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Abstract 

Photoperiodic control of the phase transition from vegetative to reproductive growth is 

critical for land plants. The GIGANTEA (GI) and FLAVIN-BINDING KELCH 

REPEAT F-BOX1 (FKF1) protein complex controls this process in angiosperms. 

However, little is known about how plants evolved this regulatory system. Here, we 

report that orthologues of GI and FKF1 are present in a basal plant, the liverwort 

Marchantia polymorpha, and describe the molecular interaction between their products. 

Knock-out of either the GI or FKF1 orthologue completely abolishes the 

long-day-dependent growth-phase transition in M. polymorpha. Overexpression of 

either gene promotes growth-phase transition, even under short-day conditions. 

Introduction of the GI orthologue partially rescues the late-flowering phenotype of the 

Arabidopsis thaliana gi mutant. Our findings suggest that plants had already acquired 

the GI-FKF1 system to regulate growth-phase transition when they colonized land, and 

that this system was co-opted from gametophyte to sporophyte generation during 

evolution. 

 

Introduction 

Perception of day length is the most reliable way for living organisms, including 

land plants, to predict seasonal changes. Throughout the life cycles of land plants, one 

of the most important events regulated by day length information is the transition from 

vegetative phase to reproductive phase. The molecular mechanism of the photoperiodic 

growth-phase transition has been extensively studied in angiosperms1-3. In the long-day 

plant A. thaliana, GI and FKF1 play essential roles in the regulation of photoperiodic 

flowering4,5. GI is a large protein with domains of unknown function. It interacts with 
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FKF1 to form a protein complex in the presence of blue light4. The GI-FKF1 complex is 

involved in the degradation of CYCLING DOF FACTOR1 (CDF1), CDF2, CDF3, and 

CDF5, which are transcriptional repressors of the flowering gene CONSTANS (CO)6,7. 

Homologues of GI and FKF1 have been reported in a wide variety of vascular plants 

from lycophytes to angiosperms8. The function of GI in the regulation of photoperiodic 

flowering has been shown to be common across several angiosperm species9-13. 

However, neither GI nor FKF1 orthologues have yet been identified in fully sequenced 

non-vascular plants, including the moss Physcomitrella patens8. Therefore, it has been 

speculated that the GI and FKF1 genes emerged around the time of the divergence of 

vascular plants from non-vascular plants8. The photoperiodic growth-phase transition 

operates in diverse plant taxa, from bryophytes to angiosperms2,14,15; however, 

underlying molecular mechanisms in non-vascular plants remain unclear. 

The liverwort M. polymorpha shows a clear photoperiodic growth-phase transition14,16. 

Liverworts represent a critical point in the early evolution of land plants, especially the 

water-to-land transition17,18. In addition, molecular genetic tools including 

transformation techniques19-22 and strategies for targeted genome modification23,24 have 

been established for M. polymorpha. Here, we show that the GI-FKF1 complex is 

present in the gametophyte generation of M. polymorpha, and that it plays an important 

role in regulating photoperiodic growth-phase transition in this generation. Also, we 

demonstrate the equivalent functionality of GI between M. polymorpha and A. thaliana. 

These results give an insight into the evolution of the regulatory mechanism controlling 

photoperiodic growth-phase in land plants.  

 

Results 
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Identification of GI and FKF1 orthologues in M. polymorpha 

Under long-day conditions, M. polymorpha undergoes a transition from the vegetative 

to reproductive phase and initiates the formation of gametangiophores, which contain 

antheridia or archegonia, at the tips of gametophyte thalli14,16,25,26 (Supplementary Fig. 

1). Exposure to far-red light (FR) is indispensable for this process19, suggesting the 

presence of light-quality- and day-length-dependent regulatory mechanisms in M. 

polymorpha. Interestingly, and in contrast to the aforementioned information, analysis 

of genome and transcriptome databases of M. polymorpha revealed single-copy 

orthologues for GI and FKF1, designated as MpGI and MpFKF, respectively (Fig. 1). 

The intron insertion sites in the GI and FKF1 sequences are conserved between M. 

polymorpha and A. thaliana, with the exception of the first intron insertion sites of GI 

(Fig. 1a). MpGI is predicted to encode 1,187 amino-acid residues, with an estimated 

molecular mass of 127.5 kDa, thus showing similarity to GI homologues in vascular 

plants (Fig. 1b). MpFKF is predicted to encode 635 amino acids with an estimated 

molecular mass of 69.5 kDa. The sequence contains a LOV domain, F-box, and six 

tandem kelch motifs, similar to previously reported for FKF1 and its homologues, 

ZEITLUPE (ZTL) and LOV KELCH PROTEIN2 (LKP2) in A. thaliana27-29 (Fig. 1c). A 

cysteine residue which is involved in blue light perception via non-covalently binding to 

a chromophore, flavin mononucleotide (FMN), is conserved between MpFKF and A. 

thaliana FKF15 (Fig. 1c). In a phylogenetic analysis, MpFKF formed a subgroup with 

an FKF homologue in Selaginella moellendorffii, which was independent from either 

the ZTL/LKP2 or FKF1 clade in angiosperms (Fig. 2). 

In A. thaliana, the transcription of GI and FKF1 genes is regulated by the circadian 

clock27,30,31. Similarly, in mature thalli grown under 12-h-light/12-h-dark cycles, MpGI 
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and MpFKF showed diurnal expression patterns, with phase peaks occurring around 

dusk (Fig. 3a,b). Furthermore, the rhythmic expression of MpGI and MpFKF persisted 

after the transition to constant light or dark conditions, suggesting that the expression of 

MpGI and MpFKF is regulated by the circadian clock (Fig. 3c-f). 

 

Interaction between MpGI and MpFKF 

We next examined complex formation between MpGI and MpFKF. Yeast two-hybrid 

analysis indicated an interaction between full-length proteins of MpGI and MpFKF (Fig. 

4a). Truncation analysis revealed that the 392 amino-acid residues of the MpGI 

N-terminus, and the LOV domain of MpFKF were sufficient for the interaction (Fig. 4a). 

Co-immunoprecipitation of 3xFLAG-tagged MpGI with 4xmyc-tagged MpFKF in 

transgenic plants suggests that the interaction between MpGI and MpFKF also occurs in 

vivo (Fig. 4b). Spatial expression analysis of MpGI and MpFKF, using plants expressing 

the GUS reporter gene under the control of their promoter sequences, revealed 

overlapping GUS staining, which was observed continuously from the apical notch 

region to the midrib of mature thalli (Fig. 4c,d). These results suggest that the MpGI 

and MpFKF protein complex accumulates in the gametophyte of M. polymorpha. 

 

Essential role of MpGI and MpFKF in growth-phase transition 

To investigate the physiological function of the MpGI-MpFKF complex in M. 

polymorpha, we generated knock-out mutants of both MpGI and MpFKF using a 

homologous recombination-mediated gene targeting strategy23. Disruption of these 

genes was performed by replacing the second exon of MpGI and a 264-bp region of 

MpFKF, including the conserved FMN-binding domain, with a hygromycin-resistant 
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marker (Supplementary Fig. 2a,b). Genomic PCR analysis confirmed the homologous 

recombination events on the MpGI and MpFKF loci, in the giko and fkfko lines, 

respectively (Supplementary Fig. 2c,d). RT-PCR analysis revealed that MpGI and 

MpFKF gene expression was undetectable in these lines (Supplementary Fig. 2e,f). 

Ten-day-old wild-type and knockout thalli grown from gemmae under constant light 

conditions were subjected to long-day conditions supplemented with FR. Under these 

conditions, individual wild-type plants formed the first visible gametangiophore within 

20 days, whereas neither giko nor fkfko plants formed any gametangiophores after 60 

days, indicative of a failure of the growth-phase transition in the knock-out lines (Fig. 

5a,b). These defects were rescued by introducing the genomic fragment of MpGI or 

MpFKF (Fig. 5a,b, and Supplementary Fig. 2e,f). This indicates that the MpGI and 

MpFKF genes are required for growth-phase transition under long-day conditions. 

Given that MpGI could interact with MpFKF in vivo, and that a single disruption of 

MpGI or MpFKF caused equally severe defects in the growth-phase transition without 

mutually affecting their transcription (Supplementary Fig. 2g), these observations 

suggest that formation of the MpGI and MpFKF complex is critical for growth-phase 

transition in M. polymorpha. 

 

Effect of overexpression of MpGI or MpFKF on photoperiodism 

In A. thaliana, simultaneous overexpression of GI and FKF1 increases the amount of 

GI-FKF1 complex and eliminates photoperiodicity to promote flowering under 

short-day conditions4. To examine whether overexpression of MpGI and MpFKF alters 

photoperiodic growth-phase transition in M. polymorpha, we generated overexpression 

lines of MpGI-FLAG or MpFKF-myc under the control of an M. polymorpha 
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ELONGATION FACTOR1- (MpEF) promoter32. In wild-type plants, gametangiophore 

formation is delayed under short-day conditions (Fig. 5d and Supplementary Fig. 1), 

whereas the number of days required for gametangiophore formation in the 

overexpression lines of either gene was significantly shortened and was comparable to 

those of wild-type plants grown under long-day conditions (Fig. 5c,d). In addition, the 

growth-phase transition of these overexpression lines under long-day conditions was 

slightly promoted (Fig. 5d). Simultaneous overexpression of MpGI-FLAG and 

MpFKF-myc did not enhance the phenotype caused by single-gene overexpression, 

suggesting that MpGI and MpFKF may act genetically in the same pathway. These 

results suggest that overexpression of MpGI or MpFKF could increase the amount of 

MpGI-MpFKF complex and promote the growth-phase transition regardless of 

photoperiod. Overexpression of only MpGI-FLAG in the fkfko background or only 

MpFKF-myc in the giko background did not promote growth-phase transition under 

short-day conditions within 3 weeks. In contrast, all overexpression lines in the 

wild-type background formed gametangiophores within 3 weeks (Fig. 5d). These 

findings supported our hypothesis that MpGI and MpFKF co-require each other and 

function as a complex. It is noteworthy that under white light conditions without FR 

supplementation, no gametangiophore formation was observed by day 60 in any of the 

overexpression lines. Therefore, the MpGI- and MpFKF-mediated photoperiodic 

pathway is likely to act independently of the light-quality-dependent pathway to 

regulate growth-phase transition in M. polymorpha. 

 

Complementation of Arabidopsis gi with MpGI  

Our findings showed that the regulatory system of photoperiodic growth-phase 
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transition mediated by GI-FKF1 is present in the gametophyte of liverwort. To examine 

whether MpGI is functionally equivalent to angiosperm GI and able to function in the 

regulation of flowering, we introduced MpGI into an A. thaliana gi mutant30,31. 

Expression of MpGI under the control of the AtGI promoter partially complemented the 

late-flowering phenotype of the A. thaliana gi mutant (Fig. 6), suggesting that the MpGI 

gene has the potential to act as a regulator of flowering. 

 

Discussion 

In this study, we demonstrated that both M. polymorpha and A. thaliana use the 

GI-FKF1 system to regulate photoperiodic growth-phase transition. This suggests that 

the molecular mechanisms regulating gametangiophore formation in the liverwort are 

equivalent to those involved in flowering in angiosperms. In A. thaliana, the GI-FKF1 

complex directly degrades CDF1 and regulates flowering time via transcriptional 

regulation of the flowering genes CO and FLOWERING LOCUS T (FT)1. Although 

these genes that regulate flowering are widely conserved in angiosperms2, a previous 

report on CO homologues in P. patens showed that they are more closely related to 

CO-like genes, AtCOL3/AtCOL4/AtCOL5, which form a distinct group from CO33. Also, 

the presence of FT is controversial. In the phosphatidylethanolamine-binding protein 

(PEBP) gene family, the family to which FT and TERMINAL FLOWER1 (TFL1) 

belong34,35, the genes in the FT/TFL1 subfamily were suggested to have arisen in seed 

plants, since they are absent from the genomes of P. patens and S. moellendorffii36. 

Identification of the growth-phase transition regulators that are downstream of the 

MpGI-MpFKF complex will greatly advance our understanding of how photoperiodic 

growth-phase regulation mechanisms evolved in land plants.  
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The presence of the GI-FKF1 complex in the liverwort lineage strongly suggests that 

this system had already been acquired in the common ancestor of land plants. 

Sequencing of the genomes of species in the Charophyceae, a class with a sister 

relationship to land plants17, as well as comparative genomic approaches will be 

required to further understand the evolutionary novelty of the GI-FKF1 system during 

the course of green plant evolution.  

Interestingly, the GI-FKF1 system functions in the gametophyte generation in M. 

polymorpha, whereas it functions in the sporophyte generation in A. thaliana. These 

facts imply that, during the course of land plant evolution, the GI-FKF1 system that 

evolved to regulate reproductive phase transition in the gametophyte generation in basal 

land plants was co-opted to regulate that in the sporophyte generation in vascular plants. 

 

Methods 

Plant material and growth conditions 

Male and female accessions of M. polymorpha, Takaragaike-1 (Tak-1) and 

Takaragaike-2 (Tak-2), respectively20 were used as the wild type. Plants were cultured 

axenically on half-strength Gamborg’s B5 medium37 containing 1% sucrose and 1.3% 

agar, under a 50–60 µmol m-2 s-1 continuous white cold cathode fluorescent lamp 

(CCFL; OPT-40C-N-L, Optrom) at 22°C, unless otherwise defined. For analysis of 

growth-phase transition, gametangiophores were induced in growth chambers 

(LH-80CCFL-6CT, NKSystem) under long-day (16-h-light/8-h-dark) or short-day 

(8-h-light/16-h-dark) conditions using 40–60 μmol m−2 s−1 CCFL supplemented with 

20–30 μmol m−2 s−1 FR light-emitting diodes (VBL-TFL600-IR730*; Valore; peak 

emission at 733 nm, with a full width at half maximum of 27 nm) at 22°C. 
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Sequence retrieval and phylogenetic analysis 

The search for M. polymorpha GI and FKF1 gene homologues was performed using the 

transcriptome and genome databases from the M. polymorpha on-going Joint Genome 

Institute genome-sequencing project (http://www.jgi.doe.gov/). Protein alignments were 

constructed using MUSCLE alignment implemented in the Geneious 6.1.6 software 

package (Biomatters; http://www.geneious.com) at the default parameters, and an 

unrooted maximum-likelihood phylogenetic tree constructed using PhyML program ver. 

2.2.038 implemented in the Geneious software, using the LG model and four categories 

of rate substitution. Tree topology, branch length and substitution rates were optimized, 

and the tree topology was searched using the nearest-neighbour interchange method. 

Bootstrap values were computed from 1,000 trials. The sequences used for the protein 

alignment of GI homologues were AtGI (ABP96497) from A. thaliana, OsGI 

(Os01g0182600) from Oryza sativa and SmGI (XP_002961231) from S. moellendorffii. 

The sequences used in the phylogenetic tree of FKF1/ZTL/LKP2 were as follows: 

AtFKF1 (AAF32298), AtZTL (NP_001154783), AtLKP2 (NP_849983) from A. 

thaliana; OsFKF1 (Os11g0547000), OsZTL1 (Os02g0150800), OsZTL2 

(Os06g0694000) from O. sativa; GmFKF1 (NP_001235886), GmZTL1 

(NP_001235856), GmZTL2 (NP_001235871) from Glycine max; TaFKF1 (ABL11478), 

TaZTL (ABR14627) from Triticum aestivum; AcFKF1 (ACT22762), AcZTL 

(ACT22763) from Allium cepa; McFKF1 (AAQ73528), McZTL (AAQ73527) from 

Mesembryanthemum crystallinum; and SmFKF (XP_002974336) from S. 

moellendorffii. 
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Plasmid construction 

To generate the MpGI-targeting vector, 3.5-kb homologous arms were amplified from 

Tak-1 genomic DNA by PCR using KOD FX Neo (Toyobo) with the primer pairs: 

forward 5′-CTAAGGTAGCGATTAATGCAGGAATAGTAGAGATCATGAAGG-3′, 

reverse 5′-CCGGGCAAGCTTTTAATCGTGAAACGATCCCAAATCT-3′ (for the 5′ 

side); and forward 5′-AACACTAGTGGCGCGAGCCAAAGAACCGTATCGAA-3′, 

reverse 5′-TTATCCCTAGGCGCGTGGCATTCCATTCTATGCTG-3′ (for the 3′ side). 

The PCR-amplified fragments of the 5′ end and 3′ end were cloned into the PacI site 

and AscI sites of pJHY-TMp123, respectively, using an In-Fusion HD cloning kit 

(Clontech). The MpFKF-targeting vector was designed in the reverse direction to that of 

MpGI. 6-kb homologous arms were amplified using the primer pairs: forward 

5′-TTATCCCTAGGCGCGCACACTCCGTGCAATCTCAA-3′, reverse 

5′-TAAACTAGTGGCGCGCCACAACGATCCTACCACATC-3′ (for the 5′ side), and 

forward 5′-GCCCGGGCAAGCTTAACCATGGAAGGACTCACTGC-3′, reverse 

5′-CTAAGGTAGCGATTAAGTTCGGACAGCTTCCTTCA-3′ (for the 3′ side), and 

cloned into the AscI site and PacI site of pJHY-TMp123, respectively. The resultant 

targeting vectors were introduced into F1 sporelings of M. polymorpha derived from 

crosses between Tak-1 and Tak-2, as described previously20. Screening for gene-targeted 

lines was performed by genomic PCR as described previously23. Gene-specific primers 

used in the screening are illustrated in Supplementary Fig. 2a, b and Supplementary 

Table 1. For the complementation test of giko and fkfko, genomic fragment including 

entire regions of MpGI and MpFKF was amplified from Tak-1 genomic DNA by PCR 

using KOD Plus Neo (Toyobo) with the primer pairs: forward 

5′-CACCGCTATTCTTCACGCCGAAA-3′, reverse 
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5′-TCCCCCTTTATTGTTGAACT-3′ (for MpGI), and forward 

5′-CACCTGACCGTTTAATTCATTGTGGA-3′, reverse 

5′-GATGGTTTCCCGTACAGGTG-3′ (for MpFKF), and cloned into pENTR-D-TOPO 

(Life Technologies). These were used to generate binary plasmids harbouring 

MpGIpro:gMpGI or MpFKFpro:gMpFKF. The resultant plasmids were introduced into 

corresponding knockout mutants, giko or fkfko, as described previously21. To construct 

MpGIpro:GUS and MpFKFpro:GUS, a 4573-bp fragment of MpGI, and a 5082-bp 

fragment of MpFKF, as measured from their predicted start codons, were amplified 

from Tak-1 genomic DNA by PCR using KOD Plus Neo with the primer pairs: forward 

5′-CACCAGATTTTAGGTTGACTCG-3′, reverse 

5′-GGGAAATGACATAGGGCCAA-3′ (for MpGI), and forward 

5′-CACCTGACCGTTTAATTCATTGTGGA-3′, reverse 

5′-ACCCAAGGACATATCCGAGT-3′ (for MpFKF), respectively. Each fragment was 

cloned into pENTR-D-TOPO and used to generate binary plasmids harbouring 

MpGIpro:GUS and MpFKFpro:GUS, which were introduced into F1 sporelings 

generated from Tak-1 and Tak-220. To generate overexpression lines of MpGI and 

MpFKF, full-length cDNA of MpGI and MpFKF was amplified using the primer pairs: 

forward 5′-CACCATGTCATTTCCCGGGCAGAA-3′, reverse 

5′-GACAGGAATCGGGCAGC-3′ (for MpGI), and forward 

5′-CACCATGGATTGGGATACAGATACCG-3′, reverse 

5′-GGTGCTAGACAGACTCTTATGTGTTA-3′ (for MpFKF). These were fused with 

3xFLAG or 4xmyc sequences to generate binary plasmids harbouring 

MpEFpro:MpGI-3xFLAG and MpEFpro:MpFKF-4xmyc. These overexpression 

constructs were introduced into cut thalli of Tak-1 as described previously21. 
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Transformants, after two cycles of transplantation of gemmae, were used for the 

remainder of the experiments. 

 

Total RNA isolation and cDNA synthesis 

Tak-1 gemmae were grown under constant light for 9 days, followed by a 

12-h-light/12-h-dark cycle for 6 days. From day 16, plants were harvested, and 

immediately frozen in liquid nitrogen at 4-h intervals over 2 days under specific light 

conditions described in the text for each experiment. The frozen samples were ground 

into a frozen powder by shaking for 5 min with 6-mm stainless beads in collection tubes 

using a ShakeMaster (BMS-12-NA; BioMedicalScience). Total RNA was extracted 

from the powder using TRIzol (Life Technologies), and treated with RQ1 RNase-Free 

DNase (Promega). For each sample, 4 μg RNA was reverse transcribed to cDNA using 

random hexamer primers and ReverTra Ace (Toyobo), following the manufacturer's 

instructions. 

 

Quantitative RT-PCR analysis 

cDNA samples were diluted 1:4 and amplified with the CFX96 Real-Time PCR 

Detection System (Bio-Rad) using SYBR Green I Nucleic Acid Gel Stain (Lonza) to 

monitor dsDNA synthesis. Primer sequences and their optimal melting temperatures are 

listed in Supplementary Table 1. The three-step PCR cycling program was as follows: 

95°C for 2 min, followed by 40 cycles at 95°C for 10 s, melting temperature for 15 s, 

and 72°C extension for 15 s. Melt-curve analysis was performed to ensure specificity of 

the products. Each cDNA sample was run at least in duplicate. PCR efficiencies were 

calculated using the software CFX Manager (Bio-Rad) in accordance with the 
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manufacturer's instructions. Raw expression data were normalized using MpEF 

expression data, and peak levels were set to 1. The relative expression values of each 

gene were calculated to show the average ± standard error of mean of three biologically 

independent trials. Expression of the MpEF reference gene showed constant patterns, 

without circadian rhythmicity, over all sample time points (data not shown). All primers 

used for the analysis are listed in Supplementary Table 1. 

 

Co-immunoprecipitation experiments 

Plants were grown under constant light conditions for 10 days, transferred to 

FR-supplemented long-day conditions for a further 7 days and harvested at ZT12 of day 

18 for use in the experiments. Approximately 500 mg of plants were harvested, frozen 

in liquid nitrogen and ground into a frozen powder. The protein was extracted in 1 mL 

of ice-cold IP buffer [50 mM Tris-HCl pH 7.4, 5 mM EDTA, 50 mM NaCl, 1 mM 

dithiothreitol, 0.1% (v/v) Triton X-100, 10% (v/v) glycerol, 50 μM MG-132 and 

cOmplete protease inhibitor (Roche)]. After centrifugation at 3,500 g for 2 min and 

16,400 g for 10 min to remove cell debris, the supernatant containing approximately 5 

mg of total protein was mixed with 50 μL of magnetic beads conjugated to an anti-myc 

antibody (Miltenyi Biotech) and then incubated on ice for 30 min. The mixtures were 

applied to μColumns (Miltenyi Biotech) in a magnetic field. After 10 washes with 200 

L of IP buffer and one rinse with 150 L of Wash Buffer 2 (Miltenyi Biotech), proteins 

were eluted using 90 μL of 2x sample buffer [60 mM Tris-HCl pH 6.8, 5% sodium 

dodecyl sulfate (SDS), 20% (v/v) glycerol, and 10% (v/v) 2-mercaptoethanol] to obtain 

the bound fraction. The immunoprecipitates were then subjected to immunoblot 

analysis. 
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Immunoblot analysis 

Proteins were size fractionated using 8% SDS polyacrylamide gel electrophoresis, 

followed by protein gel blot analysis using a 1:10,000 dilution of anti-FLAG M2 IgG 

antibody (F1804, Sigma-Aldrich) and a 1:500 dilution of anti-c-Myc IgG antibody 

(014-21901, Wako Pure Chemical Industries). A 1:10,000 dilution of the horseradish 

peroxidase-linked anti-mouse IgG antibody (NA931, GE Healthcare) was used as 

secondary antibody. Protein blots were visualized using the horseradish 

peroxidase-based ECL Plus reagent (GE Healthcare) with an Image Quant LAS 4010 

biomolecular imager (GE Healthcare). 

 

Yeast two-hybrid analysis 

The GAL4-based yeast two-hybrid system (Matchmaker Gold Yeast Two-Hybrid 

System, Clontech) was used for detecting protein-protein interactions. Full length, 

N-terminal half (amino acids 1–392) and C-terminal half (amino acids 383–1187) MpGI 

cDNAs were PCR-amplified and subcloned into the EcoRI-SalI site of pGBKT7 

(Clontech). Truncated cDNA clones of MpFKF containing full length, LOV domain + 

F-box domain (amino acids 1–291), and F-box domain + Kelch repeats (181–635) were 

PCR amplified and subcloned into the NdeI-BamHI site of pGADT7 (Clontech). After 

the sequences were confirmed, the plasmids were transformed into the yeast strain 

AH109 and transformants selected on SDWL medium. The resulting colonies were 

cultured in SDWL liquid medium, and then serially diluted in distilled water before 

being spotted onto SDWL and SDWLH plates to analyse the interaction. pGBKT7 

and pGADT7 plasmids were used as negative controls for yeast two-hybrid analysis. 
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After a 2- to 3-day-incubation at 28°C, the plates were photographed. The experiments 

were repeated three times with similar results. The gene-specific primer sets used for the 

generation of each construct are given in Supplementary Table 1. 

 

Transformation of MpGI into an A. thaliana gi mutant 

The upstream regions of AtGI, including the promoter and 5′UTR (2,106 bp) and the 

full-length cDNA of MpGI were amplified by PCR with the primer pairs: forward 

5′-CACCTGCCTACAATTTGAGAATACGCC-3′, reverse 

5′-TTCTGCCCGGGAAATGACATCCAGGAACCGAAACTAAACCCCAAC-3′ for 

the upstream regions of AtGI, and forward 

5′-GGTTTAGTTTCGGTTCCTGGATGTCATTTCCCGGGCAGAAATGGC-3′, and 

reverse 5′-TTAGACAGGAATCGGGCAGC-3′ for MpGI cDNA. The PCR products 

were then subjected to PCR using the primer pairs: forward 

5′-CACCTGCCTACAATTTGAGAATACGCC-3′ and reverse 

5′-TTAGACAGGAATCGGGCAGC-3′ to generate the AtGIpro:MpGI fused sequence. 

The resultant fragment was introduced into pGWB139 to generate the AtGIpro:MpGI 

binary plasmid. pGWB1 were kindly provided by T. Nakagawa (Shimane University). 

The construct was introduced into the A. thaliana gi-2 mutant using the floral dip 

method40. Transgenic lines that possessed a single copy of the AtGIpro:MpGI construct 

in gi-2 were used for further analysis. For flowering phenotype analysis, plants were 

grown on soil in growth chambers (LH300, NKSystem) under 16-h-light/8-h-dark 

conditions with an illumination rate of 90 to 110 μmol m-2 s-1 of white fluorescent light 

(FL40SSEX-N/37-HG, NEC Lighting) at 22C. The Columbia-0 accession was used as 

the wild type. Flowering time was measured by counting the number of rosette leaves 
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upon bolting. 

 

Histochemical GUS staining 

The MpGIpro:GUS- and MpFKFpro:GUS-expressing plants were grown on 

half-strength B5 agar plates containing 1% sucrose for 10 days under continuous light. 

Histochemical GUS staining was performed as described previously41. The staining 

patterns of GUS activity from more than 10 individual lines were analysed. 

Representative patterns are shown in Fig. 4. 
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Figure legends 

Figure 1 | Primary structures of MpGI and MpFKF. 

(a) Gene structure of GI and FKF1 homologues in M. polymorpha and A. thaliana. 

Black boxes, grey boxes, and black lines indicate exons, untranslated regions and 

introns, respectively. Scale bar, 1 kb. Introns present in M. polymorpha genes are 

connected to the corresponding regions in A. thaliana genes by dashed lines. (b, c) 

Alignment of amino-acid sequences from GI (b) and FKF1 (c) homologues in M. 

polymorpha, A. thaliana, O. sativa, and S. moellendorffii. Identical and similar 

amino-acid residues are highlighted and shaded, respectively. The conserved cysteine 

residue involved in FMN binding is indicated by a blue triangle. Blue, red and green 

open boxes indicate LOV domain, F-box and kelch motifs, respectively. 

 

Figure 2 | Phylogenetic analysis of MpFKF. 

An unrooted maximum-likelihood phylogenetic tree was estimated using amino-acid 

sequences of FKF/ZTL/LKP2 homologues. Protein sequences used for the analysis 

were from A. thaliana (AtFKF1, AtZTL, and AtLKP2), O. sativa (OsFKF1, OsZTL1 

and OsZTL2), Glycine max (GmFKF1, GmZTL1 and GmZTL2), Triticum aestivum 

(TaFKF1 and TaZTL), Allium cepa (AcFKF1 and AcZTL), Mesembryanthemum 

crystallinum (McFKF1 and McZTL), and S. moellendorffii (SmFKF). The clade that 

consists of FKF homologues is marked with green, and the clade consisting of 
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LKP2/ZTL homologues with blue. Scale bar, evolutionary distance in substitutions per 

residue. Numbers, bootstrap probabilities. 

 

Figure 3 | Circadian expression of MpGI and MpFKF in M. polymorpha. 

(a-f) Transcript accumulation profiles of MpGI (a, c, e) and MpFKF (b, d, f) monitored 

under a 12-h-light/12-h-dark cycle (a, b), constant light (c, d) and constant dark (e, f) 

conditions. Bars above the traces represent light conditions; open, filled, lightly shaded 

and darkly shaded bars represent day, night, subjective night and subjective day, 

respectively. ZT, Zeitgeber time; CT, circadian time (time after the transfer from 

light-dark cycles to constant conditions). Error bars, s.e.m.; n = 3. 

 

Figure 4 | Interactions and spatial expression of MpGI and MpFKF. 

(a) Yeast two-hybrid analysis. Full-length (FL) or truncated MpGI and MpFKF fused to 

the DNA-binding domain (DBD) or the activation domain (AD) of Gal4 were tested 

under selective (WLH, left) and non-selective (WL, right) conditions. For MpGI, N 

and C indicate the amino-acid residues 1 to 392 and 383 to 1187, respectively. For 

MpFKF, F and Kelch indicate F-box and kelch-repeat domains, respectively. (b) 

Co-immunoprecipitation of GI-FLAG and FKF-myc from the extracts of plants 

overexpressing MpGI-FLAG only or both MpGI-FLAG and MpFKF-myc. Anti-FLAG 

(-FLAG) and anti-c-Myc (-myc) antibodies were used to detect MpGI-FLAG and 

MpFKF-myc, respectively, by western blotting. (c, d) GUS staining images from 

10-day-old plants harbouring MpGIpro:GUS (c) or MpFKFpro:GUS (d). Scale bar, 1 

mm. 
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Figure 5 | Effects of disruption and overexpression of MpGI and MpFKF on the 

growth-phase transition of M. polymorpha. 

(a, b) Timing of gametangiophore formation in wild-type plants, knockout mutants of 

MpGI (giko, male) and MpFKF (fkfko, female) and their complementation lines (gGI/giko 

and gFKF/fkfko; two lines for each). Plants were grown from gemmae under long-day 

conditions. (c, d) Timing of gametangiophore formation in wild-type plants and lines 

overexpressing MpGI (GIox), MpFKF (FKFox) or both (GIoxFKFox). Plants were grown 

from gemmae under long- and short-day conditions. Photographs of 35-day-old plants 

(a, c) and days to the first visible gametangiophore formation (b, d) are shown. 

Arrowheads indicate gametangiophores. WT, wild type. Scale bar, 10 mm. Error bars, 

s.d.; n > 15. 

 

Figure 6 | Genetic complementation of A. thaliana gi mutant by MpGI. 

(a) Rosette leaf numbers of wild-type A. thaliana (Columbia-0), gi-2, and gi-2 

harbouring an AtGIpro:MpGI construct, at the time of bolting under long-day conditions. 

*P < 10−4. Error bars, s.d.; n > 10. P-values were determined using unpaired Student’s 

t-test. (b) Representative individuals of wild type, gi-2, and AtGIpro:MpGI/gi-2 at 45 

days after germination. WT, wild type. 
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