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AbbreviationsAbbreviationsAbbreviationsAbbreviations    1 

ATP: adenosine triphosphate  2 

BAL: bronchoalveolar lavage  3 

DCD: donation after cardiac death  4 

EVLP: ex vivo lung perfusion 5 

FiO2: inspired oxygen fraction 6 

HMP: hypothermic machine perfusion  7 

MDA: malondialdehyde  8 

PawP: peek airway pressure 9 

PEEP: positive end-expiratory pressure 10 

ROS: reactive oxygen species 11 

SCS: static cold storage  12 

TBA: thiobarbituric acid  13 

TLR: Toll-like receptor 14 

15 
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AbstractAbstractAbstractAbstract    1 

Background. Background. Background. Background. Hypothermic machine perfusion (HMP) is widely used to preserve 2 

kidneys and livers for transplantation. This study investigated whether short-term 3 

HMP could improve the quality of lungs donated after cardiac death (DCD).        4 

Methods. Methods. Methods. Methods. In a clinically relevant uncontrolled DCD model, beagles were divided into 5 

2 groups (n=5 each): 4 h of warm ischemia + 14 h of static cold storage (SCS group) 6 

or 4 h of warm ischemia + 12 h of static cold storage, followed by 2 h of HMP (HMP 7 

group). HMP was performed using centrifugal perfusion with STEEN solution at 8 

around 10℃. In both groups, the left lungs were then transplanted and reperfused 9 

for 4 h to evaluate the posttransplant lung functions.  10 

Results. Results. Results. Results. HMP was performed safely, not inducing any oxidative damage. The 11 

dynamic pulmonary compliance was stable during HMP, while the pulmonary 12 

vascular resistance significantly decreased. HMP microscopically eliminated 13 

residual microthrombi in the donor lungs just before transplantation. The lung 14 

tissue adenosine triphosphate (ATP) levels 4 h after reperfusion were significantly 15 

higher in the HMP group compared with the SCS group. The serum 16 

malondialdehyde levels and proinflammatory cytokine levels in the bronchoalveolar 17 

lavage (BAL) fluid 4 h after reperfusion were significantly lower in the HMP group 18 

than in the SCS group. The physiological lung functions during reperfusion were 19 

significantly better in the HMP group compared to the SCS group. HMP also 20 

significantly reduced ischemia-reperfusion injury in the microscopic findings.  21 

Conclusions.Conclusions.Conclusions.Conclusions. Short-term HMP could resuscitate ischemically damaged DCD lungs, 22 

and ameliorate ischemia-reperfusion injury.  23 

24 
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IntroductionIntroductionIntroductionIntroduction    1 

Lung transplantation has become a mainstay of therapy for end-stage lung diseases. 2 

However, there has been a progressive increase in the number of patients on the 3 

waiting list, which continually exceeds the number of available organs. The use of 4 

uncontrolled DCD donors has been employed to resolve this problem (1-3). Warm 5 

ischemia inevitably occurs in uncontrolled DCD donors, and may cause ischemia- 6 

reperfusion injury after transplantation. Severe ischemia-reperfusion injury leads 7 

to primary graft dysfunction, and remains a significant cause of early morbidity and 8 

mortality after lung transplantation (4). The inhibition of ischemia-reperfusion 9 

injury is, therefore, crucial to facilitate lung transplantation from uncontrolled DCD 10 

donors.  11 

    Warm ischemia impairs the mitochondrial electron transport chain, 12 

resulting in decreased ATP production, and also decreases the efficacy of the 13 

mitochondrial antioxidant system (5,6). Depending on its severity, the 14 

reintroduction of oxygen at reperfusion can lead to a significant production of 15 

reactive oxygen species (ROS), which induces the upregulation of molecules on the 16 

cell surface and the release of proinflammatory mediators (4,7).  17 

 Hypothermic machine perfusion (HMP) has been used to preserve kidneys 18 

and livers for transplantation, with better results than static cold storage (SCS) 19 

(8,9). HMP is associated with a reduced risk of delayed graft function and improved 20 

graft survival, compared with SCS. HMP is based on the concept that the oxidative 21 

energy production by the mitochondrial electron transport would be sustained 22 

under hypothermia (10). We previously demonstrated that short-term HMP, which 23 

helped recover the ATP production by the mitochondrial electron transport chain, 24 
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6 
 

ameliorated ischemia- reperfusion injury with decreased oxidative damage during 1 

reperfusion in an isolated rat lung perfusion model (11).  2 

 In the present study, we used a canine transplantation model mirroring the 3 

clinical situation to investigate whether short-term HMP could improve the 4 

mitochondrial function damaged by warm ischemia, and decrease the oxidative 5 

damage and production of proinflammatory cytokines during reperfusion, thereby 6 

reducing ischemia- reperfusion injury.  7 

 8 

    9 

ResultsResultsResultsResults        10 

Physiological lung functionsPhysiological lung functionsPhysiological lung functionsPhysiological lung functions    during HMPduring HMPduring HMPduring HMP    11 

The influent variables (temperature, solutes, PO2 and PCO2 levels) were stable 12 

during 120 min of HMP. The temperature was maintained at a mean of 9.26±13 

0.88℃, ranging from 7.9 to 10.5℃. There was little variation in any solute during 14 

the HMP time (Na+ 144.93±0.70 mmol/L, K+ 5.49±0.28 mmol/L, Ca2+ 0.85±0.03 15 

mmol/L). The PH, PO2 and PCO2 levels were also maintained at means of 7.20±16 

0.04, 113.73±1.03 mmHg and 37.67±5.67 mmHg, respectively.  17 

 The dynamic pulmonary compliance was stable during HMP. The dynamic 18 

pulmonary compliance at baseline and after 120 min of HMP were 25.77±7.18 19 

ml/cmH2O and 26.46± 7.10 ml/cmH2O, respectively (P=0.76; Fig. Fig. Fig. Fig. 1111AAAA). The 20 

pulmonary vascular resistance gradually decreased during HMP. The pulmonary 21 

vascular resistance after 60, 90, and 120 min of HMP significantly decreased, in 22 

comparison to that at the baseline of HMP (P<0.05; Fig. Fig. Fig. Fig. 1111BBBB).  23 

 24 

Page 7 of 39

ScholarOne support: (434) 964 4100

Transplantation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



7 
 

Microthrombi in Microthrombi in Microthrombi in Microthrombi in the the the the donor lungs just before transdonor lungs just before transdonor lungs just before transdonor lungs just before transplantationplantationplantationplantation    1 

The biopsy specimens were collected from 5 donor lungs in the HMP group and 4 2 

donor lungs in the SCS group. Residual microthrombi in the donor lungs just before 3 

transplantation were microscopically assessed to prove the wash-out effects of HMP. 4 

Residual blood cells or blood clots in the capillaries were observed more often in the 5 

SCS group (4/4 specimens; Fig. 1CFig. 1CFig. 1CFig. 1C) compared with the HMP group (0/5 specimens; 6 

Fig. 1Fig. 1Fig. 1Fig. 1DDDD).  7 

 8 

Lung tissue ATP levels Lung tissue ATP levels Lung tissue ATP levels Lung tissue ATP levels     9 

The lung tissue ATP levels were measured before cardiac arrest, after warm 10 

ischemia, and 4 h after reperfusion to evaluate the mitochondrial function. In the 11 

HMP group, the lung tissue ATP levels, which decreased during warm ischemia, 12 

were significantly improved 4 h after reperfusion (P<0.05; Fig. Fig. Fig. Fig. 2222). Moreover, the 13 

lung tissue ATP levels 4 h after reperfusion were significantly higher in the HMP 14 

group than in the SCS group (P<0.05; Fig. Fig. Fig. Fig. 2222). The ATP levels before cardiac arrest 15 

and after warm ischemia were 6.33±0.79 and 2.68±1.07 nmol/mg・dw, respectively. 16 

The ATP levels 4 h after reperfusion in the HMP group and in the SCS group were 17 

4.53±0.38 and 3.07±0.94 nmol/mg・dw, respectively.  18 

 19 

Oxidative damage during HMP and reperfusionOxidative damage during HMP and reperfusionOxidative damage during HMP and reperfusionOxidative damage during HMP and reperfusion    20 

Malondialdehyde is one of the most commonly used markers for lipid peroxidation 21 

(12). The malondialdehyde levels in the perfusate were measured at baseline and 22 

after 120 min of HMP to assess the oxidative damage that occurred during HMP. 23 

HMP did not increase the malondialdehyde levels in the perfusate; the 24 
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malondialdehyde levels at baseline and after 120 min of HMP were 2.23±0.49 and 1 

2.06±0.45 nmol/ml, respectively (P=0.69; Fig. Fig. Fig. Fig. 3333AAAA). The serum malondialdehyde 2 

levels were measured 4 h after reperfusion to evaluate the oxidative damage that 3 

occurred during reperfusion. The serum malondialdehyde levels were significantly 4 

lower in the HMP group compared with the SCS group (HMP group: 1.55±0.74 5 

nmol/ml, SCS group: 3.63±1.15 nmol/ml, P<0.05; Fig. Fig. Fig. Fig. 3333BBBB).  6 

 7 

ProiProiProiProinflammatory cnflammatory cnflammatory cnflammatory cytokine levelytokine levelytokine levelytokine levels in BAL fluid s in BAL fluid s in BAL fluid s in BAL fluid after reperfusionafter reperfusionafter reperfusionafter reperfusion    8 

The TNF-α and IL-6 levels in the BAL fluid were measured 4 h after reperfusion.  9 

The TNF-α levels were significantly lower in the HMP group than in the SCS 10 

group (HMP group: 5.83±3.22 pg/ml, SCS group: 54.15±29.36 pg/ml, P<0.01; Fig. Fig. Fig. Fig. 11 

3C3C3C3C). The IL-6 levels were also significantly lower in the HMP group compared with 12 

the SCS group (HMP group: 1.55±0.74 pg/ml, SCS group: 3.63±1.15 pg/ml, P<0.05; 13 

Fig. Fig. Fig. Fig. 3D3D3D3D).     14 

    15 

Physiological lung functionsPhysiological lung functionsPhysiological lung functionsPhysiological lung functions    during reperfusionduring reperfusionduring reperfusionduring reperfusion    16 

The lung oxygenation and dynamic pulmonary compliance were significantly better 17 

in the HMP group than those in the SCS group (P<0.01; FigFigFigFigssss. 4. 4. 4. 4A and BA and BA and BA and B). The wet to 18 

dry lung weight ratio, indicating the severity of pulmonary edema, 4 h after 19 

reperfusion was significantly lower in the HMP group than that in the SCS group 20 

(HMP group: 7.09±0.77, SCS group: 12.03±4.05; P<0.05; Fig. 4CFig. 4CFig. 4CFig. 4C).  21 

 22 

Histological findings of ischemiaHistological findings of ischemiaHistological findings of ischemiaHistological findings of ischemia----reperfusion injury reperfusion injury reperfusion injury reperfusion injury     23 

Severe interstitial and intra-alveolar edema, hemorrhage, infiltration of 24 
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inflammatory cells in the air space or vessel wall, and hyaline formation were 1 

detected in the SCS group 4 h after reperfusion. The acute lung injury score was 2 

significantly lower in the HMP group in comparison to the SCS group (HMP group: 3 

22.6±6.80, SCS group: 44.6±4.45, P<0.01; Fig. 5Fig. 5Fig. 5Fig. 5).  4 

 5 

    6 

Discussion Discussion Discussion Discussion     7 

The current study utilized a clinically relevant uncontrolled DCD model. We chose 4 8 

h of warm ischemia to possibly expand the donor pool for lung transplantation, 9 

although the Madrid groups reported a maximum warm ischemic time of 2 h (3,13). 10 

The retrieval of lungs after cardiac death requires an intermediate period to be 11 

transported to the transplant center, so we added 12 h of SCS right before HMP. 12 

Dutkowski et al. suggested that 1-2 h of HMP should be performed during the 13 

recipient preparation without delay of the transplant procedure (10). We previously 14 

reported that 1 h of HMP significantly improved the rat lung tissue ATP levels, 15 

which had decreased during warm ischemia (11). In the current study, DCD lungs, 16 

which were injured by 4 h of warm ischemia and additional 12 h of cold ischemia, 17 

could be resuscitated by 2 h of HMP.    18 

 This study found that short-term HMP could be performed safely for DCD 19 

lungs, not inducing any significant amount of oxidative damage. We recently 20 

developed a reliable and reproducible technique for lung HMP in a large animal 21 

model, which demonstrated stable machine perfusion characteristics and excellent 22 

lung performance during 8 h of HMP (data not shown). The current study revealed 23 

that this technique could be used for reconditioning of ischemically damaged DCD 24 
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lungs. None of the influent valuables showed spikes, and the dynamic pulmonary 1 

compliance was also maintained during the entire period of HMP. Oxidative damage 2 

under the exposure to oxygen at hypothermia has been demonstrated in studies on 3 

isolated cell systems (14), while several studies in animal models demonstrated that 4 

liver HMP resulted in minor oxidative damage (15,16). The present study found 5 

that short-term lung HMP did not cause oxidative stress during the perfusion, 6 

which was indicated by the fact that the malondialdehyde levels in the perfusate 7 

did not increase during HMP.  8 

    Intravascular microthrombus formation, which results in an increase of 9 

intrapulmonary shunting and pulmonary vascular resistance, is one of the major 10 

causes of reperfusion injury in lung transplantation from DCD donors. The benefits 11 

of additional retrograde flushing have been shown in experimental lung 12 

transplantation (17-19). In the current study, a histological examination of the 13 

donor lungs just before transplantation revealed fewer microthrombi in the HMP 14 

group compared with the SCS group. This indicated that most of the residual 15 

microthrombi wedged in the capillaries after the flushes were eliminated by HMP 16 

(9,20). Ventilation during perfusion results in better distribution of the preservation 17 

solution. A reduction of minute ventilation decreases the total amount of elastic 18 

stress imposed on cooled lungs (21). Therefore, the current study adopted the 19 

ventilation mode reduced respiratory rate and tidal volume during HMP, which 20 

resulted in stable dynamic pulmonary compliance and the elimination of residual 21 

microthrombi.  22 

 The current study demonstrated that short-term HMP could improve the 23 

mitochondrial function following injury due to warm ischemia, and decrease the 24 
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11 
 

oxidative damage and production of proinflammatory cytokines during reperfusion. 1 

Unlike other tissues that are transplanted, lung cells are able to maintain aerobic 2 

metabolism using the oxygen present in the alveoli during SCS (22). In the SCS 3 

group, the lung ATP levels, which decreased during warm ischemia, were improved 4 

a little, but the improvement was significantly lower than that in the HMP group. 5 

HMP could continue to provide the essential substrates for cell metabolism and 6 

restore the lung tissue ATP levels. The reintroduction of oxygen to impaired 7 

mitochondria at reperfusion leads to a significant production of ROS, which damage 8 

proteins, lipids and DNA (6). The serum malondialdehyde levels after reperfusion 9 

were significantly lower in the HMP group compared with the SCS group. HMP 10 

possibly prevented the overload of oxygen upon reperfusion for the mitochondrial 11 

electron transport chain by recovering the mitochondrial function before 12 

reperfusion, and thus decreased production of ROS. Physical alterations of the 13 

plasma membrane caused by ROS activate Toll-like receptors (TLRs), which are 14 

expressed in endothelial cells and respiratory epithelial cells (7). The signal 15 

transduction mediated by TLRs results in the activation of NF-κB, inducing the 16 

production of proinflammatory cytokines and chemokines (7). Therefore, the 17 

significantly increased levels of TNF-α and IL-6 in the SCS group might have 18 

resulted from TLRs signaling in the pulmonary parenchymal cells, activated by the 19 

significant increase in lipid peroxidation.  20 

 Normothermic perfusion has already been studied and proved to enable 21 

organ viability assessment before transplantation, prolonged preservation, and 22 

resuscitation from injuries (23-27). It has been unknown which is more suitable for 23 

organ preservation, hypothermic perfusion or normothermic perfusion. The organ is 24 
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12 
 

metabolically active under normothermic conditions, and thus normothermic 1 

perfusion might allow better reconstitution of the lung tissue ATP stores. However, 2 

normothermic perfusion requires that the physiological environment is completely 3 

recreated with full nutritional support. Hypothermia decreases the metabolic rate 4 

of the organ and could be used as a means for lung rest in the acutely injured lung 5 

(21). This study demonstrated that HMP could continue to provide the essential 6 

substrates for cell metabolism and restore the lung tissue ATP levels under the 7 

slow-metabolic-rate conditions.  8 

 This study had several limitations. First, although we simulated a clinically 9 

relevant uncontrolled DCD model, cardiac arrest was induced by intravenous 10 

injection of potassium chloride. Such an abrupt cardiac arrest may have been 11 

removed from clinical reality, in that there was not an agonal phase, which is an 12 

important variable component of DCD (28). Second, the lung tissue ATP levels were 13 

measured after warm ischemia and reperfusion. It might be easier to prove the 14 

metabolic benefits of HMP if the ATP levels were measured just before and after 15 

HMP.  16 

 In conclusion, short-term HMP could resuscitate DCD lungs injured by 17 

prolonged ischemia, and ameliorate ischemia-reperfusion injury. First, short-term 18 

HMP washed-out residual microthrombi in the donor lungs. Second, short-term 19 

HMP improved the ATP production by the mitochondrial electron transport chain, 20 

which led to the significant decrease in oxidative damage and production of 21 

proinflammatory cytokines after reperfusion compared to SCS.   22 

 23 

    24 
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Materials and MethodsMaterials and MethodsMaterials and MethodsMaterials and Methods    1 

AnimalsAnimalsAnimalsAnimals    2 

Beagles weighing from 9 to 13 kg (Kitayama Labes Co. Ltd., Hongo Farm, 3 

Yamaguchi, Japan) were used in this study. There was no significant difference in 4 

the beagles' body weights between the two groups. All animals received humane 5 

care in compliance with the Principals of Laboratory Animal Care, formulated by 6 

the United States National Society for Medical Research, and the Guide for the 7 

Care and Use of Laboratory Animals, prepared by the US Institute of Laboratory 8 

Animal Resources and published by the National Institutes of Health (NIH 9 

Publication 85-23, revised 1996). The study was approved by the Ethics Committee 10 

of the Faculty of Medicine at Kyoto University, Japan. 11 

 12 

Study designStudy designStudy designStudy design    13 

The donor procedures, including anesthesia, induction of cardiac arrest, and 14 

antegrade and retrograde flushes of the lungs, were described in detail in a separate 15 

publication (29). Cardiac arrest was induced by the intravenous injection of 16 

potassium chloride (0.5 mEq/kg) without heparinization. Four hours after cardiac 17 

arrest, the donor lungs were retrieved, and then they were divided into 2 groups 18 

(n=5 each). The lungs in the SCS group were stored in an inflated state with oxygen 19 

fraction of 0.5 at 4℃ for 14 h using ET-Kyoto solution (Otsuka Pharmaceutical 20 

Factory Inc, Tokushima, Japan) (30). The lungs in the HMP group were stored in an 21 

inflated state with oxygen fraction of 0.5 at 4℃ for 12 h using ET-Kyoto solution, 22 

and then reconditioned by 2 h of HMP. In both groups, the left lung was then 23 

transplanted to a recipient as previously described (29). The transplanted lung was 24 
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14 
 

reinflated and mechanically ventilated with FiO2 of 1.0, and then reperfused for 4 h 1 

to evaluate the posttransplant lung functions. The right pulmonary artery was 2 

occluded with a tourniquet 45 min after reperfusion to specifically evaluate the 3 

functions of the transplanted lung. The pulmonary arterial pressure and peak 4 

airway pressure (PawP) were continuously monitored throughout the experiments. 5 

Dynamic pulmonary compliance was defined as tidal volume/(PawP－PEEP) 6 

(ml/cmH2O). A blood gas analysis was performed using blood collected from the 7 

femoral artery at selected time points. Lung tissue biopsy samples collected from 8 

the left middle lobe 4 h after reperfusion were weighed to obtain the wet lung 9 

weight, placed in an oven at 180℃ for 24 h, and then reweighed to obtain the dry 10 

lung weight. The wet to dry lung weight ratio was calculated to evaluate the 11 

presence of pulmonary edema.  12 

 13 

Hypothermic machine perfusion (HMP)Hypothermic machine perfusion (HMP)Hypothermic machine perfusion (HMP)Hypothermic machine perfusion (HMP)    14 

The lungs were placed in an XVIVO chamber (Vitrolife, Denver, CO). The 15 

pulmonary artery was cannulated directly and then connected to the perfusion 16 

circuit. The left atrium was left open, so that the left atrial pressure was always 0 17 

mmHg. The trachea was intubated and connected to the ventilator. Mechanical 18 

ventilation was started with FiO2 of 0.25, tidal volume of 10 ml/kg, frequency of 10 19 

breaths/min and PEEP of 5 cmH2O. The perfusate, which contained STEEN 20 

solution (1,500 ml) with methylprednisolone (500 mg) and heparin (10,000 IU), was 21 

driven by a centrifugal pump at a constant flow rate of 10% of the estimated cardiac 22 

output (CO = 100 ml/kg). Deoxygenation of the perfusate was started with a gas 23 

mixture of nitrogen (86%), carbon dioxide (8%), and oxygen (6%) to maintain the 24 
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influent PCO2 of around 40 mmHg. The temperature of influent was continuously 1 

monitored, and was maintained around 10 ℃  (31). The influent solute 2 

concentrations, PO2, and PCO2 levels were recorded every hour. The pulmonary 3 

arterial pressure and peak airway pressure were continuously monitored, and the 4 

physiological lung functions (dynamic pulmonary compliance and pulmonary 5 

vascular resistance) during HMP were evaluated every 30 min. Recruitments were 6 

performed to ensure a peak airway pressure of 25 cmH2O every 30 min prior to each 7 

evaluation. Dynamic pulmonary compliance was defined as described above. 8 

Pulmonary vascular resistance was defined as (pulmonary arterial pressure － left 9 

atrial pressure)/ pulmonary arterial flow (mmHg/L).  10 

 11 

Lung tissue Lung tissue Lung tissue Lung tissue ATP ATP ATP ATP levelslevelslevelslevels    12 

Lung tissue biopsy specimens were collected from the right lung before cardiac 13 

arrest and after warm ischemia, and then were collected from the left upper lobe 4 h 14 

after reperfusion. ATP levels were measured by high-performance liquid 15 

chromatography using a Shim-pack CLC-ODS column (15 cm×6.0 mm; Shimadzu, 16 

Japan) and 100 mM sodium phosphate buffer (PH 6.0) at a wavelength of 260 nm, 17 

as described previously (32).   18 

 19 

MMMMaaaalondialdehyde londialdehyde londialdehyde londialdehyde levelslevelslevelslevels    20 

Malondialdehyde levels were measured with the NWLSS Malondialdehyde Assay 21 

kit from Northwest (Northwest Life Sciences Specialties, Vancouver, Canada) 22 

following the manufacture's protocol. Malondialdehyde (MDA) reacted with 23 

thiobarbituric acid (TBA), forming an MDA-TBA2 adduct that was measured at a 24 
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wavelength of 532 nm.  1 

 2 

Cytokine levels in Cytokine levels in Cytokine levels in Cytokine levels in BALBALBALBAL    fluidfluidfluidfluid    3 

BAL was performed with 20 ml of saline using a flexible bronchoscope wedged into 4 

the left lower bronchus. Collected samples were centrifuged at 1,500g for 10 min at 5 

4℃, and then the supernatant was stored at -80℃ to evaluate the cytokine levels. 6 

TNF-α  and IL-6 levels were measured with a Quantikine ELISA kit (R&D 7 

Systems Inc., Minneapolis, MN, USA) following the protocol developed by the 8 

manufacture.  9 

 10 

Histological evaluation of microthrombi and Histological evaluation of microthrombi and Histological evaluation of microthrombi and Histological evaluation of microthrombi and iiiischemiaschemiaschemiaschemia----reperfusion injuryreperfusion injuryreperfusion injuryreperfusion injury    11 

Lung tissue biopsies were collected from the right lower lobe just before 12 

transplantation and the left lower lobe 4 h after reperfusion. They were fixed in 10% 13 

buffered formalin, embedded in paraffin, and stained with hematoxylin and eosin. 14 

Five sections including capillaries were examined by blinded investigators (A.O. 15 

and J.S.) to evaluate the residual microthrombi in the donor lungs. The extent of 16 

ischemia-reperfusion injury was scored blindly by two investigators (A.O. and J.S.) 17 

using a four-point scale according to the combined assessment of edema (interstitial 18 

and intra-alveolar congestion), hemorrhage, inflammatory cell infiltration, and 19 

hyaline membrane formation: 0 = absent, 1 = mild, 2 = moderate, 3 = severe damage 20 

(33,34).  21 

 22 

Statistical aStatistical aStatistical aStatistical analysisnalysisnalysisnalysis    23 

All data are presented as means ± standard deviation. The statistical analysis 24 
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was performed using Student's t-test and a repeated-measures analysis of variance 1 

(ANOVA).  A p value < 0.05 was considered to be statistically significant.  2 

 3 

4 
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Figure legends Figure legends Figure legends Figure legends     1 

FIGURE 1. Physiological lung functions during HMP: Dynamic pulmonary 2 

compliance (A). Pulmonary vascular resistance (B). * P<0.05 versus the baseline 3 

data. Residual microthrombi in the donor lungs just before transplantation in the 4 

SCS group (C) and in the HMP group (D). Arrows indicate residual microthrombi in 5 

the capillaries. HMP: hypothermic machine perfusion, SCS: static cold storage.  6 

 7 

FIGURE 2. Lung tissue ATP levels before cardiac arrest, after warm ischemia, and 8 

4 h after reperfusion. * P<0.05. ATP: adenosine triphosphate, HMP: hypothermic 9 

machine perfusion, SCS: static cold storage.  10 

 11 

FIGURE 3. Malondialdehyde (MDA) levels in the perfusate during HMP (A) and in 12 

the serum 4 h after reperfusion (B). * P<0.05. TNF-α levels (C) and IL-6 levels (D) 13 

in the BAL fluid 4 h after reperfusion.†P<0.01, * P<0.05. BAL: bronchoalveolar 14 

lavage, HMP: hypothermic machine perfusion, SCS: static cold storage.  15 

 16 

FIGURE 4. Physiological lung functions during reperfusion. The right pulmonary 17 

artery was occluded 45 min after reperfusion to evaluate the functions of the 18 
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transplanted lung only. †These data show the physiological lung functions of the 1 

bilateral lungs (native lung and transplanted lung) before the clamp of the right 2 

pulmonary artery. PaO2 (A) and dynamic pulmonary compliance (B) were 3 

significantly better in the HMP group (solid circles) than in the SCS group (open 4 

boxes); P<0.01. Wet to dry lung weight ratio 4 h after reperfusion (C). * P<0.05. 5 

HMP: hypothermic machine perfusion, SCS: static cold storage.  6 

 7 

FIGURE 5. Acute lung injury score: Ischemia-reperfusion injury was scored using a 8 

four-point scale according to the combined assessment of edema, hemorrhage, cell 9 

infiltration, and hyaline membrane formation.† P<0.01. HMP: hypothermic 10 

machine perfusion, SCS: static cold storage. 11 

 12 

 13 
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