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Abstract. In cloud computing, a large-scale parallel-distributed processing
service is provided where a huge task is split into a number of subtasks and
those subtasks are processed on a cluster of machines called workers. In such
a processing service, a worker which takes a long time for processing a subtask

makes the response time long (the issue of stragglers). One of efficient methods
to alleviate this issue is to execute the same subtask by another worker in
preparation for the slow worker (backup tasks). In this paper, we consider the
efficiency of backup tasks. We model the task-scheduling server as a single-
server queue, in which the server consists of a number of workers. When a task
enters the server, the task is split into subtasks, and each subtask is served
by its own worker and an alternative distinct worker. In this processing, we
explicitly derive task processing time distributions for the two cases that the
subtask processing time of a worker obeys Weibull or Pareto distribution. We
compare the mean response time and the total processing time under backup-
task scheduling with those under normal scheduling. Numerical examples show
that the efficiency of backup-task scheduling significantly depends on workers’
processing time distribution.
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1. Introduction. Recently, cloud computing has attracted considerable attention
due to the availability of huge computing resources and its significant cost efficiency.
In [1], cloud computing is defined as the sum of the existing concepts, software as
a service (SaaS) and utility computing. More precisely, cloud computing is the
combined concept of providing computer-processing service only as needed via the
Internet (SaaS) and using server resources in a data center only as needed (utility
computing). A remarkable feature of cloud computing is that data centers providing
cloud computing services are extremely large-sized.

With the increase in the capacity of hard-disk drives, the amount of data treated
in computer processing also increases, and it is common that enormous time is
needed in data processing with one worker machine. In cloud computing, enormous
data is handled with a huge number of workers in parallel-distributed processing
fashion [4, 2], and typical applications are data mining, document processing, and
machine learning. In the following, we call this processing mechanism as a large-
scale parallel-distributed processing. With a large-scale parallel-distributed pro-
cessing, huge data is processed in relatively short time. Roughly speaking, data
processing which needs 100 hours with one worker can process in one hour with 100
workers if overhead for parallel processing is relatively small.

In the large-scale parallel-distributed processing, a huge task is split into a num-
ber of subtasks and those subtasks are independently processed on a cluster of
machines called workers. The huge task processing ends when all the subtasks are
completed. Therefore, a worker machine which takes a long time for processing a
subtask increases the response time (the issue of stragglers) [4]. The reasons caus-
ing slow workers are machine failure and resource competition because the system
consists of a huge number of machines.

In order to alleviate the issue of stragglers, there exist two scheduling schemes:
load balancing [6] and backup tasks [4]. In load balancing, the subtask size for
a worker is determined according to the processing speed of the worker. That
is, a small-sized subtask is allocated to a slow-processing worker, while a large-
sized subtask is performed by a fast-processing worker. This scheduling makes
the variance of the subtask-processing times of worker machines significantly small.
However, the load-balancing scheduler must know each worker’s subtask-processing
time a priori.

In backup-task scheduling, on the other hand, backup executions of the remaining
in-progress subtasks are scheduled. Then the process of a subtask ends when either
original subtask or backup executions is completed. A strong point of the backup-
task scheduling is that the backup-task scheduler activates backup tasks for a worker
according to the elapsed subtask-processing time, i.e., no a priori information about
the overall subtask-proceeding time of the worker is needed. It is reported in [4]
that the backup tasks can significantly reduce the response time of a task.

There is much literature on cloud computing, and most of works are concerned
with service platform and cost efficiency from the economical point of view. There
are a few studies for performance issues on cloud computing, and those are based on
measurement-based analysis. (See, for example, [5, 9].) In terms of the theoretical
approach to performance issues on cloud computing, Xiong et al. [8] consider a
queueing network model which consists of a Web-server queue and a service-center
queue. Focusing on the percentile of the response time as a performance measure
of cloud computing, they approximately analyze the response time distribution. In
their model, however, the service-center part is modeled as a single-server queue
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with a fixed service rate, and this model is too simple to describe a large-scale
parallel-distributed processing of a task.

In [6], Dobber et al. investigate the effectiveness of dynamic load balancing (DLB)
and job replication (JR) by trace-driven simulation experiments, proposing a hybrid
scheduling scheme of DLB and JR. Cirne et al. [3] also investigate the effectiveness
of several job-replication schedulers by simulation, comparing those with traditional
information-based schedulers. Note that most of related works are concerned with
the performance of task schedulers by simulation. To the best of the authors’
knowledge, the effect of backup-task scheduling on the improvement of the task-
processing time has not been fully studied yet.

In this paper, we consider the efficiency of backup-task scheduling on two per-
formance measures: the response time of a task and the total processing time of
workers. Note that the former indicates how the performance is improved by backup
tasks, while the latter characterizes the cost resulting from backup tasks. We focus
on a task-scheduling server in which tasks are processed in first-come, first-served
(FCFS) order. We model the task-scheduling server as a single-server queue, in
which the server consists of a number of workers. A task entering the service facil-
ity is split into subtasks of an equal size1. Then, the task service ends when all the
subtasks are completed.

We consider two task-scheduling policies: normal scheduling and backup-task
one. For normal scheduling, each subtask is served by its own worker. In backup-
task scheduling, on the other hand, each subtask is processed not only by its own
worker but also by an alternative distinct worker, and the subtask service ends
when either of the two workers’ processes is completed. In both scheduling policies,
we explicitly derive task processing time distributions when the subtask process-
ing time of a worker follows Weibull or Pareto distribution. Then, the maximum
throughput, mean response time, and total processing time are derived. In nu-
merical examples, we validate the analysis by Monte Carlo simulation. Then, we
compare these performance measures under backup-task scheduling with that under
normal scheduling, discussing the efficiency of backup-task scheduling.

This paper is organized as follows. In Section 2, analytical models for two sched-
uling policies are described. In Section 3, we derive performance measures. Section
4 shows numerical examples of derived performance measures. Finally, we conclude
the paper in Section 5.

2. Analytical models for two scheduling policies. We consider two analytical
models for the large-scale parallel-distributed processing: normal processing model

and backup-task processing model (called Models N and B, respectively, hereafter).
In each model, the system consists of an infinite buffer and a server with workers.
Tasks arrive at the system according to a Poisson process with rate λ, and they are
processed on the FCFS basis.

The details of the two models are as follows:

(i) Normal processing model (Model N)
The server has 2M (which is a positive integer) workers, and a task is divided
into 2M subtasks. Each subtask is processed by a worker, and its processing
time follows a distribution function FN with mean b/(2M) (b > 0), indepen-
dently of those of the other workers (Fig. 1). Further, the processing time of a

1The assumption of subtasks of an equal size becomes accurate when a huge-sized input data
is almost equally split into data pieces [4].
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Processing times of subtasks:
I nd ep end ent id entical  d istribution FN
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Figure 1. Normal processing model (Model N).

Processing times of subtasks:
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W orker 1
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Figure 2. Backup-task processing model (Model B).

task (consisting of 2M subtasks) is defined as the maximum of the processing
times of the 2M subtasks generated from the task. As a result, the processing
times of tasks are independently and identically distributed (i.i.d.) with a
distribution function GN, which is given by

GN(t) = {FN(t)}2M , t ≥ 0.

(ii) Backup-task processing model (Model B)
The server consists of M pairs of workers. A task is divided into M subtasks,
from each of which a backup subtask is duplicated. An original subtask and
its backup subtask are assigned to a pair of workers separately. The processing
times of the 2M subtasks (including M backup subtasks) generated from a
task are i.i.d. with a distribution function FB with mean b/M (Fig. 2). The
processing of each pair of an original subtask and its backup subtask is finished
when either of them is completed. The processing time of a task is defined in
the same way as Model N. Thus, the processing times of tasks are i.i.d. with
a distribution function GB, which is given by

GB(t) =
[

1 − {1− FB(t)}2
]M

, t ≥ 0.

In what follows, we call FN and FB as worker-processing-time distributions.
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Figure 3. Analytical model for a large-scale parallel-distributed processing.

3. Analysis.

3.1. Performance measures. We consider three performance measures: the max-
imum throughput, mean response time, and total processing time. The maximum
throughput is defined as the reciprocal of the mean processing time of a task; the
mean response time as the mean sojourn time of a task in the system (from its
arrival to its departure); and the total processing time as the mean of the total
running time of the 2M workers during the processing time of a task.

Let subscript “x” denote the index symbol for the two processing models de-
scribed in the previous subsection, i.e., x = N or B. Let Tx, Wx and Px (x = N, B)
denote the maximum throughput, mean response time and total processing time,
respectively, in Model x. Note here that Model x is considered as an FCFS M/G/1
queue (Fig. 3), where the service time distribution is given by Gx. We then have
(see, e.g., [7])

Tx =
1

g
(1)
x

, Wx =
λg

(2)
x

2(1− λg
(1)
x )

+ g(1)
x , x = N, B, (1)

where g
(1)
x and g

(2)
x denote the first and second moments of distribution function

Gx, i.e.,

g(1)
x =

∫

∞

0

tdGx(t), g(2)
x =

∫

∞

0

t2dGx(t),

respectively. From the definition, we also have

Px =























E

[

2M
∑

i=1

Ux,i

]

= 2ME[Ux,1], x = N,

E

[

M
∑

i=1

2 min {Ux,i, Ux,2i}

]

= 2ME[min {Ux,1, Ux,2}], x = B,

where Ux,i (i = 1, 2, . . . , 2M) denotes the subtask-processing-time of ith worker.
Note that the Ux,i’s are i.i.d. random variables with distribution function Fx.

3.2. Special cases for worker-processing-time distribution. We consider two
types of the worker-processing-time distributions. For convenience, let MN = 2M
and MB = M .
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(i) Weibull distribution

Fx(t) = 1 − exp {− (t/ηx)
α
} , t ≥ 0,

with scale parameter ηx = b/{MxΓ (1 + 1/α)} (α > 0);
(ii) Pareto distribution

Fx(t) =

{

1 − (µx/t)
β

, t ≥ µx,
0, 0 ≤ t < µx,

where µx = b(β − 1)/(Mxβ) (β > 2).

For the two worker-processing-time distributions, we can calculate the moments

g
(n)
N and g

(n)
B (n = 1, 2) as follows:

(i) Weibull processing time case:
(a) Model N

g
(1)
N =

b

2M

2M
∑

k=1

(−1)k−1

(

2M

k

)

1

k
1

α

,

g
(2)
N =

Γ
(

1 + 2
α

)

{

Γ
(

1 + 1
α

)}2

b2

4M2

2M
∑

k=1

(−1)k−1

(

2M

k

)

1

k
2

α

.

(b) Model B

g
(1)
B =

b

2
1

α M

M
∑

k=1

(−1)k−1

(

M

k

)

1

k
1

α

,

g
(2)
B =

Γ
(

1 + 2
α

)

{

Γ
(

1 + 1
α

)}2

b2

2
2

α M2

M
∑

k=1

(−1)k−1

(

M

k

)

1

k
2

α

.

(ii) Pareto processing time case:
(a) Model N

g
(1)
N = (β − 1)

b

2M

2M
∑

k=1

(−1)k−1

(

2M

k

)

k

βk − 1
,

g
(2)
N =

(β − 1)2

β

b2

4M2

2M
∑

k=1

(−1)k−1

(

2M

k

)

k

βk − 2
.

(b) Model B

g
(1)
B = 2(β − 1)

b

M

M
∑

k=1

(−1)k−1

(

M

k

)

k

2βk − 1
,

g
(2)
B =

2(β − 1)2

β

b2

M2

M
∑

k=1

(−1)k−1

(

M

k

)

k

2βk − 2
.

Combining (1) with the above equations, we can obtain Tx and Wx. We can also
calculate Px as follows:

(i) Weibull processing time case:

Px =

{

b, x = N,

2(1− 1

α
)b, x = B.
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Table 1. Values of α and β.

Coefficient of variation 8.307 2.236 1.000 0.5227 0.2805
α 0.2500 0.5000 1.000 2.000 4.000
β 2.007 2.095 2.414 3.159 4.702
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Figure 4. The tail of the worker-processing-time distribution.

(ii) Pareto processing time case:

Px =







b, x = N,
4(β − 1)

2β − 1
b, x = B.

4. Numerical examples. In this section, we show some numerical examples.
First, we discuss the model validity by comparing the analytical results and Monte
Carlo simulation. Then, we consider the effectiveness of backup tasks for improving
the issue of stragglers by comparing Models N and B (i.e., the normal processing
model and the backup-task processing model).

In the following numerical examples, we set b = 3.000 × 107 (sec) (i.e. about a
year) and λ = 3.000× 10−8 (task/sec). Furthermore, M is varied from 1 to 10000,
and the values of α and β are determined such that the coefficient of variation of
the worker-processing-time distribution takes the values as shown in Table 1. Note
that the coefficient of variation for Weibull (resp. Pareto) distribution becomes large
with the decrease in α (resp. β), and the tail of Pareto distribution is heavier than
that of Weibull distribution, although the coefficients of variation are the same (See
Fig. 4).

4.1. Model validation. In this subsection, we discuss the model validation. In
our model of backup tasks (Model B), we assume that alternative subtasks are
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simultaneously executed when a task process starts. In real environment, on the
other hand, backup executions are activated when subtask processing times are
greater than a pre-specified threshold. In order to validate our analytical model,
we conducted Monte Carlo simulation experiments. In our simulation setting, a
backup execution of a subtask starts when its processing time is greater than ξb/M .
Here, ξ is set to 1.0, 1.5 and 2.0. We calculated the 95% confidence interval of the
performance measures of the maximum throughput, mean response time, and total
processing time.

Figure 5 represents the mean response time for Pareto-processing time case (β =
2.007) against the number of workers in log-log plot. In Fig. 5, the mean response
time for Model B is smaller than that for simulation, and the difference between
them decreases with the increase in the number of workers. This implies that our
model gives a lower bound of the backup-task scheduling on the mean response
time, and the model assumption is valid when the number of workers is large. This
trend can be seen for other parameters of Weibull and Pareto distributions. We
also confirm the same trend on the maximum throughput.

Figure 6 (resp. Figure 7) illustrates the total processing time in Model B and
simulation for Pareto-processing time case (β = 2.007) (resp. Weibull-processing
time case (α = 0.2500)). The horizontal axis represents the number of workers
in log scale. In both figures, we observe that the total processing time remains
almost constant when the number of workers increases. This is because the size of
a task is a constant b and independent of the number of subtasks. Noting that the
overhead of parallel processing is not taken into consideration in both analysis and
simulation, the resulting total processing time is almost insensitive to the number
of workers. In Fig. 6, the total processing time for Model B is larger than that
for simulation, and the difference grows when the backup-task execution threshold
increases. This result suggests that our model gives the worst case on resource
consumption. This tendency can be seen for other parameters of Pareto distribution
and Weibull distribution with α ≥ 1.

In Fig. 7, on the other hand, the total processing time for Model B is smaller than
that for simulation, and the difference between them decreases with the decrease in
the backup-task execution threshold. This implies that resource consumption is the
smallest when backup tasks are activated from the beginning of the task processing.
This trend is the same for Weibull distribution with α < 1.

These results indicate that the maximum throughput and mean response time
can be predicted quantitatively with our model when the number of workers is large.
On the other hand, our model is not suitable for quantitative evaluation of the total
processing time. However, the qualitative trend of the total processing time can be
described well by this model.

4.2. Impact of stragglers in Model N. In this subsection, we investigate the
issue of stragglers by the normal processing model (Model N).

Figures 8 and 9 represent the maximum throughput for Model N against the
number of workers in log-log plot. Here, the worker processing time distribution
is set to Weibull (resp. Pareto) distribution in Fig. 8 (resp. Fig. 9). It is observed
in Fig. 8 (resp. Fig. 9) that when α (resp. β) is small, the maximum throughput
is less likely to grow with the increase in the number of workers. This is because
slow workers are more likely to exist with the increase in the coefficient of variation,
resulting in that the response time of a task is not significantly improved.
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Figure 6. The total processing time for Model B and simulation
in Pareto distribution case (β = 2.007).

Figures 10 and 11 illustrate the mean response time for Model N against the
number of workers in log-log plot. In both figures, the mean response time is cal-
culated for five values of distribution parameters. Figure 10 is Weibull-distribution
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in Weibull distribution case (α = 0.2500).
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case, while Fig. 11 is Pareto-distribution case. In both figures, we observe that the
mean response time in case of a large coefficient variation is less likely to decrease
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with the increase in the number of workers. This reason is the same as that of the
maximum throughput.
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Figure 11. The mean response time for Model N in Pareto dis-
tribution case.

These results suggest that the coefficient of variation of the worker processing
time distribution significantly affects the response time performance of the large-
scale parallel-distributed processing.

4.3. Efficiency of backup-task scheduling. In this subsection, we investigate
the effect of backup-task scheduling on the performance of the large-scale parallel-
distributed processing.

Figure 12 (resp. Figure 13) represents the ratio of the maximum throughput in
Model B to that in Model N for Weibull-processing (resp. Pareto-processing) time
case. The horizontal axis represents the number of workers in log scale, and the
ratio in Fig. 12 (resp. Fig. 13) is calculated in five cases of α (resp. β). In Fig. 12,
the ratio gradually decreases with the increase in the number of workers. This
implies that under backup-task scheduling, increasing the number of workers does
not improve the throughput performance effectively when the worker processing
time follows Weibull distribution. We also observe in this figure that the ratio for
a small α is significantly large, as expected.

In Fig. 13, on the other hand, the ratio grows when the number of workers is
large. In addition, the ratio for a small β is larger than that for a large β. Note that
the event where the worker processing time is extremely large is likely to occur for
Pareto distribution. Therefore, these results suggest that backup-task scheduling is
significantly effective for improving the throughput performance when the event of
an extremely-large worker processing time is likely to occur.

Figure 14 (resp. Figure 15) illustrates the ratio of the mean response time in
Model B to that in Model N for Weibull-processing (resp. Pareto-processing) time
case. The horizontal axis represents the number of workers in log scale, and the
ratio in Fig. 14 (resp. Fig. 15) is calculated in five cases of α (resp. β).
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Figure 12. The ratio of the maximum throughput in Model B to
that in Model N in Weibull distribution case.
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Figure 13. The ratio of the maximum throughput in Model B to
that in Model N in Pareto distribution case.

In Fig. 14, the ratio remains almost constant with the increase in the number
of workers. In addition, the mean response time for Model N is smaller than that
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Figure 14. The ratio of the mean response time in Model B to
that in Model N in Weibull distribution case.

for Model B when α = 2.000 and 4.000. These results suggest that when the sys-
tem is managed by backup-task scheduling and the worker processing time follows
Weibull distribution, increasing the number of workers is not significantly effective
in improving the response time. Note that when α = 0.2500, 0.5000 and 1.000,
the ratio is smaller than one, implying that the mean response time for Model B
is smaller than that for Model N. Therefore, even for the Weibull-processing time
case, backup-task scheduling can improve the performance when its coefficient of
variation is large. In Fig. 15, on the other hand, the ratio decreases with the in-
crease in the number of workers. This implies that backup-task scheduling works
significantly well for Pareto-processing time case. Note that in both the figures, the
ratio for the large coefficient of variation case is significantly small for any number
of workers.

Figure 16 (resp. Figure 17) represents the ratio of the total processing time in
Model B to that in Model N for Weibull-processing (resp. Pareto-processing) time
case. The horizontal axis represents the number of workers in log scale, and the
ratio in Fig. 16 (resp. Fig. 17) is calculated in five cases of α (resp. β). In both
figures, the ratio is constant with the increase in the number of workers, and the
ratio for a large α (resp. β) is greater than that for a small α (resp. β). That
is, backup-task scheduling increases the resource consumption when the variance
of the worker processing time becomes small. Remarkably, in Fig. 16, the ratio
is less than one for α < 1 and the total processing time for Model B is less than
that for Model N. On the other hand, in Fig. 17, the ratio is always greater than
one, and backup-task scheduling increases the total processing time compared with
that of normal scheduling. This implies that backup-task scheduling can reduce the
resource consumption when the worker processing time follows Weibull distribution
with α < 1.
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Figure 15. The ratio of the mean response time in Model B to
that in Model N in Pareto distribution case.
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Figure 16. The ratio of the total processing time in Model B to
that in Model N in Weibull distribution case.

In order to conclude this section, note first that backup-task scheduling is not
effective for a small M because the mean worker-processing time for Model B is
b/M , which is greater than that for Model N b/2M . Note also that the issue of
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Figure 17. The ratio of the total processing time in Model B to
that in Model N in Pareto distribution case.

stragglers rarely occurs for small M . When M is extremely large, the mean worker-
processing time for Model B is still greater than that for Model N. However, the
difference between them is small, and the issue of stragglers is likely to occur when
the variation of the worker-processing time is large.

From the numerical results, we can claim that backup-task scheduling is sig-
nificantly efficient for improving the performance when the variation of the worker
processing time is large. Moreover, the effect of backup tasks depends on the worker
processing time distribution, although the coefficient of variation is the same. Espe-
cially, for many workers case, the effect of backup-task scheduling on the maximum
throughput and mean response time for Weibull distribution is very different from
that for Pareto distribution. Therefore, we should pay attention to the distribution
as well as the first and second order statistics of worker processing time when we
consider the efficiency of backup-task scheduling.

5. Conclusion. In this paper, we considered the efficiency of backup-task schedul-
ing in a large-scale parallel-distributed processing. We modeled the task-scheduling
server as a single-server queue with many workers, deriving the maximum through-
put, mean response time, and total processing time. From the numerical results, we
can claim that backup-task scheduling is significantly efficient for improving perfor-
mance in case of large variance of the worker processing time. Note that the effect
of backup-task scheduling depends on the distribution of the worker processing time
even when the means and variances of the distributions are the same.
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