related to the seepage behaviour in partially 

saturated soils. From a macroscopic point of view, the water-retention curves during both the 

wetting process and the drying process have been widely understood through water-retention 

tests on soils specimens. Up to now, however, the microscopic water-retention behaviour of 

partially saturated soils has been conceptually explained by schematic figures (e.g., Bear 1979, 

Kohgo et al. 1993). This is simply because it has been difficult to observe the microscopic 

water-retention behaviour.  

 

In the last decade, micro-computed tomography (CT) techniques have been developed to view 

the inside of objects with a microns’ level of high spatial resolution. Microfocus X-ray CT, referred 

to as μX-ray CT hereinafter, is one of the most powerful tools for viewing the microstructures of 

partially saturated sand, such as particulate structures, void spaces and pore water. Recently, 

the microstructures of partially saturated soils have been visualized using μX-ray CT by the 

authors’ group and other researchers (e.g., Higo et al. 2011, Yoshida et al. 2011, Riedel et al. 

2012, Higo et al. 2013).  

 

The identification of the soil particles, the pore water and the pore air, provided by the 

trinarization of the CT images, is helpful for studying the microstructures of partially saturated 

soils. For the following reasons, however, the trinarization of CT images is usually not 

straightforward: (1) The inherent wide variety of gray values for the CT images, using a broad 

spectrum of X-rays generated by a bremsstrahlung source, leads to the overlapping of the three 

phases in the histograms. (2) The ‘mixels’ caused by the partial volume effect of the two phases 

are possibly similar to the other phase.  

 

The aim of the present study is to propose a reasonable trinarization technique for the CT 
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images of three-phase mixed partially saturated soils. In this study, μX-ray CT scanning for a 

partially saturated sand specimen during the wetting process of a water-retention test has been 

conducted. In addition, a trinarization technique with a region growing method has been 

proposed. The region growing method is one of the region-based segmentation methods for 

digital images (e.g., Rozenfeld and Kak 1982; Adams and Bischof 1994). The trinarization 

method has been adopted for the μX-ray CT images to distinguish the soil particles, the pore 

water and the pore air from each other. In particular, trinarizations in both high and low pore 

saturation regimes have been carried out. Through a comparison of the two cases, trinarization 

at different water retention states has been discussed.  

 

2. WATER RETENTION TEST WITH X-RAY CT SCANNING 

2.1 μX-ray CT system 

The μX-ray CT system used in this study is KYOTO-GEOμXCT (TOSCANER-32250μHDK). The 

focus size of the microfocus X-ray tube is small, 4μm, which provides the highest spatial 

resolution of 5μm. The system also has a relatively high X-ray energy due to the maximum 

voltage of 225 kV and the maximum current of 1mA. The magnification factor can be arbitrarily 

selected, since the focus-center distance (FCD) and the focus-image distance (FID) can both be 

manually adjusted. The specifications include the image matrix size of 1024 1024 in the case of 

the cone-beam scan. For more details, see Higo et al. (2011). Since a bremsstrahlung source is 

used, the X-rays have a broad spectrum. The CT images in the present study have 16-bit gray 

values. In the CT images shown in this paper, the gray values have been linearly transformed 

into 8-bit monochrome data.  

 

2.2 Testing material and preparation of specimen 

The test sample used in this study is Toyoura silica sand, whose physical properties include an 

average diameter of 0.185 mm, a particle density of 2.64 g/cm
3
, a maximum void ratio of 0.975 

and a minimum void ratio of 0.614. Toyoura sand is classified as a semi-angular uniform sand 

with a uniformity coefficient of 1.6.  

 

The specimen was prepared by the water sedimentation technique to make it almost 

water-saturated. Air-dried sand was poured into the stainless split mould whose inner walls were 

covered with a membrane and filled up with distilled water. The specimen was compacted by 

tapping the outside of the mould. The void ratio was 0.706, corresponding to a relative density of 

74.5%, the height was 41.4 mm and the diameter was 35.0 mm. The dry density of the specimen 

was 1.55 g/cm
3
.  
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2.3 Testing procedure 

We conducted the wetting process of the water-retention test in which suction was applied by the 

use of the axis-translation technique (e.g., Lu and Likos 2004). Figure 1 shows a schematic 

illustration of the procedure of the water-retention test. Beneath the bottom of the specimen, a 

ceramic disc with an air entry value of 50 kPa was installed in order to sustain the applied suction. 

The top of the specimen was connected to wet air with atmospheric pressure to prevent the 

evaporation of water. The degree of humidity of the wet air was no less than 99% and the 

temperature in the laboratory was kept constant at 20°C throughout the test. On the other hand, 

the bottom of the specimen was connected to a burette that could be moved vertically. The initial 

water level of the burette was set to be the same as that at the top of the specimen (Figure 1(a)). 

Afterwards, a pressure head of minus 100 cm was applied to desaturate the specimen (Figure 

1(b)), whose degree of saturation was 13.1%. Then, the prescribed suction potentials were given 

to the specimen by moving the burette upward (Figure 1(c)), in which the step-by-step increase 

in the potential of the water in the burette, i.e., a decrease in the suction potential, caused a flow 

of water from the burette into the specimen. The suction potential is defined as the difference 

between the top of the specimen and the water level in the burette.  

 

After the increment in water inflow reached almost zero, i.e., the suction potential was equal to 

the suction inside the specimen, the test apparatus was placed on the work table of the μX-ray 

CT device and X-ray CT scanning was performed. As shown in Figure 2, we carried out a partial 

CT scan in which the volume of interest of the specimen is partially scanned with a much higher 

magnification than that of a normal full CT scan. The scanning area was cylindrical in shape with 

a height of 3.78 mm and a diameter of 4.35 mm. The scanning location was the middle height of 

the specimen, 20 mm below the top of the specimen (see Figure 1). The voxel size of the partial 

CT images was 4.3 4.3 7.0 μm.  

 

3. TRINARIZATION OF CT IMAGES FOR PARTIALLY SATURATED SAND 

3.1 Histogram of gray values for partially saturated sand 

CT images as an assembly of discretized data inherently have ‘mixels’, namely, one voxel 

containing two or more phases. The gray value for a mixel is obtained as the weighted average 

value of all the materials in a voxel. This effect is called the partial volume effect (e.g., Curry et al. 

1990). The CT images of partially saturated soils contain three types of mixels: the voxels 

composed of the soil particle phase; the voxels composed of the water phase and the air phase; 

and the voxels composed of the air phase and the soil particle phase. There are few mixels 
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composed of all the three phases compared with the other mixels, since they exist only at the 

points where the three phases face each other, while two phases contact each other over a 

much wider area of the boundary surfaces.  

 

Figure 3 shows a conceptual illustration of a histogram of CT images for a three-phase coupled 

partially saturated soil, in which the distributions of the gray values for the three phases are 

assumed to be similar to the normal distribution. Even a homogeneous single phase usually has 

a wide variety of gray values as long as X-rays with a broad spectrum are used. We have 

assumingly drawn the distribution of mixels in a similar shape of normal distribution, since the 

characterization of the distribution of mixels is known to be difficult. The three phases often 

overlap each other due to the limitation of spatial resolutions of the current X-ray tomography 

techniques. Note that the monochromatic X-rays, e.g., generated by synchrotron radiation, may 

decrease the overlapping.  

 

3.2 Region growing method 

In order to distinguish the sand particles, the pore water and the pore air from each other, we 

have trinarized the μX-ray CT images using a region growing method. The region growing 

method has been developed as one of the region-based segmentation methods for digital 

images (e.g., Rozenfeld and Kak 1982), which postulates that the neighboring voxels within one 

region have similar values (e.g., Adams and Bischof 1994). The procedure for the region growing 

method is schematically illustrated in Figure 4(a). In region growing methods, one voxel, 

representing one phase, is firstly chosen, which is called ‘seed’. Then, adjacent voxels with 

similar gray values to the original voxel are assimilated into the same phase. Subsequently, the 

same procedure is done for the newly assimilated voxels, i.e., the voxels adjacent to the newly 

assimilated voxels are admitted as the same phase if the gray values are similar to the original 

one. Repeating these steps eventually leads to one continuous cluster composed of voxels with 

similar gray values.  

 

The most important features of region growing methods include the assurance of the spatial 

continuity of the segmented phases, whereas simple thresholds usually only divide the 

histogram, and the continuity cannot be ensured. Simple thresholds just divide the histogram into 

three regions. Hence, each region contains more than two phases as well as mixels. In other 

words, the phases to which the voxels with the same gray values belong cannot be identified 

with simple thresholds. Some statistical methods have been proposed in which probabilistic 

distributions of the three phases and the mixels are firstly assumed, and then the histogram is 

reproduced as a superposition of them. These methods can give the volume of each phase as 
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well as the mixels, but they cannot provide the spatial positions of the voxels of each phase. On 

the other hand, region growing methods extract one phase, ensuring continuity and providing 

spatial positions for all the voxels of the extracted phases as well as the volume of the phases. 

Watershed techniques (e.g., Vincent and Soille 1991) are also able to provide the spatial 

positions of segmented voxels, because the images are directly divided into several phases. 

Since it is important to identify both the spatial positions of the voxels and the volumes of each 

phase, in order to evaluate the structures of the three phases, a region growing method has 

been used in the present study. 

 

3.3 Trinarization method for partially saturated sand 

Firstly, CT values of each phase were sampled, for which we were able to visually distinguish the 

three phases since the soil particles, the pore water and the pore air are indicated by light gray, 

dark gray and black colors, respectively. Secondly, the mean CT value     (       ) and the 

standard deviation of CT value    were calculated for each phase. Usually, ten samples are 

enough to obtain stable values for     and   . In the present study, more than ten samples were 

taken in all the cases to determine     and   . Then, the tolerance values used in the region 

growing method were determined using     and    based on the normal distribution in which 

about 95% of values lie within two standard deviation. The tolerance of the air phase was 

determined as the average value of         and        , and the tolerance of the soil phase 

was determined as         (Figure 4(b)), in which we assumed that the distribution of the CT 

values for each phase was almost identical to the normal distribution. We employed the average 

as the tolerance of the air phase, since         and         usually overlap each other. 

Otherwise, we used         directly as in the soil phase.  

 

In the present study, we have employed the normal distributions for all the three phases as a 

simplest assumption. The log-normal distribution for the air phase is possible option. The 

distribution obtained in the present study, however, could be similar to normal distribution since 

X-rays of smaller energy were cut off by copper filter installed just in front of X-ray source. 

 

Using the tolerance values, the region growing method was applied to extract the air phase and 

the solid phase. The region growing method was performed by the software VGStudio MAX 1.2 

(Volume Graphics GmbH) with selectable options of the ‘static’ and ‘dynamic’ region growing. 

The ‘static’ region growing method was used in this study, in which the gray value of the seed did 

not change throughout the segmentation. On the other hand, in the ‘dynamic’ region growing, the 

gray value of the seed is updated every step to the latest average value of all the voxels 

assimilated. It should be noted that the ‘static’ region growing are not much dependent on seed 
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point selection compared to the ‘dynamic’ region growing. The region growing method was 

applied to the soil particle phase and then it was applied to the air phase. The water phase was 

given as the remaining voxels. For the case in which the pore air was trapped in the pore water, 

we applied an additional region growing procedure to portions of the air phase.  

 

After the segmentation by the region growing method, the voxels indicating the air phase and the 

water phase, surrounded only by the soil phase, were converted into the soil phase. This is 

because the definition of the voids does not include the air or the water in the soil particles. 

Similarly, the voxels indicating the water phase, surrounded only by the air phase, were 

converted into the air phase. This is because the pore water is not able to hang in the air. Those 

converted voxels are probably due to the inherent noise of the μX-ray CT images. Finally, once 

the trinarization is complete, the proportions of the three phases can be obtained by multiplying 

the number of voxels for each phase by the unit volume of voxels.  

 

3.4 Segmentation of mixels for multi-phase materials 

The sub-voxel segmentation of the mixels, i.e., identifying the mixels and quantifying the 

proportions of the phases in one mixel, is necessary for the exact segmentation of the images. 

Some evaluation methods for mixels have been reported in previous literature assuming 

statistical models (e.g., Santago and Gage 1993) and level set techniques (e.g., Rifai et al. 

2000).  

 

In the case of multi-phase materials, it is possible that the gray values of the mixels composed of 

two phases are similar to those of the other phases. As for partially saturated soils, the gray 

values of the mixels composed of the air phase and the soil particle phase are similar to those of 

the water phase voxels. This is because the density of the water, 1.0 g/cm
3
, lies between the 

densities of the air and the soil particles, almost zero and 2.64 g/cm
3
, respectively. This makes it 

more difficult to trinarize the images of multi-phase materials than two-phase materials.  

 

For the above reason, we have not implemented any special treatments to the mixels in this 

study, e.g., assumption of probabilistic functions for the mixels. The mixels have been 

segmented by the region growing method based on the proportion of constituents. For example, 

the mixels with a larger proportion of the soil particle phase than the water phase have probably 

been assimilated into the soil particle phase. Namely, for partially saturated soils, it is difficult to 

logically distinguish between the water voxels (absorbed water) and the mixels of soil and air in 

X-ray CT images.  
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4. RESULTS AND DISCUSSIONS 

4.1 Water-retention curve 

The water-retention curve for the entire specimen during the wetting process is shown in Figure 

5. Volumetric water content   is defined as the volume of the water divided by the total volume. 

Thus, the relation between volumetric water content   and degree of saturation    is       

in which   is the porosity. The water content varies little until a pressure head of around minus 

45 cm, step e, is reached. Then, it starts to increase from a pressure head of around minus 40 

cm, step f. The rapid increase in water content can be observed at a pressure head of minus 15 

cm, from steps k to l, although the change in pressure head is very small. Between these two 

steps, a pressure head of 5 cm is applied to the specimen, by which the water inflow from the 

burette to the specimen occurs. The pressure head eventually decreases to almost the same 

level as that in step k. The volumetric water content finally increases to 0.37 at a pressure head 

of 0 cm.  

 

4.2 Trinarization for high pore saturation region 

The locations of the cross sections are indicated in Figure 6. The F-2 vertical cross section 

includes the center of the specimen; it is parallel and perpendicular to the direction of the X-ray. 

The A-2 horizontal cross section also includes the center of the specimen. Figure 7 

demonstrates the vertical and the horizontal cross sections of the partial CT images and their 

trinarized images at step l. In this step, a larger amount of pore spaces is occupied by pore water 

and the pore water seems to be continuous. This kind of high pore saturation region is generally 

termed “funicular saturation”; the saturation is about 75% in the present study. 

 

In the original CT images, it can be seen that the soil particles indicated by a bright color, the 

pore water indicated by dark gray and the pore air indicated by black are all distinguished from 

each other. Note that the white portions indicate iron sand particles naturally included in Toyoura 

sand. In the trinarized images, the yellow, blue and black portions indicate the soil particles, the 

pore water and the pore air, respectively. It can be seen that the three phases are obviously 

distinguished from each other. Pore water exists around the soil particles at the rather small 

voids, while less pore water is seen at the larger voids.  

 

Using the trinarized images, we have calculated the volume of each phase by multiplying the 

number of voxels for each phase by the unit volume of the voxels, and have then evaluated the 

local void ratio and the local degree of saturation of the scan zone. Table 1 shows the 

proportions of the three phases obtained by the trinarization. The local values are plotted in 

Figure 5 and indicated by the open l’ mark. The local void ratio is 0.733 and the local degree of 
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saturation is 73.1%. These local values are comparable to the void ratio and the degree of 

saturation for the entire specimen, namely, 0.706 and 75.6%, respectively. This suggests that 

the trinarization method used in this study provides reasonable results for the unsaturated sand 

in the funicular saturation region.  

 

Since most of the voxels adjacent to the soil particle phase are those of the water phase in the 

case of the high pore saturation region, the extraction of the soil particle phase by the region 

growing method is similar to the binarization procedure. This also applies to the extraction of the 

air phase because almost all the voxels adjacent to the air phase are those of the water phase. 

Consequently, trinarization in the high pore saturation region rarely encounters problems caused 

by the boundary between the soil particle phase and the air phase.  

 

 

4.3 Trinarization in low pore saturation region 

We have also applied the same trinarization procedure to the CT images in the low pore 

saturation region, step k. As can be seen in the original CT images shown in Figure 8, the 

amount of pore water indicated by light gray is smaller than that of step l and the pore water 

phase seems to be isolated and discontinuous. This regime is referred to as the “pendular 

saturation” region.  

 

The trinarized images are shown in Figure 8. The local void ratio of step k is 0.862 which is much 

larger than that of step l, although the scan zones of the two cases are almost exactly the same. 

In the low pore saturation region, like the pendular saturation region, there is a wider boundary 

area between the soil particle phase and the air phase, which tends to make the soil particle 

voxels and the air voxels into mixels with gray values similar to the water phase due to the partial 

volume effect. This leads to a reduction in the soil particle voxels, which eventually results in the 

overestimation of the void ratio. As for the degree of saturation, the local value of step k is 42.0%, 

similar to that of entire specimen of 45.9%.  

 

We have again applied the region growing method to the soil particle phase with smaller 

tolerance   , which provides a larger amount of the soil particle phase, in order to overcome the 

overestimation of the void ratio. Tolerance   , was determined to reproduce a similar void ratio 

to that of step I by trial and error. Then, we have performed the region growing method to extract 

the air phase from the rest, in which exactly the same tolerance exists for the air phase,   , as 

the previous one for step k. The trinarized images are shown in Figure 9 with the original CT 

image. As shown in Table 1, the proportion of the soil particle phase increases because of the 



10 

 

correction of tolerance   , while the proportion of the air phase is the same as that without 

correction because the same tolerance for the air phase,   , was used. Namely, the proportion 

of the water phase decreases. This means that the mixels brought about by the partial volume 

effect of the boundary between the soil particle phase and the air phase are partly converted into 

the soil particle phase. Consequently, we have obtained a local void ratio of 0.739 that is similar 

to that for step l. 

 

Some voxels of the water phase, which are not mixels, are also converted into the soil particle 

phase at the boundary between the soil particle phase and the water phase, by which the 

number of voxels of the water phase has been underestimated. This is a possible reason why 

the local degree of saturation, obtained as 36.8%, is smaller than the global degree of saturation 

of 45.9%. It is worth noting that those water voxels, converted incorrectly, are not many, because 

the area of the boundary between the soil particle phase and the water phase is basically small 

in the low pore saturation regime, such as the pendular saturation regime. The other reason is 

that the vertical distribution of pore water in the specimen was probably caused by the water 

inflow from the bottom end of the specimen. The pore water is seen to be discontinuous at the 

scan zone, located at the middle height of the specimen in the original CT images, while the 

lower part probably contains more water than the scan zone. This suggests that pore water at 

the lower part and pore water in the scan zone do not fully connect with each other. As seen in 

the ink-bottle effect (e.g., Lu and Likos), the capillary rise for the wetting process is smaller than 

that for the drying process since the suction level is determined by the narrower voids located 

close to the water reservoir. And then, in the next step l, the further decrease in the water 

potential of 5 cm causes the rapid phase transition from the pendular saturation regime to the 

funicular saturation regime probably accompanied by the water inflow to a wider area, including 

the scan zone. Further investigation of the vertical distribution of the pore water is recommended 

for this point.  

 

5. CONCLUSIONS 

A trinarization technique, using the region growing method, has been proposed and applied to 

the μX-ray CT images of partially saturated sand at different water-retention states during the 

wetting process of the water-retention test. The trinarized images clearly demonstrate the soil 

phase, the water phase and the air phase. The region growing method ensures the continuity of 

the extracted phases, the soil particle phase and the air phase in this study, and the spatial 

positions of the voxels of the three phases.  
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It has been found that the proposed method can provide reasonable results in the high pore 

saturation region through a comparison of the void ratio and the degree of saturation between 

the results obtained by the trinarized images and those measured for the entire specimen. Since 

the soil particle phase and the air phase mainly make contact with one phase, i.e., the water 

phase, extracting these phases by the region growing method is similar to binarization.  

 

On the other hand, in the low pore saturation region, there exists a certain amount of boundary 

between the soil particle phase and the air phase, and the mixels of the boundary among them 

are likely to have gray values similar to those of the water phase; this results in the 

overestimation of the void ratio. We would encounter this problem in any segmentation of 

multi-phase materials, namely, materials having more than two phases. It is impossible, however, 

to identify the mixels and to quantify the proportions of the phases in one mixel theoretically as 

long as the CT images are an assembly of the discretized data. It should be noted that we could 

ignore the effect of the mixels if the spatial resolution of the CT images developed further and 

became sufficiently high. Unfortunately, due to the limitations of the current techniques, it will still 

be necessary to implement some sort of validation in order to evaluate the effect of the partial 

volume effect for segmenting the three phases of partially saturated soils. In the present study, 

the void ratio has been calibrated against that obtained in the high pore saturation region using a 

smaller tolerance for soil particle phase   .  

 

The proposed trinarization technique with validation can visualize the local existence of pore 

water, by which it is possible to clarify the physical origins of the water-retention behaviour of 

partially saturated soils, such as the hysteresis of water-retention curves. Note that the proposed 

method is applicable for uniform sands to find out the microscopic nature of deformation for 

granular matters. Further studies are necessary for clays and the other materials with finer soil 

particles and with higher density with use of more advanced visualization and segmentation 

techniques.  
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Table 1 Proportions of the three phases along with the local void and the local degree of 

saturation obtained by trinarization 

 Soil 

particle 

phase (%) 

Air phase 

(%) 

Water 

phase (%) 

Local void 

ratio 

Local 

degree of 

saturation 

(%) 

Step l 

(High pore saturation 

region) 

57.7 11.4 30.9 0.733 73.1 

Step k 

(Low pore saturation 

region) 

53.7 26.9 19.4 0.862 42.0 

Step k with the correction of 

tolerance    

(Low pore saturation 

region) 

57.5 26.9 15.6 0.739 36.8 
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Figure 1 Procedure of the water-retention test 

 

 

 

 

Figure 2 Partial CT scan compared with full CT 
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Figure 3 Conceptual illustration of histogram for CT images of partially saturated soil 
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(a) 

 

(b) 

Figure 4 Schematic illustration of region growing method for trinarization technique: (a) 

procedures and (b) determination of tolerance values 
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Figure 5 Soil-water characteristic curve and local degree of saturation calculated by trinarized 

images (X-ray scanning was performed at each step from a to o) 

 

 

 

 

Figure 6 Locations of cross sections 
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CT image Trinarized image 

Step l (Sr=75.6%,  =0.31, h=-15.7cm) 

Figure 7 CT images and their trinarized images in case of high pore saturation regime at step l 

(Sr and   are global values; yellow, blue and black portions indicate the soil particles, the pore 

water and the pore air, respectively, in the trinarized images) 

 

   

   

CT image Trinarized image 

Step k (Sr=45.9%,  =0.19, h=-15.8cm) 

Figure 8 CT images and their trinarized images in the case of the low pore saturation regime at 

step k (Sr and   are global values; yellow, blue and black portions indicate the soil particles, the 

pore water and the pore air, respectively, in the trinarized images) 
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CT image Trinarized image 

Step k (Sr=45.9%,  =0.19, h=-15.8cm) 

Figure 9 CT images and their trinarized images with correction of the tolerance in the case of the 

low pore saturation regime at step k (Sr and   are global values; yellow, blue and black portions 

indicate the soil particles, the pore water and the pore air, respectively, in the trinarized images) 
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