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Chapter 1 

General introduction 

1.1 Palmae 

PALMAE – The palm family has about 184 genera and 2400 species (Dransfield et 

al. 2008; Pei et al. 1991), and most species of this family grow in tropical and 

subtropical area, especially in tropical Asian and America. Some species also distribute 

in Africa. In China, there are 28 genus and more than 100 species, including common 

cultivated species. Palm trees are high-value and increasing common components of 

landscapes wherever they can be grown. Large, older specimens are in great demand 

and command a premium price. They are usually dug and removed from existing 

landscape sites or from a commercial nursery field, transported, and replanted at another 

site, creating an instant mature landscape. 

In the monocotyledons, which are usually herbaceous and without secondary 

thickening, the stem structure normally differs from that of dicotyledons. A few 

monocotyledons are trees, like PALMAE (palms) some of which may rise to 45m. In 

palms, secondary thickening may occur though in some of them no secondary tissue is 

formed, increase in the diameter of the trunk being brought about by cell enlargement. 

In others, although there is no cambial region, cell division and cell enlargement occur 

in the ground tissue, while the fibers forming sheaths around the vascular bundles also 

increase in the size (Tomlinson 1990). Thickening of the trunk may also be due, in part, 

to increase in the size of existing intercellular spaces and the formation of new spaces. 

The ground tissue may become very hard. These unusual ways of increasing the size of 

the trunk are remarkable, and of all dendroid plants having non-typical structure, the 

palms are the most used as timber. They serve for constructional work, as whole trunks 

in house-building and piling, although the denser, outer part of the trunk may be cleft 
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into pieces suitable for flooring and beams. The vascular strands are often a different 

colour from the ground tissue and on a longitudinal surface have the appearance of 

quills, hence the name, porcupine wood, by which palm wood is sometimes known. It is 

because of this appearance and also because the wood takes a good finish, that it is also 

used at times for walking-sticks and umbrella handles, and for marquetry work. 

1.1.1 Trachycarpus fortunei – Important palm in Asia 

Trachycarpus fortunei is classified as subfamily of CORYPHOIDEAE Griff., tribe 

of CORYPHEAE Mart., sub tribe of THRINACINAE Becc., and its genus is 

Trachycarpus H. Wendl. (Pei et al. 1991). 

棕-Zong is repeatedly mentioned in the 山海經1
-Shan hai jing. 郭璞-Guo pu 

described it as a tree growing to a height of 30 feet; it is branchless. The leaves are at 

the end of a common stalk and form a circle [the author means to describe a fan-shaped 

palm-leaf]. The bark of the trunk forms joints and is useful for making ropes [the author 

speaks of the sheaths of the bases of the leaves, which cover the trunk]. It is also called 

栟櫚-Bing lv. 

The 說文2
-Shuo wen likewise identified the 棕-Zong with the 栟櫚-Bing lv. The 

tree here spoken of is a palm, the Trachycarpus fortunei (windmill Palm), which is very 

common in Middle and Southern China. The coir furnished by it is largely 

manufactured into cloaks and hats. 

T. fortunei is closely allied to the Japanese T. excelsa. Perhaps it is the same 

(Bretschneider 1882). T. excelsa (大崖棕) is originally growing in Italy and France 

according to Zhong (2004). T. fortunei is domestic species in China and it mainly 

                                                             
1 山海經 Shan hai jing – a Chinese classic text that is at least 2,200 years old. It is largely a fabled 

geographical and cultural account of pre-Qin China as well as a collection of mythology. The book is 

about 31,000 words long, and is divided into eighteen sections. It describes over 550 mountains 

and 300 channels. (From WIKIPEDIA – Shan hai jing) 
2 說文 Shuo wen (Shuo wen jie zi)– an early 2nd century CE Chinese dictionary from the Han 

Dynasty. It was the first to analyze the structure of the characters and to give the rationale behind 

them (sometimes also the etymology of the words represented by them), as well as the first to use 

the principle of organization by sections with shared components, called radicals (bùshǒu 部首, lit. 

"section headers"). (From WIKIPEDIA – Shuo wen jie zi) 
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distributes at south of China, which is humid temperate climate. This species also 

distributes in Japan. According to Satake et al. (1989), there is only T. fortunei growing 

in Japan and they do not mention T. excelsa. So the species widely distributing in China 

and Japan is same and it is T. fortunei, which is also called as windmill palm. 

This windmill palm is very tolerant to wind and salt. It spread from Fujian 

Province in east of China, to west China like Sichuan and Yunnan Province, and its 

distribution almost arrive north of Guangxi and Guangdong Province. The north line of 

windmill Palm is Shanxi, Gansu Province. It flourishes in Sichuan, Yunnan, Guizhou, 

Hunan, and Hubei Province (Zheng 2004) (Fig. 1.1). 

 

Figure 1.1 The distribution of Trachycarpus fortunei in China. T. fortunei is a widely distributing 

species of PALMEA in China. It can spread from Yunnan province to Shaanxi province. 

The Chinese Pharmacopeia (中藥大圖典 – Zhong Yao Da Tu Dian 1977) lists a 

number of medicinal uses for various parts of the windmill palm, but under the name T. 

wagnerianus. Other references, however, correctly identify the widely cultivated and 

utilized species as T. fortunei. It appears that virtually every part of this palm has been 

used for one purpose or another by the Chinese and other peoples of the Orient (Essig & 

Dong1987). 
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Palms are economically important because they include major plantation crops, 

like oil-palm, coconut, and date-palm, but also numerous species which have minor 

economic importance are sources of cane, oil, wax, starch, fiber, sugar, and alcohol, and 

are of tremendous importance, without entering into anything, but local commerce, as 

sources of food, building, and weaving material, thatch, fiber, wax, oil, sugar, salt, 

alcoholic beverages, masticatories, and stimulants. They are symbolic of several 

cultures and have religious significance in many communities.  

They have considerable aesthetic value, are used in magic and folk-medicine, and 

are an essential ecological associate of many primitive tribes. They have become 

increasingly important in commercial horticulture because of their elegant and 

predictable shapes. There is an extensive semi-popular literature dealing with them and 

a society devoted to their cultivation and study. 

Fiber from T. fortunei has been of major importance in China and is mentioned in a 

number of historical accounts. Wilson (1913) mentioned that leaf-base fiber of T. 

fortunei was baled and exported down the Yangtze River from Sichuan Province “in 

quantity.” He and others imply that the quality and for making ropes, mats, mattresses, 

and brushes. Figure 1.2 and 1.3 shows the products made by fibers from T. fortunei. It 

seems people succeed the traditional technique to use these fiber materials. 
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Figure 1.2 Display of a traditional raincoat蓑衣-Suoyi, made of palm leave sheath fibers. (Photo by 

author at the Jiangxinzhou Folk Museum, Nanjing) 

 

Figure 1.3 Palm-mattress for traditional style bed in in a palm-mattress shop, Yanzhou city, China. 

In Taiwan, as well as in the mainland, rough raincoats were made of it. These were 

used in Taiwan as recently as 30 years ago and still are in some remote areas of 

mainland China. Grisard & Vanden-Berghe (1889) and Beccari (1905) reported similar 

uses. Segments of the fibrous leaf blade have been used to plait fans, hats, chairs, and 

sofas and to thatch roofs (Essig & Dong 1987).  

From Takashima Island – 鷹島 excavated site in Japan, researchers found palm 

rope of T. fortunei in sunken ship of the Yuan dynasty (end of 13 century), which keep 

its original shape after hundreds of years in ocean. When excavated the archaeological 

site of Zhenghe treasure shipping (鄭和寶船  – Zhenghe Baochuan) in China, 

researchers found big palm rope of T. fortunei from the Ming dynasty. By checking 

ancient text, like 本草綱目3
 – Bencao gangmu, it showed that ancient people thought 

the palm fiber was a quite good material for making rope and it can be used for 

hundreds of years without decay. The question is why palm fiber can stay for so long 

period?  

                                                             
3 本草綱目(Bencao gangmu) – a dictionary of Chinese herbs, written by Li Shi Zhen (1518 - 1593). 

It consists of 52 volumes, with more than 1.9 million characters and more than one thousand and 

one hundred pictures. The book lists 1,892 medical material of herbs, animals and mineral with 

11,096 formulae being used in the past. The book has been translated into more than 60 languages. 

(Sited from: http://alternativehealing.org , which is translated and explained by Joe Hing kwok Chu). 

http://alternativehealing.org/
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1.1.2 Fibrovascular bundles in leaf sheath 

Palm leaf consists of three distinct parts, the rachis bearing the leaflets, a long or 

short petiole, and the basal leaf-sheath. The leaf at its insertion always completely 

encircles the stem, but above this the sheath may be either open or closed. When open it 

is gradually confluent with the petiole and in large fan-palms, e.g. Corypha and Sabal, 

and members of the Borassoid group, it often splits in a median vertical plane 

apparently owing to expansion of the stem. The leaf may be abscissed cleanly to leave a 

smooth leaf-scar and trunk, as in those Arecoid palm with distinct crown-shafts. 

According to Tomlinson (1961) there is an incipient abscission zone in some palms. 

Otherwise the leaf is not abscissed but wither gradually to leave an irregular stump, the 

surface of the stem then being rough as in Copernicia, Elaeis, and Phoenix. Where the 

leaf is not abscissed the persistent leaf-base may remain woody as in the Borassoid 

palms, but often its soft ground tissues decay to leave a reticulate mass of fibrous and 

vascular bundles as in Raphia, and especially in Trachycarpus. Rarely the leaf-base 

shreds to leave sharp spines as in Zombia. In scandent genera the tubular sheaths are 

very long, persistent, and tightly enclose the stem. 

The leaf sheath of many palms shreds into its constituent fibrovascular bundles 

when old (Tomlinson 1961), or these ‘fibers’ may be isolated artificially. These ‘fibers’ 

are very coarse but are widely used for ropes, cables, coarse cloth, and matting, and 

particularly for sweeping brushes. The commonest sources for these fibers are species 

of the genera Arenga, Caryota, Raphia, Trachycarpus, etc. Figure 1.4 shows palms from 

these genera, which produce abundant of fibrovascular bundles from leaf sheath. Those 

of Arenga in Java and Sumatra were once the commonest roofing material. Less 

commonly the fibers from the upper part of the petiole and rachis are extracted, but they 

are weaker, although less coarse, than the basal fibers. 
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Figure 1.4 Palm species with abundant source of fibers from leaf sheath. 

1.2 Vascular development of palms 

Tomlinson (1990) set up a vascular template, which represents a quantitative plot a 

major bundle to each of the developing leaf primordial in the crown of Rhapis, shown in 

Figure 1.5. The diagram is an abstraction in that the leaves are represented in a single 

plane, rather than the 2/5 phyllotactic spiral of the actual crown. Furthermore, the 

bundles themselves are represented in a single plane, rather than the shallow helix they 

describe within the developing crown. The helical configuration is represented by the 

transverse projection of representative bundles in Figure 1.6. 
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Figure 1.5 Rhapis excelsa. Diagrammatic radial longitudinal section of bundle distribution in the 

crown of the aerial vegetative axis. All dorsal sides of leaf insertions are rotated into a single radial 

plane so that major leaf traces can be compared. The helical path of the bundles is also not 

represented. Major traces are shown to leaves P1, P3, …. and P14. Solid lines represent plots of 

major bundles; dotted lines are plots of a minor bundle (in central cylinder) and a cortical bundle (in 

cortex). The dashed line represents the topographic boundary between cortex and central cylinder. 

Inset shows the approximate limits of the meristematic cap (Tomlinson 1990). 

Figure 1.5 itself contains all the information necessary to understand the 

developmental process for the vascular system of a palm. It represents only very few 

bundles, but since constant principles determine bundle differentiation the bundle 

connection at each successive leaf position can represent development, if extrapolated 

as a dynamic process. The fundamental structural principle of branching of the axial 

system that gives rise to a leaf trace and a continuing axial bundle (a descriptive 

convention) can now be translated into a developmental statement if the vascular 

configuration of bundles supplying successively older leaves is interpreted dynamically. 
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Figure 1.6 Rhapis excelsa. Path of a single vascular bundle projected onto a transverse plane, i.e. a 

section through the crown of the vegetative aerial axis. The bundle shown is a major trace to leaf P3 

(inset detail). Numbers along the spiral are distances below the apex in millimetres. Leaves 2-5 are 

cut above their encircling attachment (Tomlinson 1990). 

The system has been presented thus far in a simplified version in which principles 

of development are illustrated by single bundles. This is appropriate because the whole 

vascular system can thus be seen as the continuous repetition of a basic process, 

expressed by each vascular bundle. The plots of bundle increase in successive leaves 

approximately a sigmoid curve, so that the number of bundles rises from one in the 

youngest primordium, to over 1000 in the mature leaf, over about 15 plastochrones. The 
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majority of these bundles are cortical bundles since they differentiate outside the 

meristematic cap. About 100 bundles link within the central cylinder. Total bundle 

number and stem diameter are clearly correlated with each other, and these in turn to 

leaf number, leaf size, and bundle number per leaf. 

Then, after accepting all the conventions used in the representation of the bundle 

course in the crown, Tomlinson (1990) thought the growth model of palm tree may be 

depicted in the totally schematic diagram of Figure 1.7. Three growth centres are 

needed to provide the growth model: the leaf primordium (X), the meristematic cap (Y), 

and an existing leaf trace (Z). Vascular differentiation can be envisaged as the 

development of ‘lines of force’ like a magnetic field. In the axial (central) vascular 

system, linkage occurs initially between the leaf trace (Z), in the region of its departure 

into the leaf base, and the meristematic cap (Y). This provides the uncommitted axial 

bundle whose linkage is only completed via the leaf base (X) at a later stage. Thus, in 

Figure 1.7 the linkage step Z-Y occurs in the trace at position leaf n, the later linkage 

Y-Z when the leaf is in position leaf n+k. The value of k varies according to the age of 

the leaf at the time of full connection. 

Why this procedure is made seemingly so complex when a continuous acropetal 

differentiation of bundles would seem to be a simpler mechanism? The cortical bundles 

supply the answer; they differentiate basipetally under the influence of pole A, but since 

they are too remote from pole Z. Because at this stage tissues are reaching maturation, 

the A-B connection is a weak one. The apparent basipetal (basally directed) 

differentiation in palms, as in most monocotyledons, must relate to the intercalary 

meristem and basipetal and maturation of the leaf. The right-hand diagram in Figure 1.7 

shows the sequence of events for bundles those are associated with seven successive 

leaves, using the plotting conventions of Figure 1.5. 
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Figure 1.7 The principle of vascular development in monocotyledonous stems (after Zimmermann and 

Tomlinson, 1971). Solid lines represent bundles of the inner system (central cylinder), open lines 

represent bundles of the outer system (cortex) (from Zimmermann and Tomlinson, 1971). An axial bundle 

is generated at Z as a branch from an outgoing leaf trace and continues to grow distally in continuity with 

the meristematic cap Y (dashed line). Axial bundles generated in this way them maintain the cap. The 

initially distally uncommitted axial bundle eventually makes contact with a leaf primordium at X to 

complete the cycle of development. The region X, Y, and Z may be thought of morphogenetic poles 

between which vascular contacts are made in the order Z – Y, Y – X. A and B represent poles in the leaf 

base (A) and the cortical region (B) that also serve as morphogenetic poles in linking A and B. A is 

topographically located below the meristematic cap and cannot make a distal (A – Y) linkage (Tomlinson 

1990). 

1.3 Cell wall structure of woody cell 

As the growing cell approaches its full size the deposition of the much stiffer 

secondary wall takes place (Fig. 1.8). This wall may be thin or extremely thick, and it is 

deposited on the primary wall in layers. Three main layers are usually recognized, a thin 

outer wall, which is the oldest, and of course, comes next to the primary wall; a thicker 

middle layer and a thin inner layer which forms the wall surface bounding the cell 

cavity or, in the living cell, the protoplasm. These several layers are now conveniently 

designated P, the primary wall, and S1, S2, and S3, respectively the outer, middle and 
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inner layers of the secondary wall. Sometimes yet another layer is deposited, not 

regularly over the cell, but in the form of thin, spiral bands, which give the spiral 

thickening found in some cells. Such spiral thickening and sometimes, indeed, the 

whole of S3, has been termed the tertiary wall, but there is no justification for this usage 

and the term should be avoided. There is every reason for regarding the S3 as the 

innermost and youngest layer of the secondary wall.  

 

Figure 1.8 Diagram of the layers of the cell wall of a woody cell. The middle lamella is shown in 

black, followed by the primary wall, the outer layer (S1) of the secondary wall, the middle layer (S2) 

of the secondary wall and the inner layer (S3) of the secondary wall, which surrounds the lumen of 

the cell. m.l., middle lamella; P., primary wall; S1, S2, S3, successive layers of the secondary wall; l., 

lumen of cell (Jane 1970). 

The middle lamella is at first composed largely of pectic, and the primary wall 

consists mainly of cellulose and pectic. The secondary wall, at its inception, consists of 

cellulose, or of cellulose and related compounds. Thus, to begin with, the cell wall is not 

woody or lignified. Lignin, a complex substance whose chemical composition has yet to 

be fully determined, is deposited later, among the substances which formed the original 

wall. The middle lamella and primary wall become strongly lignified, and the primary 

wall often becomes indurated with mineral substances as well. Lignin is also deposited 

in the secondary wall, but here, even in the fully differentiated cell, it is relatively less 

dense than in the primary wall and the middle lamella. 

The secondary wall is not deposited evenly over the whole of the primary wall, for 
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it is usually interrupted over the primary pit-fields, or elsewhere over the primary wall, 

and consequently pit-like structures are built up in the wall in these regions. These pits 

may remain of equal size from their base or floor, at the middle lamella or primary wall, 

to their mouth or aperture at the inner surface of the secondary wall. 

It was by means of the technique of polarization microscopy that an understanding 

of the layering or stratification of the wood cell wall was first obtained (Jane 1970; 

Bailey and Vestal 1937; Clarke 1938; Bailey and Berkeley 1942; Wardrop and Preston 

1947&1951), as shown in Figure 1.9. 

 

Figure 1.9 Diagram of part of a fiber or tracheid to show the usual orientation of the microfibrils in 

the various layers of the wall. There are no microfibrils in the middle lamella. In P they are sparse, 

and their orientation is rather irregular, but generally approximating to the transverse plane, except 

that some may be nearly axial (Jane 1970). 

In the primary wall the pitch of the helices of the micelles is low, i.e. they lie nearly 

transversely. This is also the case in S1, and often in S3, but in S2 the micelles are 

arranged in much steeper helices, more nearly parallel to the long axis of the cell. The 

orientation of the micelles in any one layer, so far as this can be deduced from the 

extinction directions determined by the polarizing microscope, is however, only an 

average one. Even within a single layer of the wall, the micelles do not all have 

precisely the same orientation, for there is considerable angular dispersion of their axes 

about the mean, as given by the extinction positions. Preston (1949) found this angular 

dispersion to be especially high in S1. When a cell wall is viewed at right-angles to its 
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surface, as seen for instance, in face view in a longitudinal section, so that the various 

layers are superimposed in the light path, the observed extinction directions will 

represent averages for all the layers. They usually approximate closely to the directions 

given by the S2 alone (Preston 1965). 

Development of the electron microscope has provided another method for 

investigating the structure of cell walls and since this instrument has become more 

widely available it has been used extensively for this purpose and has confirmed and 

extended the data obtained by the use of the older, more indirect techniques which have 

just been considered. 

Parameswaran & Liese (1976) studied the fine structure of thick-walled bamboo 

fibers and demonstrated the polylamellate nature of fiber’s cell wall (Fig. 1.10). Its 

composition is such that narrow lamellae regularly alternate with broader ones, whereby 

the width of the broad lamellae appears to vary. The microfibrillar orientation in these 

two types of lamellae has a crisscross arrangement, the narrow lamellae showing a 

fibrillar angle of 80-90° to the cell axis, while in the broad ones the fibrils are almost 

parallel to this axis. 

 

Figure 1.10 Model of the polylamellate structure of a thick – walled bamboo fiber. Figures on the 

left indicate fibril angle, letters on the right terminology of wall lamellae (Parameswaran & Liese 

1976). 
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As regards the terminology of the different layers or lamellae within the 

thick-walled bamboo fiber, Tono and Ono (1962) designated the narrow layers as S1., 

S2., S3., S4., and the broad regions as S1, S2, S3, S4, whereby T is the last layer bordering 

the lumen. Preston (1974) numbers the layers consecutively beginning from the middle 

lamella: S1, S2, S3, S4 and S5 in a fiber wall with three briefringent layers. This system 

appears logical when compared with the secondary wall layer terminology applied to a 

wood tracheid with its S1, S2 and T or S3. However, in view of the constantly occurring 

change in the fibrillar orientation in the diverse alternating lamellae as well as the 

absence of a tertiary wall layer, the following nomenclature is proposed. Beginning 

from the outermost lamella at the middle lamella: primary wall (P), the secondary wall 

transition lamella S0 (S zero, not always present), S1-l, S2-t, S3-l, S4-t, S5-l, S6-t etc. The 

affixes l and t stand for the almost longitudinal and transverse orientation of the 

cellulose fibrils in the respective lamellae. 

Thus, the alternating lamellae, which are mostly broad and narrow with 

longitudinal and transverse microfibrillar orientation, can be described and designated 

simultaneously with particular reference to the polylamellate bamboo fiber wall without 

confusing the issue with the wood tracheid wall terminology. This concept is embodied 

in a fiber wall model in Fig. 1.10. 

In palm ‘wood’, the amount of secondary wall deposited in fibers is also variable. 

Although certain palm species, such as Sabal palmetto, tend to have cells with 

extremely thick secondary walls in a given organ (Fig. 1.11), the age of the fibers also 

seems to determine the amount of secondary wall deposited (Parthasarathy & Klotz 

1976). The secondary walls in old fibers usually display a characteristic multilayered 

structure under both normal and polarized light. Secondary walls of vascular fibers are 

usually lignified; but non – vascular fibers in leaves are normally unlignified 

(Tomlinson 1961). 
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Figure 1.11 Sabal palmetto. Transverse section of the metaphloem of a presumably nonfunctioning 

vascular bundle in the basal part of a stem. The tylosoids have developed very thick secondary walls 

that are characteristically multilayered (T). Arrow indicates a tylosoid that has developed only a thin 

secondary wall. F: vascular fiber, SE: sieve element. Scale bar is 0.02mm (Parthasarathy and Klotz 

1976). 

1.4 Personal motivation and objectives 

PALMEA is an important family of monocotyledon and palm plays an essential 

role in daily life of millions of people in tropical and subtropical regions. The properties 

and commercial utilization of palms are influenced by its structural characters. Until 

now researchers put most of their attention on the structural biology of commercial 

palm and there are many publications on oil palm (Elaeis guineensis) and coconut palm 

(Cocos nucifera). Tomlinson et al. (1961, 1990, 2011) did great research on the stem 

anatomy of palms. However, the morphological, chemical, mechanical properties of 

fibrovascular bundles from palms, specially the palms widely distribute over the world, 

has not been studied well. For example, Trachycarpus fortunei grows in large parts of 

world where few other palms do; it could serve there as a local source of fiber, wax, etc. 

From ancient time people already use its leaf sheath fiber for making rope and the rope 

shows nice decay resistance. In tropical area people use palm trunks for building 



Chapter 1 

17 
 

construction (Essig & Dong 1987). The fibrovascular bundles from windmill palm are 

durable for wet-dry cycling condition. However, there is less research to clarify the 

morphological structure of fibers and its functional implications. 

In the monocotyledons, which are usually herbaceous and without secondary 

thickening, the stem structure normally differs from that of dicotyledons. There is no 

clearly defined pith or cortex, but a parenchymatous ground tissue in which numerous 

vascular bundles are situated. In a transverse section these bundles may appear to be 

scattered throughout the stem, although they are more numerous in the more peripheral 

part. A few monocotyledons are trees, like PALMAE (palms), there are many dendroid 

species, some of which may rise to 45m. Bamboo is also monocots; fibers in bamboo 

showed multiple layering in the secondary wall. While for wood tracheid/fiber, usually 

there are only three layers, namely S1, S2 and S3, in the secondary wall. It is interesting 

for us to know the cell wall structure of palm fibers, in which less of research has been 

done until now. 

This thesis is organized as follows:  

In Chapter 1, the general introduction about palm family, important palm species, 

vascular bundles in palm stem and leaf, and cell wall structure of woody fibers. 

In Chapter 2, the materials and methods used in this research were described in 

detail. 

In Chapter 3, the morphological development of leaf sheath in windmill palm was 

first investigated. The fibrovascular bundles in each sheet of leaf sheath were well 

organized with proper directions. Along one leaf sheath, the contents of cellulose and 

hemicellulose decreased, while lignin increased from bottom to top of leaf sheath. 

In Chapter 4, fibers in leaf fibrovascular bundles from windmill palm showed 

two-layered secondary cell wall structure. Together with large MFA and high lignin 

content, this set of knowledge could help explain the high durability and stability of 

windmill palm fibers. 

In Chapter 5, it is confirmed that the two-layered structure of the secondary wall 

was specific character in palm leaf fibers, which different from other monocotyledons, 

such as bamboo and rattan, and wood. 
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In Chapter 6, different types of fibrovascular bundles in one leaf sheath of 

windmill palm were studied. The mechanical properties and MFA varied among 

different types, which might be related to the biomechanical movements of leaf sheath. 

In Chapter 7, the study on anatomical, chemical and mechanical characteristics of 

fibrovascular bundles extended to different palm genus. The result indicated the large 

MFAs of palm fibers in combination with high lignin contents, result in limited elastic 

deformation, long-term plastic deformation, and relatively low tensile strength of palm 

fibrovascular bundles. 
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Chapter 2 

Experimentals 

2.1 Materials and sample preparations 

2.1.1 Materials 

2.1.1.1 Various samples from windmill palm 

Figure 2.1 shows the samples from a typical windmill palm. Usually, the 

fibrovascular bundles from mature leaf sheath are used for various experiments, such as 

ultrastructural observation of cell wall in fibers, mechanical and chemical properties 

tests, X-ray diffraction analysis, etc. The leaf stalk and stem are used for general 

anatomy of fibrovascular bundles. Three windmill palm trees (Trachycarpus fortunei) 

were collected in Nanjing, China. One of which was from the suburbs of Nanjing and 

the other two were from the botanical experimental field in Nanjing Forestry University. 

The trunks of palms were about a half meter tall. The leaf sheath of these palms were 

peeled off and each leaf sheath collected was numbered from core to exterior. 

 

Figure 2.1 Three parts used for various experiments from windmill palm. 
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It is noted that each leaf sheath is composed of outer, middle, and inner layers, and, 

each layer contains fibrovascular bundles of different diameters, orientations, and 

locations. The fibrovascular bundles with the largest diameter are observed in the 

middle layer, those with a middle-sized diameter are observed in the outer layer, and 

those with the smallest diameter are observed in the inner layer (Fig. 2.2). Tomlinson 

(1964) illustrated the arrangement of these fibrovascular bundles/strands in a small 

sample of leaf sheath in coconut palm as shown in Figure 2.3. It was described as the 

ventral tissue of the coconut leaf base is 3-stranded, not 2-stranded as a manmade fabric. 

Therefore, in the palm tissue distinction has to be made not only between ‘warp’ and 

‘weft’ but also between a third system, ‘filling’, although it is appreciated that the last 

two terms are synonymous in the textile trade. Tomlinson mentioned that the other 

differences between the palm and an artificial fabric are reside on the absence of 

interweaving between warp and weft, and the failure of warp and weft to run 

perpendicularly to each other (Fig. 2.3). 

 

Figure 2.2 Model of fibrovascular bundles’ variance in one sheet of leaf sheath. The layers of 

fibrovascular bundles are defined by difference of diameter, orientation and location of fibrovascular 

bundles (Zhai et al. 2012). 
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Figure 2.3 Diagrammatic representation in perspective of strand systems in a small part of leaf 

sheath from Cocos nucifera (Tomlinson 1964). 

2.1.1.2 Fibrovascular bundles from leaf sheath among different palms 

In general, after the soft ground tissues of leaf-sheath are breakdown, a reticulate 

mass of fibrovascular bundles are left covering around the whole palm stem (Tomlinson 

1961, 1990). The remained fibrovascular bundles are easily hand-collected from palm 

stem surface in different place in China (Fig. 2.4).  

 

Figure 2.4 Distribution of sampling place in China. 

Seventeen species belonging to 14 palm genera and one more species from Arenga 

genus, which produced fibrovascular bundles from leaf-sheath, were selected for the 

study: Butia capitata (Mart.) Becc. (bca), Cocos nucifera L. (cnu), Syagrus 
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romanzoffiana (Cham.) Glassman. (sro), Elaeis guineensis Jacq. (egu), Medemia nobilis 

(Hildebrandt & H. Wendl.) Gall. (mno), Phoenix dactylifera L. (pda), Phoenix 

roebelenii O’ Brien (pro), Arenga engleri Becc. (aen), Arenga sp. (asp), Caryota 

maxima Blume ex Mart. (cma), Caryota monostachya Becc. (cmo), Caryota urens L. 

(cur), Corypha umbraculifera L. (cum), Sabal umbraculifera Mart. (sum), Washingtonia 

filifera (Linden ex André) H. Wendl. ex de Bary. (wfi), Livistona chinensis (Jacq.) R.Br. 

ex Mart. (lch), Trachycarpus fortunei (Hook.) H. Wendl. (tfo), and Rhapis excelsa 

(Thunb.) Herry (rex) (Fig. 2.5). 

The fibrovascular bundles of these species were collected from the surfaces of 

palm trees at Beijing Botanical Garden, Kunming Botanical Garden, Shenzhen 

Botanical Garden, Nanjing Botanical Garden, and Taipei Botanical Garden in China. 

The fibrovascular bundles were rinsed in running tap water to remove dust from their 

surface. These samples were air-dried prior to use in further experiments. Figure 2.6 

shows parts of fibrovascular bundles from different palms; the color differences might 

have relation with extractives and lignin contents. 

 

Figure 2.5 Parts of fibrovascular bundles from different palms. The magnifications are inconstant. 
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Figure 2.4 Phylogenetic classification of palms used in this research, redrawn from Dransfield et al. (2008) and Tomlinson et al. (2011).   
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2.1.2 Sample preparations for microscopy 

The anatomical observations were carried out on 1) stem, 2) leaf stalk, 3) leaf 

sheath, and 4) fibrovascular bundles from different species. The young leaf stalks were 

soft; they need to be embedded by using paraffin method. The leaf sheathes and stem 

parts (also knot parts) have hard fibrovascular bundles inside, to get nice tangential 

section of leaf sheath and transverse section of stem part, they were embedded by using 

celloidin method. One the other hand, the single fibrovascular bundles of different 

species were tiny, so that they were embedded by methacrylate or Epon812 resin and 

used for making semi-thin and ultra-thin sections. Table 2.1 lists the detail information 

of embedding methods used for different samples (Glauert 1986). 

Table 2.1 Embedding methods used for different samples. 

Samples 
Embedding methods 

N.A. 
Paraffin Celloidin Epoxy Methacrylate 

Leaf stalk (small blocks)      

Immature ○     

Mature     ○ 

Leaf sheath      

Immature (small pieces)  ○    

Mature (fibrovascular 

bundles) 
  ○ ○  

Stem (small blocks)  ○ ○  ○ 

 Paraffin embedding 

Young leaf stalks were fixed by F.A.A solution (Formalin- Acetic acid- Alcohol) 

following graded ethanol dehydration, and embedded in paraffin. Serial sections of the 

embedded samples were obtained by a rotary microtome (Leica RM2245), while the 

sections of mature leaf stalks were obtained by a Leitz Wetzlar sliding microtome. Both 

types of sections were double-stained by safranin and fast green after removing paraffin 

by xylene. The sections were mounted by balsam neutral gum on glass slides. 



Chapter 2 

27 
 

 Celloidin embedding 

For the young palm trunk, which is soft, and the leaf sheaths, which are quite thin, 

it was not easy to make thin sections from them. Samples from leaf sheaths and knot 

parts were embedded in celloidin for making sections. The samples were cut into 5mm 

blocks and were treated as follows: Firstly, all specimens were dehydrated by graded 

ethanol series; secondly, tissues were transferred into ether-absolute ethyl alcohol (1:1) 

overnight; thirdly, all specimens were passed through a 2, 4, 6, 8 and 10 % celloidin 

series at intervals of 2 days, using water-bath at 60°C; finally, the celloidin embedded 

specimens were mounted on hardwood blocks with 10% celloidin, then harden in 

chloroform for 12 hours. Specimens can be stored in chloroform until needed. Sections 

(20-30 μm in thickness) were obtained by a sliding microtome. The mixture of ether - 

absolute ethyl alcohol (1:1) was used for removing the celloidin in sections. The 

sections were mounted by balsam neutral gum on glass slides. 

 Epon812 resin embedding (Semithin and utralthin sectioning) 

5 to 10 palm fibrovascular bundles from leaf sheath were tightly binded together 

by cotton thread (Fig. 2.6). 

 

Figure 2.6 Cotton thread binded fibrovascular bundles for embedding. 
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Small tissue parts of palm trunk’s knot also were taken. All specimens were 

dehydrated by graded ethanol series, followed by absolute ethyl alcohol with propylene 

oxide (1:1), and propylene oxide only. Then, the specimens were embedded with Epoxy 

resin. From these resin-embedded specimens, semi-thin sections (1-2 μm in thickness) 

were cut using a semi-thin microtome (Leica, RM2145, Germany). Some of the 

transverse sections were stained with safranin in order to observe the lignified tissue 

more clearly. The sections were observed under transmitted- and polarized-light 

microscopes (Ortoplan, Leitz Wetzlar, Germany). After confirming the position of the 

fiber cap in each fibrovascular bundle under the light microscope, ultra-thin transverse 

sections (50-80 nm) were prepared by an ultra-microtome (Ultra-cut E. Reichert-Jung, 

Capovani Brothers Inc. USA) equipped with a diamond knife. The ultra-thin sections 

were then mounted on the copper grids preliminary supported by Formvar film and 

reinforced with carbon. Ultra-thin sections were stained with uranyl acetate and lead 

citrate. 

 Methacrylate resin embedding and de-embedding (Utralthin sectioning) 

Fibrovascular bundles were tightly bound together by a cotton thread after being 

washed, and cut into 5mm long pieces. Some of the fibrovascular bundles were 

pretreated with acidified sodium chlorite, following the Wise procedure, which was 

modified by Kerr and Goring (1975) for simultaneous lignin removal. After fixation 

with 1% osmium tetroxide followed by washing with distilled water, the specimens 

were dehydrated with a graded ethanol series and embedded in methacrylate resin 

(n-butyl methacrylate: methyl-methacrylate 8:2, benzoyl peroxide 1-2%). The hardness 

of embedding blocks increases with the proportion of methyl-methacrylate. 

Ultra-thin transverse sections (70 nm) were prepared by an ultra-microtome 

(Ultra-cut E. Reichert-Jung, Capovani Brothers Inc. USA) equipped with a diamond 

knife.; then mounted on the copper grids preliminary supported by Formvar film and 

reinforced with carbon. The sections were stained with uranyl acetate after the removal 

of methacrylate resin with acetone. 

Oblique ultra-thin sections, tilted to 8 to 10° to the fiber axis, were prepared, 

following a method similar to that used for preparing transverse sections with and 
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without Pt-Pd shadowing. 

2.2 Experiments 

2.2.1 Morphological observation 

2.2.1.1 Light microscopy 

Sections (10 – 20 μm) obtained from paraffin and celloidin samples were observed 

by a light microscope (Olympus BX51, Japan) equipped with a digital camera 

(Olympus DP73, Japan). 

Note: Above experiments appeared at Chapter 3 & 6. 

Sections (1 – 3 μm), cut from Epoxy and methacrylate resin, were observed under 

transmitted- and polarized-light microscopes (Ortoplan, Leitz Wetzlar, Germany). These 

microscopes equipped with a LCD Olympus video camera (model DP70) were used to 

resolve images. 

 

Figure 2.7 Illustration showing areas of SF and SV in a fibrovascular bundle from palm leaf sheath. 

   SF = transverse sectional area occupied by fibers in a fibrovascular bundle, 

   SV = transverse sectional area occupied by vessels and a phloem tissue in a fibrovascular bundle. 

The images were used for quantitative analysis by using image analysis software 

ImageJ in order to obtain such basic data on palm fibrovascular bundles as the amount 

of transverse sectional area occupied by fiber in a fibrovascular bundle (SF), transverse 

sectional area occupied by vessels and a phloem tissue in a fibrovascular bundle (SV) 
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(Fig. 2.7), number of single fiber in a fibrovascular bundle, single fiber wall thickness 

and diameter. 

Note: Above experiments partially appeared at Chapter 4, 5, 6 & 7. 

The dimensions of fibers including length, diameter, cell-wall thickness, and lumen 

diameter were also got by light microscopy. Thirty fibrovascular bundles from each 

palm species were macerated at 60°C for 24 h in a solution of acetic acid and hydrogen 

peroxide (1:1 ratio) (Franklin 1954). After maceration, all specimens were washed with 

distilled water for neutralization, and were shaken gently in the distilled water until 

individual fibers were separated from the fibrovascular bundles. The fibers were then 

stained with 1% safranin solution to observe the lignified tissue. The dimensions of 30 

fibers were measured, and average values with standard deviations were calculated for 

each palm species. An ANOVA was performed to test for significant differences (P < 

0.05) in fiber dimensions among palm species. 

Three derived values were also calculated using fiber dimensions: 

1. Slenderness ratio = Fiber length/Fiber diameter 

2. Flexibility coefficient = (Fiber lumen diameter/Fiber diameter) × 100% 

3. Runkel ratio = (Fiber cell-wall thickness/Fiber lumen diameter) × 2 

The fiber dimensions and derived values were compared with published data to 

assess the suitability of the palms for pulping and other utilizations. 

Note: Above experiments appeared at Chapter 7. 

2.2.1.2 Transmission electron microscopy 

All ultrathin sections were examined using a transmission electron microscope 

(TEM, 2000EX II, JEOL Co. Ltd, Tokyo, Japan) at an acceleration voltage of 100 kV. 

All images were recorded digitally by a MegaView G2 CCD camera, and used for the 

measurement of cell wall thickness with public domain software ImageJ (National 

Institutes of Health, USA). 

Note: Above experiments appeared at Chapter 4 & 5. 
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2.2.1.3 Scanning electron microscopy 

Fibrovascular bundles from windmill palm were split longitudinally with a sharp 

razor blade after being freeze dried. The split specimens were glued onto a specimen 

holder, and sputtered with Pt approximately 10 nm thick, using a JFC-1600 auto fine 

coater (JEOL Co. Ltd, Tokyo, Japan). The specimens were examined using a field 

emission scanning electron microscope (FE-SEM, JSM-6700F, JEOL Co. Ltd, Tokyo, 

Japan) at an acceleration voltage of 1.5 kV and working distance of 6-8 mm. 

Fibrovascular bundles from windmill palm after tensile strength test were also 

observed by SEM for the fracture surface. 

Note: Above experiments appeared at Chapter 4 & 6. 

2.2.2 MFA analysis 

2.2.2.1 X-ray diffraction analysis 

Typical fibrovascular bundles were taken from leaf sheath of different palms for 

X-ray diffraction analysis. The X-ray diffraction diagrams were obtained using a Bruker 

Hi-Star detector using CuKα radiation (= 1.5418 Å) produced by a rotating anode X-ray 

generator at tube voltage 45 kV and tube current 90 mA (MAC Science M18XHF). The 

distance between the specimen and the detector was 15 cm. The data were processed, 

merged, and scaled using the SAINT program (Bruker) (Watanabe et al. 2002). All 

measurements were performed in triplicate. The files were converted into 16-bit image 

files by FIT2D (European Synchrotron Radiation Facility, France). Using image 

analysis software ImageJ (v.1.46r), the MFA was determined based on azimuthal 

intensity distribution of 200 reflections of cellulose Iβ (Sugiyama et al. 1991). 

For fibrovascular bundles from windmill palm, the X-ray diffraction diagrams 

were obtained by using a vacuum camera mounted on a Rigaku RU-200BH rotating 

anode X-ray generator. The main experimental conditions were Cu Kα radiation 

(λ=1.54Å), tube voltage 50kV, tube current 100mA. X-ray diffraction patterns were 

recorded on Fuji Imaging Plates (BAS-IP SR 127). From the obtained X-ray diffraction 

pattern, using image analysis software ImageJ, the mean MFA of palm fibers was 
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determined based on azimuthal intensity distribution of cellulose 200 reflections. 

Secondary, equatorial profiles were obtained by radial integration of the diagram, where 

the Gaussian functions were fitted to crystalline peaks. The relative crystallinity index 

(CrI) was determined from the ratio of the separated peak area to the total area. 

Assuming a cylindrical spiral with an angle of θ, it can be calculated that (Preston 

1952, 1974): 

                

where θ is the Bragg angle for the 200 reflection, with a value 11.4°.   is the 

observed angle from X-ray diffraction diagrams, and α is the real MFA value. 

Note: Above experiments appeared at Chapter 4 & 6. 

2.2.2.2 Polarized light microscopic analysis 

To overcome the difficulty of cutting the fibers longitudinally, and to leave only a 

single wall, 900-nm semi-thin sections with an oblique angle of 5° were prepared. Five 

fibrovascular bundles were selected, from which 10 fibers in each bundle were observed 

using PLM. Apparent MFA does not correspond to real MFA when using oblique 

sections. The relationship between apparent MFA and real MFA is diagrammatically 

shown in Figure 2.8a. 

The microfibrils lay at the AB position on the longitudinal section. After tilting 

with a θ angle (∠CAE), the microfibrils of a cut section lay at the AD position, where 

AE is perpendicular to CE. Hence, the real MFA is ∠BAC (α), while apparent MFA is 

∠DAE (α′). It is also known that DE is equal to BC. Furthermore, in a right-angled 

triangle △AEC, AE = AC cosθ. Accordingly, the relationship between real MFA and 

apparent MFA can be presented as follows:  

tanα = cosθ tanα′ 

Apparent MFA is larger than real MFA. For instance, if the oblique angle was 

approximately 5°, the oblique error might be negligible, as the value of cosθ is very 

close to 1. To explain microfibrils orientation in detail, the definition of S- and Z-helix 

based on the degree of MFA (α) is shown in Figure 2.8b. If microfibrils orient in an 

S-helix, the degree of MFA will be over 90°. On the other hand, when microfibrils 
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orient in a Z-helix, MFA will be less than 90°. 

 

Figure 2.8 Illustration of the relationship between real MFA and the apparent MFA. --a: An 

orthogonal co-ordinate system (x, y, z) is set. The (x, y, z) axis was rotated by θ degree (∠CAE) 

around the y-axis to give the (x', y', z')-axes. The oblique section was located in the y'－z' plane. The 

oblique section is partially enlarged for displaying the microfibril localization. AB is the cellulose 

microfiber localization at the longitudinal section of a cell wall. The real MFA is ∠BAC = α to the 

cell axis. On the oblique section, the angle between AD and the cell axis is visible using polarized 

light microscopy, which is the apparent MFA (∠DAE = α’) that we sought to measure. --b: 

Definition of Microfibrils orientation (z-helix or s-helix) related with MFA (α). The double arrow 

lines indicate microfibrils. 

To determine the reliability of the MFA obtained from PLM, these results were 
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compared against the MFA of windmill palm fibers obtained by X-ray diffraction 

diagrams. 

Note: Above experiments appeared at Chapter 4. 

2.2.3 Chemical composition studies 

2.2.3.1 Qualitative analysis - FTIR spectroscopy 

Samples obtained by the delignification procedure above and untreated samples for 

examining the changes before and after chemical treatment were frozen-dried overnight 

and then used for analysis of ATR-FTIR. The palm fibrovascular bundle samples were 

pressed uniformly against the diamond surface using a spring-loaded anvil. The IR 

spectra (4000 - 400cm
-1

) were obtained on a Spectrum One system (Perkin Elmer, 

Universal ATR Sampling Accessory, USA) at a resolution of 4 cm
-1

. Five replicate 

spectra of samples with various reaction intervals were recorded. Good-quality ATR 

spectra were obtained based on the smoothness of the baseline and resolution, according 

to previous publication (Pandey & Pitman 2003, 2004; Pandey & Nagveni 2007). All 

spectra were baseline corrected, smoothened, and normalized for qualitative comparison 

among the samples. Peaks were assigned according to former researchers (Harrington et 

al. 1964; Pandey & Pitman 2003, 2004). The peak height for lignin associated bands 

was rationed against the height of C-H stretching absorption around 2920cm
-1

 to 

provide relative changes of lignin (Fig. 2.9). A similar method of measuring was used 

by Rodrigues et al. (1998) for determining lignin content of Eucalyptus globulus wood. 

For calculating relative content of lignin (RClignin), the following equation was 

used. 

RClignin = H1510 /H2920 

H2920 = A2920 – Ab – [(Aa – Ab)×(2920 – b)/(a – b)] 

H1510 = A1510 – Ac – [(Ad – Ac)×(c – 1510)/(c – d)] 

where Ai indicates the absorbance value of the wave i cm
-1

. a, b, c and d is wave 

number around 3000, 2650, 1550 and 1490. H2920 is the relative absorbance value 

around 2920 cm
-1

 of C-H stretching vibration and H1510 is the relative absorbance value 

around 1510 cm
-1

 of aromatic skeletal in lignin. 
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Figure 2.9 IR spectrum of windmill palm fibrovascular bundles as an example. The peak of 2920 

cm
-1

 indicates a prominent C-H stretching absorption and the peak of 1510 cm
-1

 for aromatic 

skeleton in lignin. 

Note: Above experiments appeared at Chapter 3 & 4. 

2.2.3.2 Quantitative analysis – Tappi standard for Klason lignin 

Individual fibrovascular bundles were separated from the leaf sheaths of the 

windmill palm. The fibrovascular bundles were extracted for 6 h in ethanol-benzene at a 

ratio of 1:2 (v/v) in a Soxhlet apparatus, according to the TAPPI standard T264 (TAPPI 

1997). A fibrovascular bundle includes not only fibers, but also vessels and phloem 

tissue. Additionally, according to our former report, the transverse sectional area 

occupied by fibers in a fibrovascular bundle is always over 50%. The content of the 

Klason lignin (acid-insoluble lignin) was determined using the TAPPI standard T-222 

(TAPPI 1998). De-waxed palm fibrovascular bundles were extracted by using Sulfuric 

acid (72% w/w) as a reagent. The residue was used to determine Klason lignin. To 

obtain an accurate result for Klason lignin content, it has been suggested that the ash 

content of acid-insoluble residue should be measured. Hence, the residues were 

transferred to a crucible, which was placed in a muffle furnace at 575 ± 25°C for 5 h to 
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obtain ash content data (Sluiter et al. 2011). 

Note: Above experiments appeared at Chapter 4 & 7. 

2.2.4 Mechanical property studies 

All fibrovascular bundles were air-dried to a moisture content ranging from 8% to 

10% by weight. After cutting the fibrovascular bundles into 20–25 mm lengths, the 

bundles were fixed on paper frames with 10-mm gauge length (Fig. 2.10) by 

medium-viscosity epoxy adhesives (Aron Alpha EX2020, Toagosei America, Inc., 

Japan), according to the preparation procedure mentioned in the ASTM D 3379-75 

standard (1978). The diameter of each fibrovascular bundle was measured using a 

digital optical microscope (Micro Square, DS-3USV, RAS Machine Tool Technologies, 

Inc., USA) at 10 randomly selected points. The transverse sectional area of each 

fibrovascular bundle was determined using the circle equation based on the mean value 

of measured diameter. 

      

Figure 2.10 Illustration of fibrovascular bundles (a) and its supporting paper frame used for tensile 

strength test (b). A fibrovascular bundle is fixed on the paper frame by an epoxy adhesive. The 

supporting paper will be pulled apart right after the paper is cut in its middle part indicated by dotted 

line. 
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Figure 2.11 Specimens under 60% relative humidity and 20°C condition. 

Prior to mechanical testing, specimens were conditioned at 60% relative humidity 

and 20°C for 1 month (Fig. 2.11). Following the ASTM D-882 standard, the mechanical 

properties of fibrovascular bundles were determined using a universal testing machine 

(Instron 4411) with a crosshead speed of 1 mm/min. Before testing, the middle part of 

the supporting paper was cut. Thirty fibrovascular bundles from each palm species were 

tested in order to perform statistical analyses. The data were assessed by ANOVA to 

test for significant differences (P < 0.05). 

Note: Above experiments appeared at Chapter 6 & 7. 
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Chapter 3 

General anatomy of leaf and stem in windmill palm 

3.1 Morphological development of leaf sheath 

The windmill palm stem are usually surrounded by leaf sheath (Tomlinson et al. 

1961; 1990). All leaf sheaths were peeled off from palm stems and each leaf sheath 

collected was sequentially numbered from core to exterior. The lower leaf sheaths of a 

palm tree were aged and with dark brown color as shown in Figure 3.1 a, while the 

upper and younger leaf sheath had gradually changed the color from dark brown to 

white vertically along the leaf sheath from top to bottom (Fig. 3.1 b). For younger leaf 

sheath, the bottom part showed living tissue and the top part sheet or assembly of 

mature fiber bundles only (Fig. 3.1 c). In between top and bottom, there was a transition 

area with light brown color. In this transition area, parenchyma cells already devitalized 

and still attached on vascular bundles loosely. 
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Figure 3.1 Leafs from windmill palm. a: Leaf No. 31 & 32, which show dark brown color over all 

sheath and detached fibers. b: Leaf No. 21 & 22, which show changing color from bottom to top part. 

c: Transition parts (a twig pointed area) between living and non-living tissues in leaf sheath of leaf 

No.18.  

Series of leaf sheaths were measured from outside to inside (or from upper to 

lower part) of the palm stem. The measured index included the circumference length (a), 

the height of living tissue (b) and height of leaf sheath (c), also the crossed angle of 

vascular bundles (Fig. 3.2). 

The height of leaf sheath had almost no change from top to bottom of the stem. 

From knot No.8 to No. 56, the highest leaf sheath was 40.3 cm, while the lowest one 

was 30.8cm with a mean height of 35.7 cm among 49 pieces of leaf sheaths. According 

to the measure, the circumference length of leaf sheath was the circumference length of 

palm stem. The uppermost leaf sheath, which could be measured, was no.5 with 3.6 cm 

in girth. While No.56 leaf sheath, which was the lowermost leaf sheath, was measured 

as 37.0 cm in girth. The living tissue area of leaf sheath was highest in the knot No.8. In 

this stage, a leaf sheath was all made of living tissue. The living tissue remained up to 

leaf sheath No.32. All leaf sheaths lower than No.32 turned to brown color, indicating 

that the tissue part was matured, leaving all vascular bundles separated from devitalized 

parenchyma tissues. 
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Figure 3.2 The diagram describes the growth tendency of one palm. a: The circumference length of 

leaf sheath (also means the circumference length of palm trunk); b: The height of living tissue in one 

leaf sheath; c: height of leaf sheath. 

When observe living tissue closer, vascular bundles with crossed structure was 

visualized as shown in Figure 3.3. The evidence was further confirmed by the 

observation of the longitudinal section parallel to a living tissue under a light 

microscope (Fig. 3.4). The results for the measurements of crossed angle and its relation 

with stem width are shown in Figure 3.5. The figure shows a consistent increase of the 

angle with the growing of a palm. By applying a linear regression analysis, a linear 

relationship between crossed angle of vascular bundles (y) and palm stem girth (x) was 

obtained. 
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Figure 3.3 Leaf sheath with crossed structure. Under the surface cell of leaf sheath, the crossed 

pattern of fiber bundles can be seen clearly. The knot height of palm is about 1cm. 

 

Figure 3.4 Well oriented fibrovascular bundles of leaf sheath observed under light microscope. 

Bar=2.0mm. 
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Figure 3.5 The diagram presents the relation between the crossed angle of fibrovascular bundles in 

leaf sheath and the trunk girth. These two variables have a linear relationship with R – squared value 

of 0.877, which indicates good linear reliability. (R – Squared value is the square of the correlation 

coefficient. Value close to 1 indicates excellent linear reliability.) 

It is hypothesized that a change of color in an immature leaf sheath from white to 

dark brown (as shown in Fig.3.3) indicated a change of metabolism in parenchyma 

tissues, which had happened in advance of parenchyma disintegration to make vascular 

bundles mature and to be separated. To test the change of chemical contents in immature 

leaf sheathes, the spectral analysis using ATR-FTIR was carried out in different parts of 

the leaf sheath during its development as shown in Figure 3.6. 

The Figure 3.6a shows a transitional region of leaf sheath during its development 

from an immature to a mature state. Six different areas vertically aligned along an 

immature leaf sheath were selected for the test. The areas of number 1 to 3 belongs to 

the white region, the area of number 4 to the transitional region and those of numbers 5 

and 6 to the dark colored region. The dark colored region in the upper left part of Figure 

3.6 (a) indicates that living parenchyma tissues are disintegrating, followed by 

development of mature leaf sheathes. Figure 3.6 (b) shows a spectrum that was recorded 



Chapter 3 

45 
 

for the bottom point of a tested leaf sheath (Fig. 3.6 a). At around 1730 cm
-1

 it is noted a 

peak for unconjugated C=O in hemicelluloses (1), 1510 cm
-1

 for aromatic skeletal in 

lignin (2) and 898 cm
-1

 for C-H deformation in celluloses (3). These typical peaks were 

chosen for identifying the existence of hemicelluloses, lignin and cellulose. 

By testing several leaf sheathes which contain the transitional region, a ratio 

between the typical peak height to the standard peak height was obtained for qualitative 

comparison among the specimens. It was found that the relative contents of cellulose 

and hemicelluloses decreased gradually, while lignin increased relatively to the decrease 

of these polysaccharides as fibers become matured and separated (Fig. 3.6 c). 

  

Figure 3.6 Leaf sheath specimen for FTIR test which shows gradual change of color from bottom to 

up and the change of chemical contents. 
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The FTIR spectrum of matured fibrovascular bundles from leaf sheath in T. 

fortunei is shown in Figure 3.7 and main characteristic bands of palm fibers are shown 

in Table 3.1. From Figure 3.7, it is noted that after delignification, intensities of 

absorption bands resulting from lignin at 1650, 1596, 1510, 1462, 1425, 1268 and 1244 

cm
-1

 decreased or disappeared. The band at 770 cm
-1

, which people thought calcium 

oxalate components have an absorption peak, also disappeared via delignification 

processing. 

For further comparison, band 2922 cm
-1

 was selected as the standard band. 

Because C-H stretching absorption around there and all woody plants have this band of 

approximate content. Around 1730 cm
-1

 can see peak for unconjugated C=O in 

hemicelluloses, 1510 cm
-1

 for aromatic skeletal in lignin and 898cm
-1

 for C-H 

deformation in cellulose. These typical peaks were chosen for identifying the presence 

of hemicelluloses, lignin and cellulose. The values used for getting relative intensities 

are ratios based on peak heights. 

 

Figure 3.7 FTIR spectra of T. fortunei fibrovascular bundles and delignified fibrovascular bundles. 
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Table 3.1 Main characteristic absorptions of palm fibrovascular bundles numbered in Fig. 3.8 

(Rodrigues et al. 1998; Pandey & Pitman 2003, 2004; Mohebby 2005). 

No. Functional groups Wave number (cm
-1

) 

1 hydrogen bonded stretching (O-H) 3400 

2 stretching in methyl and methylene groups 2922 

3 unconjugated C=O in xylans (hemicellulose) 1730 

4 absorbed O-H in lignin 1650 

5 conjugated C-O in lignin 1596 

6 aromatic skeletal in lignin 1510 

7 
C-H deformation in lignin and carbohydrates 

1462 

8 1425 

9 C-H deformation in cellulose and hemicellulose 1372 

10 C-H vibration in cellulose and C-O vibration in 

syringyl derivatives 
1330 

11 guaiacyl ring breathing, C-O stretch in lignin and for 

C-O linkage in guaiacyl aromatic methoxyl groups 
1268 

12 syringyl ring and C-O stretch in lignin and xylan 1244 

13 C-O-C vibration in cellulose and hemicellulose 1158 

14 aromatic skeletal and C-O strentch 1122 

15 C-O stretch in cellulose and hemicellulose 1048 

16 C-H deformation in cellulose 898 

17 calcium oxalate components have an absorption peak 

at this band 
770 
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3.2 Structure of stem, leaf stalk and leaf sheath in windmill palm 

3.2.1 Stem anatomy of windmill palm 

Figure 3.8a shows a cross sectional view of a palm stem. As described by 

Tomlinson (1990), vascular bundles next to cortex were smaller and numerous and 

those in inner part were larger and fewer; however, a zone occupied with small vascular 

bundles was observed in the middle of inner zone mostly with large vascular bundles. 

The fact is quite different from bamboo (Fig. 3.8b) which does not show such a 

distribution of smaller vascular bundles in inner part of the stem but distribute only at 

the peripheral zone (Liese, 1998). Furthermore, there are two distinct microscopic 

features can be observed in cross sectional view of the palm stem: one is an even 

distribution of many parenchyma cells filled with resin and the other the vascular 

bundles mostly surrounded by parenchyma cells that contain silica bodies (Fig. 3.9) 

(Prychid et al. 2003). 

3.2.2 Leaf stalk anatomy of windmill palm 

Figure 3.10a shows a cross sectional view of mature leaf stalk, which already well 

developed and surrounded with circular leaf sheath. The vascular bundles are stained 

with safranin, which showed the vascular bundle already lignified strongly. Using the 

young leaf stalk for double staining (Safranin and Fast Green), the vascular bundles 

were stained lightly with safranin (Fig. 3.10b). While leaf sheath is connected with leaf 

stalk, so the chemical changing of vascular bundles during its developing should be 

similar. In order to know the change of some chemical components during development 

of leaf sheath in T. fortunei. FTIR test was done; this has been described in the former 

part of this Chapter. 

3.2.3 Leaf sheath anatomy of windmill palm 

Figure 3.11 shows a cross sectional image of immature leaf sheath. The 

distribution of vascular bundles can be divided into three layers which showed bigger 

size in the middle and smaller one in both outside and inside. This character also was 

confirmed in many pieces of mature leaf sheath taken from different height of a palm. 
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After leaf sheath becoming matured, parenchyma cells were decomposed and detached 

from vascular bundles, resulting in their complete separation each other (Fig. 3.12). 

 

Figure 3.8 (a) Transverse section of T. fortunei stem around No. 20 knot (same to No. 20 leaf). (b) A 

typical transverse section of a culm wall with vascular bundles of the monopodial bamboo 

Phyllostachys edulis embedded in the ground parenchyma cells reported by Liese (1998). Scale was 

not shown in original report. 



 

50 
 

 

Figure 3.9 Transverse section of single vascular bundle surrounded by parenchyma cells (T. 

fortunei). F: Fibers; P: Phloem; V: Vessel; S: Silica body. Bar=100μm. Arrows point to the silica 

bodies. 

 

Figure 3.10 Double stained transverse sections of mature (a) and immature (b) leaf stalk of T. 

fortunei. Bar=1.0mm. 
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Figure 3.11 Transverse section of No. 18 leaf sheath of T. fortunei showing the distribution of 

vascular bundles in different size. Bar=500μm. 

 

Figure 3.12 One small piece of mature leaf sheath taken from a windmill palm tree. This leaf 

already fell from tree and all leaf has no living tissue. The remains of parenchyma can be seem, 

which still surround the fibers, and the fibers separated from each other. 
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3.3 Summary 

Series of leaf sheaths were examined from outside to inside (or from upper to 

lower part) of palm stem. The measured items included the circumference length (a), 

the height of living tissue (b) and height of leaf sheath (c), also the crossed angle of 

vascular bundles. The height of leaf sheath almost had no change from top to bottom of 

the stem. From knot No.8 to No. 56, the highest leaf sheath was 40.3cm, while the 

lowest one was 30.8cm with a mean height of 35.7cm among 49 pieces of leaf sheaths. 

According to the measurement, the circumference length of leaf sheath was same with 

circumference length of palm stem. The bottom part showed living tissue and the top 

part a sheet or assembly of mature fiber bundles only. In between top and bottom, there 

was a transition area with light brown color. In this transition area, parenchyma already 

died but still attached to vascular bundles loosely. By observing the vascular bundles 

embedded in living tissue of the leaf sheath, vascular bundles with crossed structure 

were visualized. The evidence was further confirmed by the microscopic observation of 

the longitudinal section parallel to a living tissue. It is noted that large vascular bundles 

are all oriented in the same direction. 

Along the axial direction of living leaf sheath, the transformation of chemical 

contents in leaf sheath from bottom to top part was estimated by FTIR analysis. As fiber 

becoming matured and separated, the contents of cellulose and hemicellulose tended to 

decrease gradually, while lignin increased. 
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Chapter 4 

Cell wall characterization of leaf fibers from windmill 

palm and its functional implications 

4.1 Introduction 

Windmill palm (Trachycarpus fortunei) is widely distributed in China and Japan. 

Historically, this palm has provided a rich fiber source in the areas where it grows, for 

making thatched roofs, sofas, mats, mattresses, marine ropes, and traditional working 

tools. Wilson (1913), along with other researchers, indicated that the quality and utility 

of windmill palm fiber is comparable to that of the coconut coir. In addition, the 

windmill palm fibers are primarily collected from well-lignified leaf sheaths 

surrounding the stem. The Bencao gangmu, a Ming Dynasty (1368-1644) materia 

medica (Li 2008 - first edition published in 1578), showed that in the past, people were 

aware that windmill palm fibers were suitable for making ropes. Palm ropes could be 

used in wet conditions for hundreds of years without showing signs of decay. 

Furthermore, Zhai et al. (2012) described palm ropes excavated from archaeological 

sites, testifying the utilization of the windmill palm fibers in ancient times. In Japan, the 

windmill palm fiber is used to make Tawashi, a traditional brush, and Houki, a type of 

broom. These tools are used under a repeated cycling of wet (high moisture) and dry 

(low moisture) conditions which places severe stress on the fiber materials. It is 

worthwhile to investigate why windmill palm fibers show extraordinary properties 

under wet conditions. 

The structure of xylem and phloem in palms has been described in many 

publications (Zimmermann & Tomlinson 1965; Parthasarathy 1974; Parthasarathy & 

Klotz 1976a, b, etc). Some authors examined structure-property relationships of coconut 

palm (Sudo 1980; Killmann 1983). Structural variability of vascular bundles and the 
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cell walls in rattan, Calamus spp., a climbing palm was described by Bhat et al. (1990). 

However, the cell wall structure of fibers in leaf sheaths has received little attention 

despite their commercial importance. In this study, author studied the cell wall structure 

of windmill palm fibers by transmission electron microscopy (TEM), field emission 

scanning electron microscopy (FE-SEM), and polarized light microscopy (PLM). At the 

same time, microfibril orientations in different layers of the cell wall and Klason lignin 

content were also investigated. The objective of the present study was not only to 

characterize the cell wall structure of windmill palm fiber, but also to try to understand 

the correlation between cell wall structure and the durability together with stability of 

palm fibers. 

Former researchers indicated that the lignin in woody cell wall is involved in heavy 

electron-dense deposition after staining with potassium permanganate during TEM 

observation (Singh & Daniel 2001; Fromm et al. 2003; Lybeer & Koch 2005). The 

cellulose microfibrils orientation appears to be covered with lignin in different layers of 

the secondary wall. By acidified sodium chlorite treatment, the lignin content in the cell 

wall will be decreased and the microfibrils orientation in secondary wall will be clearly 

visible (Awano et al. 2002). To clarify the cellulose orientation in different cell wall 

layers of palm leaf fibers and to show cell wall layering with higher contrast by 

delignification treatment, the leaf fibers from windmill palm were stepwise delignified. 

The remains of fiber cell wall with different reaction intervals were examined by 

attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic 

analysis for the chemical changes and TEM for the ultrastructure 

confirmation/determination, which was undertaken for the first time. 

4.2 Cell wall structure of the windmill palm fibers 

Usually, each leaf sheath is composed of an outer, middle, and inner layer, and, 

each layer contains fibrovascular bundles of different diameters, orientations, and 

locations (Zhai et al. 2012). The fibrovascular bundles in the middle layer were larger 

than those in the outer and inner layers of the leaf sheath. A fibrovascular bundle is 

composed of vascular tissue and fiber cap (Fig. 4.1a). The fibers in the fiber cap have 
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fairly thick cell walls (Fig. 4.1b). These fibers showed double rings of birefringence 

between crossed Nicols in semi-thin transverse sections (Fig. 4.1c). This fact was 

confirmed in a survey of the leaf sheath fibers in different heights of the palm. The 

secondary walls of the fibers contain at least two layers, an outer (S1) and an inner one 

(S2). It was noted that the S1 near the middle lamellae showed a birefringence stronger 

than the S2 near the lumen. 

Figure 4.2 shows a longitudinally oblique section of the windmill palm fibers 

observed with PLM. It is noted that the S2 shows strong birefringence, while the S1 

shows weak birefringence. Based on the performances of the birefringence, the 

microfibrils in the S1 should have a flatter orientation to the fiber axis compared to those 

in the S2. In other words, the MFA of the S1 is larger than that of the S2. 

The electron microscopic observations were mainly restricted to the fiber walls 

within the fibrovascular bundles. Figure 4.3a presents the cell wall structure at the 

corner of three adjacent fibers. The outermost layer adjacent to the middle lamella 

appears thin and electron-dense, corresponding to the primary wall (P). The thickness of 

the primary wall is about 0.1 μm at the cell corner. The average thickness of S1 and S2 

was measured as 0.65 μm (SD ± 0.12) and 1.28 μm (SD ± 0.30), respectively (Table 

4.1). Furthermore, an S3 in the palm fibers was absent in all electron micrographs, 

including observations by FE-SEM (Fig. 4.4). Figure 4.4a shows a lower magnification 

image of a palm fibrovascular bundle fractured in longitudinally. Most fibers showed 

the fractured plane of S1. Figure 4.4b shows a higher magnification of the square inset 

in Fig. 4.4a. The arrows in the figure show different orientation of microfibrils in S1 and 

S2. These results obtained by both TEM and FE-SEM coincide with the PLM images 

showing that the secondary cell wall of windmill palm fibers comprises just two layers: 

S1 (the outer layer) and S2 (the inner layer). 

In softwood and hardwood, the secondary cell wall of tracheids and fibers is 

composed of a three layered structure, S1, S2 and S3. In contrast, both bamboo and rattan, 

which belong to the woody monocots, show a typical polylamellate structure 

(Parameswaran & Liese 1980; Bhat et al. 1990). According to our research, the cell wall 

structure of fibers from the leaf fibrovascular bundle in the windmill palm did not show 
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a polylamellate, but a two-layered structure (S1 and S2) in the secondary wall. 

 

Figure 4.1 Micrographs obtained using a transmitted and polarized light microscope. (a) A complete 

fibrovascular bundle from a leaf sheath of windmill palm. (b) Enlargement of a part of the fiber cap 

in the fibrovascular bundle. (c) Double birefringence of the secondary wall in fibers of windmill 

palm. The layers near the middle lamellae show a birefringence stronger than that near the lumen 

(arrows) (Zhai et al. 2013). 

 

Figure 4.2 Polarized light micrograph of a radial oblique section of fibers of the windmill palm with 

oblique angle 5°. S1, S2: outmost and inner layers of the secondary wall (Zhai et al. 2013). 
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Figure 4.3 Electron micrographs of the windmill palm leaf fibers. (a) Transverse section of a 

two-layered secondary wall of windmill palm leaf fibers. (b) Enlargement of the fiber cell tip on the 

oblique section, demonstrating microfibril orientation in the two layers of the secondary wall. CML: 

compound middle lamella; L: lumen; P: primary wall; S1, S2: outmost and inner layers of the 

secondary wall (Zhai et al. 2013). 

 

Figure 4.4 FE-SEM micrographs of the different layers of the cell walls in windmill palm leaf fibers. 

(b) Enlargement of the indicated area in Fig. 4.4a. The secondary wall of S1 and S2 is presented with 

clear cellulose fibrils orientations in a different layer of the secondary cell wall. The arrows indicated 

the direction that the microfibrils helically wind about cell lumen in cell wall (Zhai et al. 2013). 

The S1 layer of windmill palm fibers was thicker than in fibers/tracheids in other 

common plants (Table 4.1). The thickness ratio of S1 to the whole cell wall in windmill 

palm fibers was 0.32, while that in Pinus densiflora (tracheid), Picea abies (tracheid), 

Fagus crenata (tracheid) and Fagus crenata (fiber-tracheid) it was 0.13, 0.06, 0.16 and 

0.10, respectively. Consequently, the ratio of S1 to the whole cell wall thickness in 

windmill palm fibers is substantially higher, making it a specific feature of these palm 

fibers.  
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4.3 Cellulose microfibril orientation and MFA in different layers 

Figure 4.3b shows a TEM image obtained from an oblique ultra-thin section of a 

palm fiber. The low magnification image shows two different layers of the secondary 

wall, S1 and S2. An enlargement of the square inset shows both the smooth and rough 

surfaces of the fiber tip. If the diamond knife cuts with the microfibril orientation during 

sectioning, it would make a smooth surface. In contrast, if the knife cuts against the 

microfibril orientation, it would produce a rough surface. The opposite appearance of 

smooth and rough surfaces in S1 and S2 layers could be dependent on the different 

microfibril orientation in S1 and S2. The arrows in Figure 4.4b show the direction in 

which the microfibrils in S1 and S2 wind helically around the long axis of the cell. The 

figure clearly shows the microfibrils orientation of two individual layers crossed each 

other in a single wall. In consideration of the results obtained by PLM, TEM and 

FE-SEM, it is concluded that the microfibril orientation of the S1 is in S or left-handed 

helix, and that of the S2 is in Z or right-handed helix. 

As shown in Table 4.2, the MFAs of S1 and S2 measured by PLM are 127.0° (SD ± 

2.0) and 43.7° (SD ± 2.2), respectively. Our previous study (Zhai et al. 2012) showed 

that the mean MFA of windmill palm fibers obtained from X-ray diffraction diagrams 

was 39.5° (SD ± 2.4). Following the calculation described in the methods of the current 

study, the average MFA of all fibers in a fibrovascular bundle of windmill palm was 

49.1° (SD ± 2.3) by X-ray diffraction method. Comparison of MFA for the secondary 

wall layers obtained from birefringence in PLM with that from the X-ray diagrams 

showed good agreement. 

Table 4.2 lists the MFA of different plant species (mainly woods) as determined by 

the PLM, X-rays and TEM or FE-SEM. The X-ray values gave an average MFA of the 

whole fibrovascular bundles. In contrast, the PLM method gave MFA of the individual 

layers in a fiber wall. Comparing MFA of different plant species, it can be noted that the 

MFA of the S1 layer of the windmill palm fibers was steeper than that of normal wood 

fibers and tracheids. For example, Tang (1973) measured MFA values of 80° for the S1 

layer in Pinus virginiana. Müller et al. (2002) studied the S1 layer during secondary  
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Table 4.1 Comparison of cell wall thickness among different plant species. (Zhai et al. 2013) 

Species Cell type 
Cell wall thickness (μm) Ratio of S1 to a 

whole cell wall 

 
References 

P S1 S2 S3  

Trachycarpus fortunei fiber 0.1 0.65 (± 0.12) 1.28 (± 0.30) - 0.32   

Pinus densiflora tracheid 0.06 0.31 1.93 0.17 0.13  Harada 1965a 

Pinus radiata 

(compression wood) 
*
 

tracheid  0.67 4.48    Singh & Donaldson 1999 

Pinus radiata 
*
 tracheid  0.13 0.71 0.09   Donaldson & Frankland 2004 

Fagus crenata 

tracheid 0.07 0.24 0.99 0.17 0.16 
 

Harada 1965b fiber-tracheid 0.07 0.51 4.32 0.10 0.10 

axial parenchyma 0.06 0.35 0.78 0.37 0.22 

Picea abies tracheid 0.11 0.30 3.99 0.04 0.07  Bodig & Jayne 1982 

Picea abies (earlywood) tracheid  0.12    
 

Fengel & Stoll 1973 
Picea abies (latewood) tracheid  0.38    

Picea abies (earlywood) 
* 

tracheid  0.33 5.11 0.11 0.06  Brändström et al. 2003 

*
 data were measured from image on published papers. 
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Table 4.2 The MFA of different plant species as determined by the polarized light microscope and X-rays. (Zhai et al. 2013) 

Species Cell type 
m.e.p

*
 

X-rays 
 

References 
S1 S2 S3  

Trachycarpus fortunei fiber 127.0° (± 2.0) 43.7° (± 2.2) - 49.1°   

Pinus radiata tracheid - - - 22-46°  Wardrop 1951 

Pinus virginiana tracheid 78-80° 17-37° 73-77° -  Tang 1973 

Chamaecyparis obtusa tracheid 23-26° 13-16° 20-21° - 
 

Kataoka et al. 1992 (measured 

by TEM micrographs) 
Pinus densiflora tracheid 22-23° 12-14° 23° - 

Cryptomeria japonica tracheid 19° 10-12° 20-21° - 

Betula pendula fiber - - - 9.4-18.3°  Bonham & Barnett 2001 

Eucalyptus delagatensis fiber - - - 8.5-20°  Evans & Ilic 2001 

Abies sachalinensis tracheid - 3-14° - - 
 

Abe & Funada 2005 (measured 

by FE-SEM micrographs) 
Larix kaempferi tracheid - 9-21° - - 

Picea jezoensis tracheid - 17-32° - - 

Calamus merrillii fiber    28.5°  Abasolo et al. 2000 

*
 m.e.p is the major extinction position of a single cell wall, as measured with a polarized light microscope. 

**
 data were the mean MFA of vascular bundles and parenchyma ground in bamboo culm. 

 



 

62 
 

wall formation in Picea abies using X-ray and electron micro-diffraction, and obtained 

MFA values of 70–90°. Furthermore, in compression wood tracheids, microfibril 

orientation is nearly transverse. This fact was further supported by Brändström (2004), 

who found that microfibril orientation of the S1 layer in compression wood tracheids is 

almost always perpendicular to the fiber axis (90º) in Picea abies and shows less 

variation than normal wood tracheids. 

The MFA of the S2 layer of the windmill palm fibers was larger than that of normal 

wood fibers and rattan fibers. Table 4.2 lists the MFA in fibers/tracheid of selected 

softwood and hardwood species as well as bamboo and rattan, measured by PLM and 

X-ray diffraction. The average MFA of the S2 layer in mature wood ranged between 

3–37° to the fiber axis. MFAs of the S2 layer were much larger in the juvenile wood of 

conifers, particularly at the base of the tree, contributing to the low stiffness of wood in 

the butt log (Cave & Walker 1994; Xu et al. 2004; Donaldson 2008). According to the 

authors, the stem flexibility of the juvenile tree is high compared to the mature tree. 

Given the increase in specific MOE, or decrease in MFA with age, researchers presume 

that flexible wood in the young tree is desirable to prevent wind damage (Telewski 1989, 

Barnett & Bonham 2004, McLean et al. 2011). Considering this evidence, it can be 

suggested that the high MFA of fibers from the leaf sheath of windmill palm is related to 

their high flexibility. 

4.4 Ultrastructural changes of cell wall during delignification of 

windmill palm fibers 

The lignin band at 1510 cm
-1

, namely the aromatic skeletal vibration in lignin, was 

remarkably reduced by delignification in the ATR-FTIR transmission spectra 

(Rodrigues et al. 1998; Pandey & Pitman 2003, 2004; Mohebby 2005). By calculating 

the ratios of the relative intensities of lignin peaks at 1510 cm
-1

 against peaks at 2920 

cm
-1

 (Fig. 4.5a), the changes on the relative content of lignin was clear and shown in 

Figure 4.5b. TEM photos of the fiber residues collected before and after various 

reaction times are shown in Figure 4.6. 

In control sample, all layers of cell wall were little stained with uranyl acetate and 
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lead citrate (Fig. 4.6a). There was no strong contrast between S1 and S2 layers and the 

arrangement of microfibrils in each layer could not be observed clearly. 

After 1 hour reaction, the S1 and S2 seemed to have more contrast to each other and 

the fibrillar texture could be visualized (Fig. 4.6b). The outermost layer of S1 and 

innermost layer of S2 appeared a little swollen and delignified. With high magnification 

observation, the dark and bright lines were observed. The dark lines were believed to be 

the deposition of staining materials in the spaces remained after delignification, whereas 

the bright lines could be cellulose microfibrils. Furthermore, the net-like structure in the 

cell corner (CC) and compound middle lamellae (CML) was distinct, suggesting that 

lignin was partially removed. By calculating the relative content of lignin analyzed by 

ART-FTIR spectra, 42.7% (SD±11.5%) of lignin was not removed and remained in the 

cell wall after 1 hour reaction (Fig. 4.5b). 

With a reaction time of 3 hours, only 11.6% (SD±1.6%) of lignin was remained in 

the cell wall. The outer layer of S1 was markedly separated from CML due to the 

progress of delignification (Fig. 4.6c). Observation with high magnification (Fig. 4.6d), 

the arrangement of microfibrils in secondary wall were clearly visible. 

After treatment for more than 5 hours to overnight, 1.8% (SD±0.3%) of lignin 

was still remained in the cell walls. At this time, all fiber cells were completely 

separated with each other (Fig. 4.6e). All parts of cell wall including CML became 

electron-transparent, which means lignin was almost fully removed. It can be noted that 

two layers of secondary wall (S1 and S2) were distinguished to each other with very 

clear difference in the arrangement of microfibril (Fig. 4.6f). With delignification 

treatment, author can observe clearly S1 and S2 layers in the secondary wall with high 

contrast and the microfibril orientation also became visible. However, author has never 

found another layer, S3, after the successive test of delignification in leaf fibers from 

windmill palm. 
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Figure 4.5 Change of IR spectrum and relative content of lignin in fiber residues after various 

reaction times of acidified sodium chlorite treatments (Fig. 4.5a). The peak at 1510 cm
-1

 represents 

lignin, which is for aromatic skeleton in lignin. The relative content of lignin in all treatment time 

was calculated from IR spectrum and shown in Fig. 4.5b. The circle indicates the mean value of five 

samples and the error bar shows the standard deviation. 
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Figure 4.6 Transmission electron micrographs of transverse sections from windmill palm fiber 

collected after various reaction times. (a) control sample; (b) 1 hour reaction; (c) 3 hours reaction; 

(d) 3 hours reaction with high magnification; (e) overnight reaction; (f) overnight reaction with high 

magnification. CC: cell corner; CML: compound middle lamella; L: lumen; ML: middle lamella; P: 

primary wall; S1, S2: outer and inner layers of the secondary wall. 
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4.5 Klason lignin content of windmill palm fibers 

Table 4.3 shows the Klason lignin content of fibrovascular bundles in windmill 

palm along with that in different other plant species. With 39.8% the Klason lignin 

content of windmill palm fiber was the highest among all. The lignin content in normal 

wood tissues was less than 30%. Thus, the lignin content in windmill palm was 

noticeably high compared to other plant species. 

Table 4.3 Variation of Klason lignin content (wt.%) in different plant species. (Zhai et al. 2013) 

Species Klason lignin  References 

Trachycarpus fortunei 39.8 (± 4.1)   

Quercus acutissima 21.1 
 

Yamaguchi et al. 1994 
Cinnamomum camphora 28.4 

Picea abies 26.9 
 

Japan Wood Research Society 2010 
Pinus sylvestris 27.3 

Abies balsamea compression wood
*
 38.9  

Timell 1973 

Picea mariana compression wood
*
 37.0  

Pinus resinosa compression wood
*
 38.8  

Larix laricina compression wood
*
 38.9  

Tsuga Canadensis compression wood
*
 39.3  

Cocos nucifera 31.9 (coir)  Van Dam et al. 2004 

Elaeis guineensis 19.3 (stem)  Mansor & Ahmad 1990 

Elaeis guineensis 27.1 (fiber)  Oi et al. 1994 

Gossypium hirsutum (Cotton) 15.5 
 

Ververis et al. 2004 
Hibiscus cannabinus (Kenaf) 14.6 

Ampelocissus cavicaulis bast fiber 33.2 (±3.0)  Agu et al. 2012 

Agave sisalana (Sisal) 12  Megiatto et al. 2007 

Linum usitatissimum (Flax) mature fiber 6 (±1)  Gorshkova et al. 2000 

Cannabis sativa (Hemp) 4.6  Gutiérrez et al. 2006 

Corchorus capsularis (Jute) 13.3  del Río et al. 2009 

*
 the data were lignin content rather than Klason lignin. 
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The chemical test in the present study gave new evidence that the fibrovascular 

bundles of the windmill palm showed a substantially higher lignin content than selected 

plant species such as softwoods, hardwoods, sisal, kenaf, jute, and hemp (Table 4.3). In 

plants, lignin plays a vital role, facilitating water transport and providing structural 

support by cementing cellulose microfibrils (Cateto et al. 2011). Previous researchers 

have mentioned that lignin has anti-biological reactions (Latham et al. 1978, 1979). 

After investigating 20 Japanese hardwoods, Yamaguchi et al. (1994) found that species 

with higher Klason lignin content had smaller enzymatic susceptibilities. Further, 

biodegradation experiments by white and brown rot fungi showed that compression 

woods which have greater concentration of lignin (ca. 40%) are more resistant to decay 

than normal wood, such as from Abies balsamea, Picea mariana and Pinus strobes 

(Blanchette et al. 1994; Timell 1973). In consideration of this evidence, it is suggested 

that the high Klason lignin content could give supports to the high durability of the 

fibrovascular bundles in windmill palm. 

Furthermore, the high lignin content might be related to the mechanical behavior of 

windmill palm fibers. About mechanical properties, the behavior of cell walls under 

tensile stress is a complicated mixture of plastic and elastic deformation. Brett & 

Waldron (1996) mentioned that much stronger secondary walls of plant cells show only 

a limited ability to extend; elastic extension is small, but some plastic extension can 

occur. Cellulose tends to exhibit plastic rather than elastic deformation. While, Burgert 

(2006) showed that there was non-load bearing to the amorphous lignin during 

mechanical loading. The lignin might contribute to the elastic deformation, rather than 

plastic deformation of cell wall. As shown in our former paper (Zhai et al. 2012), the 

breaking strains of fibrovascular bundles from windmill palm was abnormally higher 

(40 to 55%) than sisal (3 to 7%), flax (3.3%), hemp (1.6%) and jute (1.5 to 1.8%). 

Although there is no statistical data for comparison, Table 3 shows the results of Klason 

lignin content in windmill palm (40%), sisal (12%), flax (6%), hemp (4.6%) and jute 

(13.3%). Eventually, the high lignin contents in windmill palm fibers could have a close 

relationship to the high breaking strains. 
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4.6 Implication of cell wall structure in fibers for palm plant 

biomechanics and stability 

In plant cell wall, the parallel cellulose chains bind together by hydrogen bonds to 

form microfibrils. These high tensile strength crystalline microfibrils are the 

fundamental structure unit in plant cell walls and make the major contribution to the 

mechanical strength of the plant cell walls. The microfibrils in cell walls are encrusted 

by a gel matrix composed of hemicelluloses, lignin, and other carbohydrate polymers to 

form a bio-composite (Yu et al. 2008). The orientation of cellulose microfibrils is used 

by plants to dispose tissues in the growing phase for passive actuation of organs by 

humidity changes even after cell senescence. The underlying mechanism is the 

anisotropic deformation of cell walls upon swelling and shrinking due to the influx and 

efflux of water (Burgert & Fratzl 2009). Additionally, the mechanical properties of 

secondary cell walls depend to a large extent on the orientation of cellulose fibrils. 

Consequently, many materials used for structural applications are designed based on the 

structure of the wood cell wall. ‘Spiral-winding method’ (Yamauchi et al. 1997) is a 

kind of manufacturing processes for cylindrical industrial products including paper 

tubes and fiber reinforced plastics. The design of cylindrical LVL proposed by the above 

method was originated from the wood fiber cell wall structure. 

Figure 4.7 presents cell wall models of conifer tracheids and palm fibers. The 

crossed pattern of microfibrils arrangement in longitudinal plane is a stable model to be 

resistant to shape deformation during environmental moisture changes. It is shown that 

two cells or two cell walls are cooperated with each other to maintain the stable 

structure of wood fiber/tracheid. This is because the S1 layer is quite thin comparing 

with S2 layer in wood fiber/tracheid. Fine crystalline cellulose microfibrils in S2 layer 

are helically winded in Z-helix. Data from Harada (1965a; 1965b) showed that the 

thickness ratio of S1: S2 is 1:6. While in the palm fiber model, it can be notified that 

only one cell already have functional properties equivalent to two tracheids. In palm 

fiber cell wall, both S1 and S2 layers are thick and the cellulose microfibrils in S1 layer 

trace an S-helix and those in S2 a Z-helix. The thickness ratio of S1: S2 is 1:2. In 

windmill palm fiber, the cell wall structure with well ordered cellulose microfibrils has 
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positive effect on its stability during environment changing. The experimental data to 

clarify the mechanism of cell wall model from palm fiber will be a worthy topic for 

further exploration. 

 

Figure 4.7 Diagram showing the cell wall models of palm fiber and tracheid (from Japanese cedar, 

Cryptomeria japonica), with cellulose microfibrils orientations in cell wall layers. The arrow lines 

indicate the microfibrils orientation. In single palm fiber, the cellulose microfibrils in S1 layer trace 

an S helix and in S2 is a Z helix, which makes crisscross structure in single cell. While, in conifer 

tracheid only S2 layer shows a Z helix. This indicates two cell cooperation is necessary for making 

stable crisscross structure. 

4.7 Summary 

In daily life, palm fibers have been widely used to make different products such as 

Tawashi (a type of traditional-style brush used in Japan), Houki (brooms), and ropes 

with excellent durability/stability. By observing the ultra-structural and chemical 

features, the cell wall structure of windmill palm fibers appeared different from that of 

common fibers/tracheids of hardwoods and softwoods, and even from bamboo and 

rattan. In case of the windmill palm fiber, the secondary wall comprises just two layers 

(outer and inner ones) with a crossed orientation of cellulose microfibrils in a single cell 
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wall. The ratio of the S1 to the whole cell wall thickness of the windmill palm fibers was 

much higher than that of fibers/tracheids in softwood and hardwood. The MFA of the S1 

layer of the windmill palm fibers was steeper and MFA of S2 was larger compared to 

that of normal wood fibers and tracheids. Further, the fibrovascular bundles of windmill 

palm showed a high lignin content. These evidences could help to explain the high 

durability/stability and large elastic extension of windmill palm fibers. 
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Chapter 5 

Cell wall ultrasturcture of fibers in palm leaf-sheath 

fibrovascular bundles 

5.1 Introduction 

In softwood and hardwood, the secondary cell wall of tracheids and fibers is 

composed of a three-layered structure, S1, S2 and S3. In contrast, the woody monocots, 

such as bamboo and rattan, show a typical polylamellate structure (Parameswaran & 

Liese 1980; Bhat et al. 1990). Abdul Khalil et al. (2006, 2008) mentioned that the cell 

wall structure of fibers from coconut coir, oil palm frond and empty fruit bunch 

consisted of primary layer (P) and secondary layers (S1, S2 and S3). They thought cell 

wall structure of these species is similar to that of the wood cell wall reported by Harada 

and Côte (1967). According to our former research (Zhai et al. 2013), the cell wall 

structure of leaf sheath fibers from the windmill palm showed neither a three-layered 

structure, nor a polylamellate structure, but a two-layered structure (S1 and S2) in the 

secondary wall. The present research was aimed to confirm that the two-layered 

structure in the secondary wall is common feature among different palm fibers, which 

are located outside of palm stem including palm leaf and fruits fibers. Author surveyed 

leaf sheath fibers of 20 different palm species. The cell wall characteristics of all fibers 

were investigated by both polarized light microscopy (PLM) and transmission electron 

microscopy (TEM). 

5.2 Polarized light microscopic observation of leaf fibers in 

different palm species 

A leaf fiber bundle of palm is composed of a fiber cap and vascular tissue with 

variations in shape and localization. The fibers in the fiber cap have fairly thick cell wall. 

The double rings of birefringence were always found in the transverse sections of palm 
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leaf fiber walls between crossed Nicols. 

  

  

Figure 5.1 Polarized light micrographs of a transverse (a, c) and longitudinally oblique section (b, d) 

of fibers in leaf vascular bundles from coconut palm (Cocos nucifera, a & b) and oil palm (Elaeis 

guineensis, c & d). a & c: Arrowheads point out the double birefringence of the secondary wall 

indicating the presence of two layers in fibers. The S1 layer near middle lamellae always shows a 

birefringence stronger than S2 near the lumen. b & d: The ‘black zone’ in between S1 and S2 layers 

might be an overlapping area of microfibrils with different helices orientation, namely s-helix of S1 

layer and z-helix of S2 layer. S1, S2: outer and inner layers of the secondary wall. CML: compound 

middle lamellae. 
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Figure 5.1 show examples from coconut palm (Cocos nucifera) and oil palm 

(Elaeis guineensis) leaf fibers. The double rings of birefringence indicated that the 

secondary wall of the leaf fibers was consisted of at least two layers, an outer (S1) and 

inner one (S2). It was noted that the S1 near the middle lamellae showed a birefringence 

stronger than the S2 near the lumen (Fig. 5.1 a & c). 

Based on the performances of the birefringence, the microfibrils in the S1 should 

have a flatter orientation to the fiber axis compared to those in the S2. Figure 5.1 b & d 

shows a longitudinally oblique section of the coconut and oil palm fibers. The ‘black 

zone’ in between S1 and S2 layers might be an overlapping area of microfibrils with 

different helices orientation, namely s-helix of S1 layer and z-helix of S2 layer. This fact 

was confirmed in the leaf fibers from all palm species examined in the present research. 

5.3 Cell wall structure of the leaf fibers in different palm species 

The electron microscopic observations were mainly restricted to the fiber walls 

within the vascular bundles. Figure 5.2 presents the cell wall structure of leaf fibers in 

different palm species. The outermost layer adjacent to the middle lamella (ML) appears 

thin and electron-dense, corresponding to the primary wall (P). Some primary walls in 

fibers were clearly presented in the cell corner (CC), but others were difficult to 

distinguish from middle lamella, which were named as compound middle lamellae 

(CML). The secondary wall was consisted of only two layers in all palm leaf fibers, 

which are the outer (S1) and inner layer (S2). An S3 layer in the leaf fibers was absent in 

all electron micrographs among different palm species. 

The average thickness of S1 and S2 in palm leaf fibers is illustrated in Figure 5.3 in 

comparison with that of wood cells. From the former publications (Parameswaran & 

Liese 1980; Bhat et al. 1990), it is noted that bamboo and rattan fibers have multiple 

layers of the secondary wall. Therefore, it was difficult to compare the thickness of each 

layer with palm leaf fibers. The thickness of S1 layer in leaf fibers from the different 

palm species ranged from 0.31 to 0.90 μm, with a mean value of 0.57 μm. The S1 layer 

of leaf fibers from different species was thicker than that of tracheids/fibers in wood. 

Furthermore, the ratio of S1 to the whole cell wall thickness in palm fibers was higher 
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than that of wood cells. In case of S2 layer, its thickness ranged from 0.44 to 3.43 μm, 

with a mean value of 1.86 μm. Compared with the thickness of S2 layer in tracheid from 

Picea abies (3.99 μm) and fibers from Fagus crenata (4.32 μm), the S2 layer of palm 

fibers was remarkably thinner than wood cells. Interestingly, coconut leaf fibers had an 

S1 (0.40 ± 0.04 μm) and S2 (0.44 ± 0.23 μm) layers with similar thickness, same features 

can be found in EM photos from other publications (Abdul Khalil et al. 2006), while 

Abdul Khalil et al. believed the presence of S3 layer in coconut coir fibers. 

  

  

  

Figure 5.2 Electron micrographs of the leaf fibers from different palm species. 
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Figure 5.2 (Continued) Electron micrographs of the leaf fibers from different palm species. CC: 

cell corner; CML: compound middle lamellae; L: lumen; P: primary wall; S1, S2: outer and inner 

layers of the secondary wall. 
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Figure 5.3 Illustration of cell wall thickness among different palm species, and its comparison with wood species. The order of palm species refers to the 

phylogenetic classification of palm family (Dransfield et al. 2008; Tomlinson et al. 2011). 
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5.4 Summary 

After investigating the cell wall structure of leaf fibers from 20 different palm 

species by light and electron microscopy, it was confirmed that the secondary wall 

consisted of only two layers, S1 and S2. The occurrence of S3 layer claimed in fibers 

from leaf part of coconut palm and oil palm (Abdul Khalil et al., 2006, 2008) was not 

confirmed in leaf fibers of 18 palm species examined in the present investigation. 

Therefore, it was concluded that the two-layered structure of S1 and S2 was the specific 

character in palm leaf fibers different from other monocotyledons (such as bamboo and 

rattan) and wood. 
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Chapter 6 

Tensile properties of windmill palm fibrovascular 

bundles and its structural implications 

6.1 Introduction 

Palmae (Arecaceae) is an important taxon of the monocotyledon and plays an 

essential role in the daily lives of millions of people in tropical and subtropical regions 

(Tomlinson 1961, 1990; Whitmore 1977; Essig & Dong 1987; Pei et al. 1991). The 

properties and commercial utilization of palms are dependent on their structural and 

mechanical characteristics. There are many publications on the oil palm (Elaeis 

guineensis), the wine palm (Caryota urens), and the coconut palm (Cocos nucifera), etc. 

(Hartley 1967; Dassanayake & Sivakadachcham 1972; Harries 1978; Satyanarayana et 

al. 1982; Sreenivasan et al. 1996; Sreekala et al. 1997, 2002; Hill & Abdul Khalil 2000; 

Matthes et al. 2001; Jacob et al. 2004; Abu-Sharkh et al. 2005). However, the windmill 

palm (Trachycarpus fortunei), which is the most common species in East Asia and is 

distributed throughout temperate and tropical zones, has yet to be thoroughly 

investigated. The recent work of Windsor-Collins et al. (2008) obtained data on the 

resistance to torsion versus the shape factor of petioles taken from T. fortunei. Insight 

has thus been gained into the mechanical behavior of the T. fortunei palm petioles. 

Windmill palm fibers have mainly been used for making thatch, marine rope, and 

traditional raincoats. According to the Bencao gangmu, a Ming Dynasty (1368–1644) 

meteria medica (Li 2008), people living long ago already knew that windmill palm 

fibers were well-suited for making rope that could be used in wet conditions for 

hundreds of years without showing signs of decay. Archeological excavations (Nanjing 

Municipal Museum 2006; Itoh et al. 2008) (Fig. 6.1) have indeed validated such claims. 
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Figure 6.1 Objects excavated from archeological sites testifying to utilization of windmill palm 

fibers in ancient times: (a) windmill palm fiber rope more than 8 cm in diameter from a Ming 

Dynasty (1368-1644) shipyard site, (b) rope recovered from the seabed off Takashima Island, where 

the Yuan Dynasty (1279-1368) fleets of Kublai Khan sank, (c) cross section of Takashima Island 

rope fibers, identified as being windmill palm fibers (Zhai et al. 2012). 

Although leaves originate from the stem, fibers for utilization are usually collected 

from the well-lignified leaves surrounding the windmill palm stem, rather than from the 

stem. The windmill palm stem is surrounded by many layers of leaves and the 

fibrovascular bundles in a leaf sheath are separated from each other when the 

parenchyma tissue disintegrates as the fibrovascular bundles mature and lignify (Fig. 

6.2). The fibrovascular bundles in a leaf provide a good model for understanding the 

physical properties (or strength) of the windmill palm. On the contrary, it is absolutely 

impossible to measure the physical strength of intact fibrovascular bundles distributed 

in the palm stem. However, it can be estimated fairly precisely by measuring the 

physical properties (or strength) of fibrovascular bundles in the leaf sheath. Therefore, 

these estimations not only contribute to the utilization of the palm stem but also may 

lead to an understanding of the physical properties of the whole stem. 
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Figure 6.2 Photographs of windmill palm showing lignified fibrovascular bundles in leaf and stem: 

(a) windmill palm stem surrounded by many layers of leaf sheaths (at a height of 1.5 m), (b) one leaf 

sheath taken from a windmill palm, (c) windmill palm stem after all leaves have been pilled. (Zhai et 

al. 2012) 

In general, the mechanical properties of plant fibers derive from such physical, 

chemical, and morphological characteristics as crystalline structure of cellulose, density, 

cellulose content, microfibril orientation, and fibrovascular bundle diameter. 

Satyanarayana et al. (1982) tested fibers from various parts of the coconut tree. Zhang et 

al. (1994) measured the tensile strength of some natural fibers such as jute and wood. 

Subsequently, Munawar et al. (2007) investigated physical and mechanical properties of 

fibers from several nonwoody plants. They compared tensile strength to fibrovascular 

bundle diameter. According to these papers, the tensile strength of fibrovascular bundles 

with a small diameter was larger than that of fibrovascular bundles with a larger 

diameter. Why do natural fibers show such a characteristic? If the characteristics of 

fibrovascular bundles are the same, the tensile strength of bundles of different diameters 

should be the same. Until now no clear answer to this question has been given. 

Meanwhile, the structure and mechanics of the fiber caps of different types of vascular 

bundles from the Mexican fan palm (Washingtonia robusta) were studied (Rüggeberg et 

al. 2008; 2009). It was found that gradients in stiffness appeared across the fiber caps in 

the center of the trunk, whereas stiffness remained high across the caps in the periphery 

of the trunk. This was attributed to the anatomy of the fiber caps of three different types 

of vascular bundles. 
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This chapter focuses on mechanical properties resulting from the internal structure 

of windmill palm fibers. The influence of anatomical structure variations and 

ultrastructure differences in windmill palm fibers are discussed. New evidence was 

obtained demonstrating why small fibrovascular bundles, as compared to large ones, 

show high tensile strength and high Young’s modulus. 

6.2 Structure of fibrovascular bundles 

The difference in the diameters of the fibrovascular bundles from both transverse 

and longitudinal sections of the celloidine embedded samples was observed. The 

fibrovascular bundles in the middle layer were larger than those in the outer and inner 

layers (Figure 6.3). 

A series of statistical data obtained using a digital optical microscope showed that 

the fibrovascular bundles in the middle layer had a mean diameter of 418.0 μm, while 

those of the bundles in the inner and outer layers were 202.1 and 342.5 μm, respectively. 

The divergence of diameter in fibrovascular bundles taken from different layers is 

shown in Fig. 6.4. Literature showed that Sisal aggregates (Agava sisalana) was 

100–400 μm in diameter (Carr et al. 2006); the typical diameter of coir fibrovascular 

bundles from the coconut palm (Cocos nucifera) was about 200 μm (Martinschitz et al. 

2008). Satyanarayana et al. (1982) measured the diameters of the coconut palm tree’s 

fibrovascular bundles, and they also separated the fibrovascular bundles into three 

groups a thick group, a thin group and a middle group—which were located in one sheet 

of leaf sheath. According to their paper, the diameter of the thick group’s fibrovascular 

bundles was 1100–1600 μm, while those of the thin and middle groups’ fibrovascular 

bundles were 300–600 and 300–1000 μm. Comparing these data with our results, it can 

be noticed that fibrovascular bundles in the outer layer of our definition corresponded to 

the middle group, the middle layer to the thick group, and the inner layer to the thin 

group. 
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Figure 6.3 (modified images based on Fig. 3.1c, 3.6, 3.11) Layered arrangement of fibrovascular 

bundles in one sheet of leaf sheath: (a) sample of unlignified leaf sheath for celloidine embedding, 

(b) transverse section of leaf sheath, (c) longitudinal section of leaf sheath. (Zhai et al. 2012) 

 

Figure 6.4 Diameter distributions of fibrovascular bundles among three layers in one sheet of leaf 

sheath. Fibrovascular bundles from inner layer (a), middle layer (b) and outer layer (c) with 

remarkable difference in average diameter (d). (Zhai et al. 2012) 
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Figure 6.5 Transverse sections of fibrovascular bundles taken from inner (a), middle (b), and outer 

layers (c) of one sheet of leaf sheath, showing vessels and phloem tissue accompanied by fibers in 

each fibrovascular bundle. (Zhai et al. 2012) 

 

Figure 6.6 Transverse sectional image of fibrovascular bundles in the inner layer observed by 

transmitted- (a) and polarized-light (b). The noticeable dark region near the center of each 

fibrovascular bundle in (b) is the area occupied by vessels and phloem tissue. (Zhai et al. 2012) 
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When focusing on one fibrovascular bundle, the transverse sections of the 

safranin-stained fibrovascular bundles clearly revealed lignified tissue. The 

fibrovascular bundles in the inner layer were almost completely composed of fibers (Fig. 

6.5 a), while the fibrovascular bundles in the middle and outer layers showed clear 

vessels and phloem tissue occupying substantial amount of their transverse sectional 

area (Fig. 6.5 b, c). Figure 6.5 also shows that SF was the largest in the middle layer, 

followed by the outer and inner layers. At the same time, SV was also the largest in the 

middle layer followed by the outer and inner layers, although it was not easy to observe 

SV in fibrovascular bundles from the inner layer. 

Figure 6.6a shows a transverse sectional image of the fibrovascular bundles in the 

inner layer as observed by transmitted-light microscope. When the same fibrovascular 

bundles were observed under polarized-light, the amount of vessels and phloem tissue 

could be clearly seen as a dark region near the center of each individual fibrovascular 

bundle (Fig. 6.6b). It was clear that fibrovascular bundles consisted of a large number of 

fibers and a negligible amount of vessels and phloem tissue. The evidence indicates that 

no fibrovascular bundle consists only of fibers. Even fibrovascular bundles with a small 

diameter also have vessels and phloem tissue. 

Table 6.1 Fiber characters in different layers of one sheet leaf sheath taken from windmill palm 

(Zhai et al. 2012) 

Layers in leaf sheath Inner Middle Outside 

Area occupied by fibers (SF) (100μm
2
)

 
~193 ~715 ~589 

Area occupied by vessels and phloem (SV)(100μm
2
)

 
~13 ~358 ~279 

Number of fibers in one bundle ~160 ~840 ~590 

Fiber diameter (μm) 10.4 (±0.4) 9.5 (±0.5) 10.1 (±0.4) 

Fiber wall thickness (μm) 2.2 (±0.16) 2.1(±0.25) 2.1(±0.16) 

With this in mind, SF and SV in a fibrovascular bundle, the number of fibers in a 

bundle, fiber diameter, and fiber wall thickness were measured in each of the three 

layers of one leaf sheath. Table 6.1 shows that the mean fiber diameter and fiber wall 

thickness were similar in fibrovascular bundles taken from different layers of one leaf 



Chapter 6 

91 
 

sheath. In this case, the characteristics of a single fiber are almost the same among the 

different fibrovascular bundles. 

6.3 Mechanical properties 

After tensile strength was tested, typical stress–strain curves for fibrovascular 

bundles from different layers in one leaf sheath were obtained (Fig. 6.7). The curves 

showed a yielding, followed by plastic deformation until breakage from 30 to 60% 

strain for fibrovascular bundles. The line of breakage in the fibrovascular bundles 

mainly ran perpendicular to the direction of the tensile stress. 

 

Figure 6.7 Typical stress-strain curves of fibrovascular bundles taken from the inner (a), middle (b), 

and outer (c) layers of one sheet of windmill palm leaf sheath. (Zhai et al. 2012) 

Table 6.2 The mechanical properties of fibrovascular bundles in different layers of one sheet leaf 

sheath taken from windmill palm (n=70, test speed=1mm/min) (Zhai et al. 2012) 

Layer 
Max. Load (kN)  Young’s Modulus (MPa)  

Mean S.D. C.V. (%)  Mean S.D. C.V. (%)  

Inner 3.45 0.83 24.18  1249.70 382.58 30.61  

Middle 12.25 4.02 32.77  778.93 332.67 42.71  

Outer 7.40 2.79 37.62  817.11 388.57 47.55  

Layer 
Tensile strength (MPa)  BRK.% Strain (%)  

Mean S.D. C.V. (%)  Mean S.D. C.V. (%)  

Inner 113.72 25.11 22.08  39.52 15.69 39.70  

Middle 91.93 32.42 35.27  55.20 20.77 37.62  

Outer 82.08 30.23 36.83  47.52 22.32 46.98  
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Table 6.2 presents the mechanical properties of fibrovascular bundles in the three 

different layers taken from one windmill palm leaf sheath. Although the diameter of the 

inner layer was the smallest among the three layers, the fibrovascular bundles from the 

inner layer showed higher tensile strength (113.72 MPa) and Young’s modulus (1249.70 

MPa) than did the fibrovascular bundles in the other layers. The plots of the mechanical 

properties of tensile strength and Young’s modulus versus diameter of fibrovascular 

bundle from the windmill palm are shown in Figure 6.8. With these plots, the variation 

in mechanical properties can be evaluated. They show a decreasing trend in tensile 

strength and Young’s modulus with an increasing trend in the diameter of the 

fibrovascular bundles in the three different layers and vice versa. 

 

Figure 6.8 Relationship between diameter and Young`s modulus (a), and diameter and tensile 

strength (b) of windmill palm fibrovascular bundles. (Zhai et al. 2012) 

Munawar et al. (2007) investigated the physical and mechanical properties of 

seven non-woody plant fibrovascular bundles such as abaca leaf fibers, pineapple leaf 

fibers, sisal leaf fibers, coconut husk fibers, and bast fibers of kenaf and ramie. The 

authors concluded that the tensile strength and Young’s modulus showed a decreasing 

tendency with an increase in the diameter of the fibrovascular bundles. Some previous 

papers have also described a similar relationship between diameter and tensile strength 

as well as Young’s modulus in flax fibers and jute fibers (Baley 2002; Zhang et al. 

1994). However, no clear reasons were presented in these papers to explain these 

phenomena. A similar phenomenon in the fibrovascular bundles taken from the 
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windmill palm was confirmed in this study. Especially, the inner-layer fibrovascular 

bundles, which had the smallest diameters, showed the highest tensile strength among 

the three layers. If the fiber cell walls were thicker and the fiber diameters smaller in the 

inner layer than in the other layers, such a phenomenon as mentioned above could occur. 

However, as the results in Table 6.1 show, both fiber diameter and fiber cell wall 

thickness did not show any substantial differences in the three layers of fibrovascular 

bundles. Therefore, instead of anatomical features, more attention was paid to the 

different tissue types involved in a vascular bundle: that is, fibers, vessels, and phloem 

tissue. 

The presence of fibers predominantly contributes to the mechanical strength of the 

fibrovascular bundles (or vascular bundles), while the presence of vessels and phloem 

tissue tends to reduce mechanical strength. Fibrovascular bundles in one sheet of leaf 

sheath taken from the windmill palm were divided into three layers according to their 

size, orientation, and location. As mentioned before, SV was largest in the middle layer. 

It decreased dramatically in the inner layer of a mature leaf sheath. The vascular bundle 

in the inner layer of a leaf sheath did not show a substantial value of SV. 

However, the mean tensile strength and Young’s modulus of the vascular bundles 

in the inner layer of a leaf sheath were the largest of the three different layers. Therefore, 

the only parameter that contributes to the mechanical properties of fibrovascular 

bundles was the ratio of SV in one bundle. In the inner layer, SV was about 1300 μm
2
 

and just 6–7% of one fibrovascular bundle’s transverse sectional area (Table 6.1). 

However, SF in the middle layer was 71500 μm
2
, while SV was 35800 μm

2
. SV increased 

to 33% of transverse sectional area. These findings strongly suggest that the tensile 

strength of a fibrovascular bundle increases in accordance with a decrease of SV, which 

occurs with an increase in fibrovascular bundle diameter. Considering the structural and 

mechanical properties of the component cells in a fibrovascular bundle, it was found 

that SV in a transverse sectional area of a fibrovascular bundle was an important factor 

affecting fibrovascular bundle tensile strength. 

The tensile properties of various natural fibers, along with the results obtained here 

on windmill palm fibrovascular bundles, are summarized in Table 6.3 for better 
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comparison. The tensile strength and Young’s modulus of windmill palm fibrovascular 

bundles are usual for natural fibers. The elongation at break percentage is much higher 

than that of the other plants referred to in Table 6.3. Composite materials having a too 

low elongation to break will be brittle. Therefore, the windmill palm will be a good 

natural resource for enhancing the strength and toughness of composite materials. 

Table 6.3 Comparison of properties of windmill palm fibrovascular bundles with those of other 

natural fiber bundles (
a 
Satyanarayana et al. 1982; 

b
 Rao et al. 2007; 

c
 Davies et al. 2007) 

Origins 
Diameter 

(μm) 

Tensile strength 

(MPa) 

Modulus 

(GPa) 

BRK.%STN 

(%) 

windmill palm leaf-sheath     

inner layer 202.1 113.72 1.25 39.5 

middle layer 418.0 91.93 0.78 55.2 

outer layer 342.5 82.08 0.82 47.5 

Banana 
b
 80-250 529-759 8-20 1-3.5 

Elephant grass 
b
 70-400 185 7.40 2.5 

Sea-grass (Zostera marina) 
b, c

 4.6 573±120 19.8±6.8 3.4±0.3 

Flax 
c
 17.8 1339±486 58±15 3.3±0.8 

Hemp 
c
 10-50 389 35 1.6 

Jute
 a, b, c

 25-200 393-773 26.5 1.5-1.8 

Sisal 
a, b

 7-47 350-700 9-21 3-7 

coconut palm 
a
     

Leaf sheath(inside top) 300-600 88.63 2.45 14.2 

Leaf sheath(thick fibres) 1100-1600 115.24 4.54 4.0 

Leaf sheath(middle fibres) 300-1000 91.97 3.59 6.2 

Bark of the petiole 250-550 185.52 15.09 2.1 

Root 100-650 157 6.2 3 

Coir 100-450 131-175 4-6 15-40 
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Figure 6.9 Fracture surface of fibrovascular bundles taken from inner (a), middle (b), and outer 

layers (c) of one sheet of windmill palm leaf sheath. (Zhai et al. 2012) 

To make sure there was zero or insignificant, slippage at normal conditions of 

tension, the fracture surface of broken fibrovascular bundles was observed under SEM. 



 

96 
 

In Figure 6.9, representative SEM micrographs of windmill palm fibrovascular bundles’ 

fracture surface are presented. No epoxy resin penetrated the testing length of 

fibrovascular bundles—a condition that, as other researchers have mentioned (Yu et al. 

2011),—may strengthen the mechanical properties of the fibrovascular bundles tested. 

The morphology of windmill palm fibrovascular bundles can also be characterized. The 

tubular cells are oriented parallel with the bundle axes. No specimens were found in 

which fibrovascular bundles were visibly pulled out in the proximity of the interface of 

fibrovascular bundles and epoxy resin. In the view of Martinschitz et al. (2008), the 

formation of curled triangular features is related to the fracture of individual helical 

cells, which indicates a specific fracture mechanism. Figure 6.10 shows the fracture 

surface with high magnification, the fracture of individual fiber can be clearly observed. 

 

Figure 6.10 Fracture of individual fibers in one fibrovascular bundle from windmill palm leaf sheath 

under higher magnification. 
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6.4 Microfibril angle of windmill palm fibrovascular bundles and 

its bio-mechanics 

Excluding SV area and recalculating tensile strength only using the effective area 

(SF) revealed that inner-layer fibrovascular bundles and middle-layer fibrovascular 

bundles have a similar degree of tensile strength. However, the tensile strength of the 

outer-layer fibrovascular bundles was lower, showing 127.3 MPa (Table 6.4). These 

data indicate that the structure of the outer-layer fibrovascular bundles might differ from 

that of the other two layers. 

Table 6.4 Microfibril angles (MFA), relative crystallinity index (CrI) and recalculated data of 

fibrovascular bundles (Zhai et al. 2012) 

Layers MFA CrI SV/(SV+SF) Tensile strength
*
 (MPa) 

Inner 38.5 0.71 6% 171.2 

Middle 37.8 0.73 33% 179.1 

Outer 42.2 0.67 32% 127.3 

*
 Excluding the SV area and recalculating tensile strength using the effective area (SF). 

 

Figure 6.11 Result from WAXS on fibrovascular bundles taken from inner (a), middle (b), and outer 

layers (c) of one sheet of windmill palm leaf sheath (Zhai et al. 2012). 

Figure 6.11 shows the wide-angle X-ray scattering (WAXS) patterns of 

fibrovascular bundles in the different layers of one sheet of leaf sheath. Apparently it is 

difficult to detect a difference in MFA of the major cell wall layer. The data listed in 

Table 6.4 were obtained from profile analysis. Although there is no statistical data, 
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results of MFA showed opposite rank of recalculated tensile strength according to the 

position of fibrovascular bundles. The MFA data and tensile strength measurements for 

windmill palm fibrovascular bundles conformed to the same principle previously 

observed in wood by researchers; namely, the lower the microfibril angle, the higher the 

modulus of elasticity and tensile strength of both wood tissues and individual wood 

fibers (Cave & Hutt 1969; Reiterer et al. 1999; Burgert et al. 2002; Groom et al. 2002; 

Burgert & Fratzl 2009). 

As seen in Table 6.4’s list of mechanical properties, the outer layer had 

significantly smaller values in comparison to the other two layers. The difference is so 

large that the MFA could not be due only to poor mechanical properties. Other factors, 

such as matrix and/or cell wall architecture, also seemed to be responsible. In addition, 

the chemical constituents of fibrovascular bundles from the different layers of the 

windmill palm were measured. According to chemical analysis results, there was no 

significant difference in fibrovascular bundles from the different layers, which again 

supports the above contention that matrix and/or cell wall architecture are responsible 

for a fibrovascular bundle’s mechanical properties. 

It is interesting that the fibrovascular bundles in one sheet of leaf sheath showed 

different tensile strength and that MFA values also varied. A similar difference in the 

scales of seed-bearing pine cones was found by Dawson et al. (1997). A scale consists 

of two tissues, which differ greatly in their tensile stiffness. Pine cone scales move in 

response to changes in relative humidity, which results in the release of the cone‘s seeds. 

Researchers have concluded that the mechanism of the bending of the scales depends on 

the way in which the orientation of cellulose microfibrils controls the hygroscopic 

expansion of the cells. An arrangement of tissues and cells with cell walls of different 

orientations of cellulose fibrils can be utilized for adjusting mechanical properties and 

controlling specific movements of organs as shown for wood, pine cones, and wheat 

awns (Burgert & Fratzl 2009; Elbaum et al. 2007). Consequently, complex movements 

caused by the swelling or shrinking of cell walls are achieved by having cell wall 

architecture with well ordered cellulose fibrils. In the windmill palm, the varying MFA 

in one sheet of leaf sheath might be related to the biomechanical movements of organs, 
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such as development of a crossed structure and expansion of leaf sheaths. 

6.5 Summary 

Fibrovascular bundles taken from a mature windmill palm leaf sheath can be 

divided into three groups according to their size, orientation, and location in one sheet 

of leaf sheath: inner, middle, and outer layers. The diameter of fibrovascular bundles in 

the middle layer was the largest, while the diameter of those in the inner layer was the 

smallest. Tensile strength and Young’s modulus showed a decreasing tendency with an 

increasing diameter of these fibrovascular bundles. SV and SF were measured by 

observing transmitted- and polarized-light photomicrographs of fibrovascular bundles 

from the three layers. The ratio of SV versus transverse sectional area in the inner layer 

was just 6%, while that in the middle layer was 33%. These findings strongly suggest 

that the tensile strength of fibrovascular bundle increases in parallel with a decrease of 

SV, while the presence of fibers predominantly contributes to mechanical strength. 

Therefore, the fibrovascular bundles in the inner layer were stronger that those in the 

middle layer. 

Excluding SV area and recalculating tensile strength using SF revealed that the 

tensile strength of the outer-layer fibrovascular bundles was lower than that of the inner 

and middle layer fibrovascular bundles. The MFA data of the three layers followed the 

principle observed in wood; namely, that the lower the microfibril angle, the higher the 

tensile strength. Indeed, the varying MFA in one sheet of leaf sheath might be related to 

the biomechanical movements of leaf sheath in the windmill palm—a topic worthy of 

further exploration. 
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Chapter 7 

Mechanical characteristics of fibrovascular bundles 

among different genus in palm 

7.1 Introduction 

The palm family (Arecaceae) consists of approximately 184 genera and about 2400 

species. Most palm species are distributed in tropical and subtropical areas, particularly 

in tropical Asia and America, with some species in Africa (Pei et al. 1991; Dransfield et 

al. 2008). Some of the species have been cultivated as economically important 

agricultural products. Numerous palm species have been described in the literature, 

including coconut palm (Cocos nucifera), oil palm (Elaeis guineensis), nipa palm (Nypa 

fruticans), and others (Law et al. 2007; Munawar et al. 2007; Khalil et al. 2008; 

Tamunaidu & Saka 2011; Shinoj et al. 2011). However, many other common palm 

species are distributed throughout Asia and America, and play important roles in local 

areas. For instance, windmill palm (Trachycarpus fortunei) growing in Asia areas 

provides a rich source of fibrovascular bundles from the leaf-sheath parts and is known 

for its use in thatched roofs, sofas, mats, mattresses, marine ropes, and traditional 

working tools (Zhai et al. 2012; 2013). The Kitul palm (Caryota urens), growing in 

humid tropical Asia, is commonly cultivated in villages and is best known for the 

production of jaggery (a crude brown sugar) from the inflorescence in Sri Lanka. The 

Kitul palm provides a significant source of income for local economies (Ratnayake et al. 

1990; de Zoysa 1992; Ashton et al. 1998). Furthermore, the Corypha palms provide raw 

material for palm-leaf manuscripts. Large collections of palm-leaf manuscripts are 

available in archives, museums, libraries, and Buddhist Gompas in India and Southeast 

Asia (Swarnakamal 1965; Dhawan 1995; Anupam 2002). 

The widespread use of palms by humans has received much attention. The palm 
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family is known to have been important to past civilizations; palm remains are often 

excavated at archaeological sites (Morcote-Ríos & Bernal 2001; Li 2008; Tengberg 

2012; Thomas et al. 2012). 

Tomlinson et al. (1961; 1990; 2011) did comprehensive research on the 

comparative study of palm anatomy, especially on palm stem anatomy. Thomas and De 

Franceshi (2013) provided new descriptors for standardized description of palm stem. 

Some selected features of stem anatomy showed relation with the phylogenetic 

classification which allows specialists in archaeology and paleontology to better exploit 

palm fossils. Except the palm stems, the fibrovascular bundles in palm from leaf-sheath 

also have been widely used and many palm fiber-based products are excavated from 

archeological sites. For instance, the palm species mentioned before, windmill palm, 

Kitul palm and the Corypha palms, produce abundant of natural fiber resources. 

However, few publications have reported on the anatomical, chemical and mechanical 

characteristics of these fibrovascular bundles. This chapter presents the anatomical 

characteristics, mechanical properties, microfibril angles (MFAs), and Klason lignin 

contents of leaf-sheath fibrovascular bundles from 14 palm genera. This whole set of 

knowledge in palm leaf-sheath fibrovascular bundles could facilitate further 

understanding of palm fiber-based products and utilization of these widespread natural 

fiber resources in future. 

7.2 Anatomical characteristics of palm fibrovascular bundles 

The diameters of fibrovascular bundles from each palm species have remarkable 

differences (Fig. 7.1). The fibrovascular bundles from each palm species could be 

generally divided into 2 to 3 groups based on their diameters (Fig. 7.1). Tomlinson 

(1964) illustrated three main anatomical types of vascular bundle from coconut leaf 

sheath based on the size of vascular bundles. Type I vascular bundles are largest and 

situated abaxially; type II are intermediate diameter either pectinate with the type I 

strands and so occupy abaxial furrows between the ridges, or form an indistinct adaxial 

series; and type III are smallest and are distributed without apparent order throughout 

the ground tissue in coconut leaf base. These types were based on the size of 
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cross-sectional area in different vascular bundles. Zhai et al. (2012) also mentioned that 

the fibrovascular bundles from leaf-sheath of windmill palm can be divided into 3 

groups. These groupings/classifications were based on the difference of diameters, 

orientations, and locations within one leaf in one palm species. 

 

Figure 7.1 Statistic spread of the fibrovascular bundle’s diameters among palm species. Open circles 

show original data, lines show mean diameters for the different palm species. The abbreviations 

presented in the figure refer to the Chapter 2. 

There was a further discovery at present research to classify the fibrovascular 

bundles among different palm species. A fibrovascular bundle consisted equally of 

thick-walled sclerenchyma fibers and vascular tissue (xylem vessels and phloem 

tissues) (Fig. 7.2). If focusing on the largest and intermediate fibrovascular bundles, 

namely the type I and type II vascular bundles in Tomlinson’s classification, it can be 

noted that the shape and localization of the vascular tissue on transverse sections of 

fibrovascular bundles varied among the different palm species. Figure 7.2 shows 

dominant (intermediate to large size in diameter) transverse-sectional images of the 

fibrovascular bundles for each palm species from 14 genera, taken with the same 

magnification. 
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Figure 7.2 Transverse sectional images of leaf-sheath fibrovascular bundles among different palm 

species taken by light microscope with the same magnification. The dotted circles in cma, cmo, cur 

and pda, indicate the area of thin-walled fibers in fibrovascular bundles. 
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Figure 7.2 (continued). 

On the basis of the anatomical differences in the vascular tissue, the palm 

fibrovascular bundles were classified into 3 types, A, B and C, as illustrated on the right 

side of Figure 7.3. The species with rounded vascular tissue located in the central region 

of the fibrovascular bundles were grouped into type A – vascular tissue rounded in the 

central region. The species in the genera Arenga and Caryota with rounded/angular 

vascular tissue located in the marginal region of a fibrovascular bundle were grouped 

into type B – vascular tissue angular in marginal region. In the remaining species, the 

vascular tissue was aliform in the central region; these species were grouped into type C 

– vascular tissue aliform in the central region (Fig. 7.3). 



Chapter 7 

109 
 

 

Figure 7.3 A diagram to show the phylogenetic classification of 14 genera in palm family 

(ARECACEAE), redrawn from Dransfield et al. (2008) and Tomlinson et al. (2011). A,B,C indicate 

three types of vascular tissues in fibrovascular bundles among 18 different palm species, where the 

grey area is occupied by sclerenchyma fibers and the white area by a vascular tissue. 

These 3 types of fibrovascular bundles also showed close correlation with the 

phylogenetic classification of palm species (Fig. 7.3). The fibrovascular bundles from 

the tribes Cocoseae, Borasseae, and Phoeniceae were classified as type A, and those 

from the tribe Caryoteae were classified as Type B. With the exception of R. excelsa, the 

fibrovascular bundles from the tribes Trachycarpeae, Coryoheae, and Sabaleae were 

classified as type C. In general, the anatomical differences between different palm 

species within a genus are quantitative or so small as to be obscured by the variation 

exhibited by a single individual (Tomlinson 1961, 1964). The observations presented 

here provide the first account showing correlation between the current phylogenetic 

classification and the shape and localization of vascular tissues within different palm 

species, which might provide a method of identifying palm fibrovascular bundles. 
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Similar research has been done by Grosser and Liese (1971) for 52 bamboo species 

from 14 genera. It was found that according to the presence and location of fiber strands 

in one vascular bundle, one can distinguish different types of vascular bundles within 

bamboo culm. Together with our present results, these imply that anatomical 

characteristics beside morphological features may help for the classification of bamboo 

and palm genera into natural systematic units. Considering the large number of palm 

species that occur worldwide, the anatomical features of vascular tissue of fibrovascular 

bundles in other palms are worthy of investigation in future research. 

 

Figure 7.4 The ratio of vascular tissue area to whole transverse sectional area (= SV/ SF+SV) against 

diameter of fibrovascular bundles from five palm species. 

A remarkable feature of the palm species examined here is that the ratio of vascular 

tissue area to entire transverse sectional area increased markedly with increasing 

diameter of fibrovascular bundles. Figure 7.4 shows examples of the dynamic 

correlation in 5 palm species. This anatomical feature also has a strong correlation with 

the mechanical properties of fibrovascular bundles, as will be described in section 7.5. 

 



Chapter 7 

111 
 

Table 7.1 Fiber dimensions
*
 and the derived values among different palm species (P < 0.05). 

Species Fiber length (mm) Fiber diameter (μm) Cell wall thickness (μm) Slenderness ratio Flexibility coefficient Runkel ratio 

Butia capitata 1.53 (±0.28) 11.7 (±1.8) 3.2 (±0.5) 132.8 45.0 1.28 

Cocos nucifera 1.05 (±0.29) 16.7 (±3.2) 3.4 (±0.9) 63.7 59.2 0.73 

Syagrus romanzoffiana 1.18 (±0.36) 16.2 (±2.7) 3.6 (±0.7) 72.8 54.8 0.87 

Elaeis guineensis 0.95 (±0.26) 15.1 (±1.9) 3.2 (±0.5) 63.8 58.7 0.72 

Medemia nobilis 0.92(±0.28) 13.5 (±1.7) 2.5 (±0.5) 69.7 63.1 0.62 

Phoenix dactylifera 1.28 (±0.29) 17.0 (±3.3) 4.0 (±0.7) 77.9 52.4 0.96 

Phoenix roebelenii 0.66 (±0.18) 11.6 (±1.5) 2.2 (±0.4) 57.9 61.2 0.66 

Arenga engleri 1.66 (±0.24) 15.6 (±1.9) 4.2 (±0.5) 107.7 45.9 1.21 

Arenga sp. 1.85 (±0.20) 13.8 (±1.6) 4.2 (±0.9) 136.3 39.5 1.72 

Caryota maxima 1.12 (±0.30) 16.9 (±3.3) 3.8 (±1.6) 69.1 54.7 0.80 

Caryota monostachya 1.76 (±0.48) 20.4 (±4.5) 4.0 (±1.0) 88.6 56.9 0.73 

Caryota urens 1.45 (±0.24) 16.9 (±2.5) 4.4 (±0.8) 87.3 48.0 1.12 

Corypha umbraculifera 1.11 (±0.32) 15.8 (±2.4) 2.3 (±0.7) 72.1 70.7 0.43 

Sabal umbraculifera 0.89 (±0.27) 14.6 (±1.3) 2.5 (±0.4) 62.1 65.2 0.54 

Washingtonia filifera 1.43 (±0.31) 14.9 (±3.3) 3.4 (±0.5) 98.5 53.4 0.91 

Livistona chinensis 0.76 (±0.14) 15.5 (±1.7) 2.1 (±0.4) 49.7 72.3 0.39 

Rhapis excelsa 0.74 (±0.14) 13.6 (±2.2) 3.2 (±0.5) 55.6 53.0 0.92 

*
Data are represented as mean and ± SD of 30 replications for each species. 
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Table 7.2 Mechanical properties
*
, MFAs and Klason lignin contents of fibrovascular bundles from different palm species (P < 0.05). 

Species Diameter (μm) Tensile strength (MPa) Young’s modulus (GPa) BRK. Strain (%) MFA (°) Kalson lignin (%) 

Butia capitata 228 (±42) 170 (±63) 2.5 (±1.6) 11 (±7) 17.6 (±3.9) 18.7 (±0.8) 

Cocos nucifera 260 (±57) 63 (±32) 1.8 (±0.7) 9 (±6) 29.3 (±1.5) 25.6 (±1.1) 

Syagrus romanzoffiana 466 (±79) 134 (±39) 1.3 (±0.8) 25 (±16) 13.4 (±1.8) 33.0 (±0.6) 

Elaeis guineensis 269 (±42) 228 (±74) 2.2 (±1.1) 17 (±5) 21.1 (±13.1) 26.2 (±2.0) 

Medemia nobilis 236 (±60) 83 (±31) 1.7 (±0.7) 24 (±12) 29.7 (±3.5) 34.7 (±2.2)
**

 

Phoenix dactylifera 473 (±125) 147 (±76) 1.5 (±1.0) 25 (±15) 15.6 18.3 (±1.3) 

Phoenix roebelenii 147 (±39) 162(±52) 2.1 (±0.9) 21 (±8) 23.5 (±1.4) 33.0 (±0.3)
**

 

Arenga engleri 259 (±57) 202 (±78) 2.9 (±1.7) 13 (±8) 10.3 (±1.4) 29.6 (±3.2) 

Arenga sp. 276 (±66) 76 (±27) 1.7 (±0.6) 8 (±4) 21.0 (±12.8) 37.8 (±0.7) 

Caryota maxima 202 (±65) 128 (±48) 2.3 (±1.5) 40 (±25) 30.1 (±3.3) 38.2 (±0.3) 
**

 

Caryota monostachya 262 (±90) 99 (±38) 1.2 (±0.6) 40 (±17) 47.1 (±6.6) 34.8 (±0.3) 

Caryota urens 402 (±94) 78 (±26) 1.2 (±0.6) 62 (±23) 34.8 (±2.2) 28.1 (±2.6) 

Corypha umbraculifera 323 (±37) 57 (±29) 1.2 (±0.5) 10 (±6) 28.1 (±2.6) 30.4 (±1.9)
**

 

Sabal umbraculifera 308 (±87) 111 (±36) 2.3 (±1.3) 13 (±8) 20.7 (±5.9) 25.8 (±0.7) 

Washingtonia filifera 214 (±38) 170 (±58) 1.7 (±0.7) 21 (±7) 22.9 (±3.5) 35.2 (±0.9) 

Livistona chinensis 250 (±63) - - - 24.2 (±2.6) 31.6 (±0.8) 

Rhapis excelsa 144 (±17) 109 (±36) 2.9 (±0.9) 11 (±4) 29.5 (±4.2) 33.9 (±1.0) 

*
 Data of mechanical properties are represented as mean and ± SD of 30 replications for each species. 

**
 The Klason lignin contents of these palm species include ash contents. These data were not used for discussion.  
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7.3 Anatomical characteristics of fibers in palm fibrovascular 

bundles 

The large and intermediate fibrovascular bundles, namely type I and type II in 

Tomlinson’s classification (1964), always have a large fiber strands with distinct 

vascular tissue area among different palm species. While, the fibrovascular bundles with 

small diameter, namely type III in Tomlinson’s classification, are almost completely 

composed of fibers. Usually, the fibers of fibrovascular bundles in each palm species 

have similar characteristics in fiber length, diameter and cell-wall thickness (Table 7.1). 

However, a specific feature observed in 3 species of Caryota and in P. dactylifera was 

that the safranin staining in sclerenchyma fibers was uneven, as indicated by the white 

and black dotted circles in Figure 7.2. This feature could be caused by differences in 

cell-wall thickness. Examining the data listed in Table 7.1, the standard deviation of 

cell-wall thickness in Caryota fibers was approximately ± 1 μm, suggesting that the 

difference in color staining of fibrovascular bundles was affected by cell-wall thickness. 

The thin-walled fibers usually appeared at the central region of fibrovascular bundles; 

the presence of thin-walled fibers may decrease the mechanical strength of the 

fibrovascular bundles. 

Furthermore, the anatomical characteristics of the sclerenchyma fibers from 

different palm fibrovascular bundles were surveyed using a maceration method. The 

length, diameter, and cell-wall thickness of fibers from the palm species are presented in 

Table 7.1. Fiber lengths varied from 0.66 to 1.85 mm. Fibers in the genera Arenga and 

Caryota were longer than those of other palm species, with an average value of 1.57 

mm. The average fiber length of P. roebelenii and T. fortunei was < 0.7 mm, much 

shorter than that of the other palm species. Table 7.1 also shows the derived values 

(pulp-quality indices) of fibers from different palm species. Generally, it is essential in 

pulping and papermaking that slenderness ratio of fibers is more than 33 and/or Runkel 

ratio is low (<1) (Xu et al. 2006). Almost all palm species listed in Table 7.1 show 

acceptable value. On the basis of the flexibility coefficient, fibers of conifer and 

broad-leaved trees are classified into 4 groups: 1, highly elastic (>75); 2, elastic 

(50–75); 3, rigid (30–50); and 4, highly rigid (<30) (Bektas et al. 1999; Kiaei 2011). 
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The flexibility coefficients in Arenga spp. and B. capitata were <50; these fibers can be 

considered as rigid. The flexibility coefficients of the fibers from the other 15 palm 

specimens ranged between 50 and 75; these fibers are considered elastic. 

7.4 Microfibril angles and Klason lignin contents 

The MFAs of fibrovascular bundles among the palm species, as analyzed by X-ray 

diffraction, varied from 10.3º to 47.1º (mean = 25.4º) (Table 7.2). The MFAs of palm 

fibers were larger than those reported for other non-woody plant fibers including flax 

(Linum sp., 11º), jute (Corchorus sp., 8.1º), sisal (Agave sisalana, 10–22º), pine apple 

(Anannus comosus, 8–14º), and banana (Musa sepientum, 11º) (Satyanarayana et al. 

1982; Baley 2002). The MFAs of palm species were also larger than those reported for 

wood fibers and tracheids (El-Osta et al. 1973; Yamamoto et al. 1993; Lichtenegger et 

al. 1999; Bonham & Barnett 2001). 

The Klason lignin contents of fibrovascular bundles from the different palm 

species ranged from 18.38% to 37.8%, with a mean value of 29.6% (Table 7.2). These 

values are much higher than those reported for other non-woody plants, including flax 

(2.0%), jute (15.9%), sisal (12%), and banana (12%) (Baley 2002; Razera & Forllini 

2003; Cordeiro et al. 2004; Megiatto et al. 2007). Lignin contents of the palm species 

were similar to those reported for conifers, including noble fir (Abies procera, 29.3%), 

western white pine (Pinus monoticola, 19.3%), and Douglas fir (Pseudotsuga menziesii, 

27.2%). Palm fibrovascular bundles had relatively high lignin content compared to 

those reported for broad-leaved trees, including yellow birch (Betula alleghaniensis, 

22.7%), quaking aspen (Populus tremuloides, 19.3%), and basswood (Tilia Americana, 

20.0%)(Panshin et al. 1964). 

7.5 Mechanical properties of palm fibrovascular bundles 

Typical stress-strain (S-S) curves of fibrovascular bundles among the palm species 

are shown in Figure 7.5. The S-S curves varied among the species and showed a yield, 

followed by long-term plastic deformation until breakage from 8% to 62% strain. 

Specially, the species from Caryota genus showed much larger break strain than other 

species. These data (Fig. 7.5) indicate that palm fibrovascular bundles are strong and 
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tough, i.e., they could show passive elongation before breakage, and the long-term 

plastic deformation allows them to dissipate energy. 

 

Figure 7.5 Typical stress-strain curves of fibrovascular bundles of different palm species, obtained at 

a crosshead speed of 1mm min
-1

 and using a gauge length of 10mm. Dash-dot line, dash line and dot 

line show stress-strain curves of species from Arenga (aen, asp), Caryota (cma, cmo, cur) and 

Phoenix (pda, pro) genus, respectively. Other species are in solid line.. 

Table 7.2 shows the mechanical properties of fibrovascular bundles of the various 

palm species. The tensile strengths of palm fibrovascular bundles were lower than those 

of other non-woody plants, including flax (1339 MPa), jute (466 MPa), seagrass (573 

MPa), sisal (568–640 MPa), and cotton (287–597 MPa) (Satyanarayana et al. 1982; 

Baley 2002; Razera & Forllini 2003; Davies et al. 2007; Müsig 2010), but were higher 

than those of pine (40 MPa) and rubberwood (15 MPa) (Munawar et al. 2007). In 

addition, the breakage strain of palm fibrovascular bundles showed much higher values 

than those of non-woody plants, including flax (3.3%), jute (8.1%), seagrass (3.4%), 

sisal (3–7%), and banana (1.0–3.5%) (Satyanarayana et al. 1982; Baley 2002), also as 

shown in Figure 7.6 a. 
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Figure 7.6 Illustration of elastic and plastic deformation behavior. (a) S-S curve shows elastic 

deformation region (1) and plastic deformation region (2) of different biomass materials. (b) Cell 

wall structural change during elastic and plastic deformation behavior. 

The high lignin contents in combination with large MFAs account for the relatively 

low tensile strength, limited elastic deformation, and long-term plastic deformation of 

palm fibrovascular bundles. As illustrated in Figure 7.6 b, the bonding agents of cell 

wall, such as hemicellulose and lignin, firstly crack during tensile stress applying. Then, 

the microfibrils with large incline angle slip to each other. This will lead to a decrease to 

microfibril angle. In this case, the microfibril could maintain a higher stress because of 

less microfibril angle. Finally, the cellulose chains in microfibrils with large 
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deformation will break. The breakage also will lead to the whole fiber fracture. 

However, before break and during microfibrils slip to each other, the whole fiber cell 

wall systems absorb a lot of energy. This is the reason why palm fiber strong and 

though. 

  

Figure 7.7 Relationships between cell wall Young’s modulus and microfbril angle, modified from 

Norimoto et al. (1986). 

Young’s moduli in Table 7.2 of all palm fibrovascular bundles were lower than 

those of flax (58 GPa), jute (26.5 GPa), seagrass (19.8 GPa), and oak (11 GPa) 

(Satyanarayana et al. 1982; Baley 2002; Davies et al. 2007; Munawar et al. 2007). 

According to Norimoto et al. (1986), the specific dynamic Young’s modulus depended 

remarkably on microfibril angle in S2 layer of Hinoki wood (Chamaecyparis obtusa), 

but slightly on other factors (Fig. 7.7). In case the microfibril angle is around 30 to 40 

degree, the cell wall Young’s modulus tends to be 6 to 8 GPa according to Figure 7.7. 

By the following equation, we could speculate the tensile test result of fibers with 30 to 

40 degree of microfibril angles. 

E palm fiber = E cell wall of tracheid×ρ palm fiber density /ρ conifer tracheid density 

Which, E cell wall of tracheid is assumed around 6 to 8 GPa, ρ conifer tracheid density is around 

1.46 to 1.47 g/cm
3
, and ρ palm fiber density is around 0.22 to 0.62 g/cm

3 
among different 
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species. 

By this equation, the calculated Young’s moduls of palm fibers, E palm fiber, would 

be around 1 to 3 GPa, which showed a good agreement of the experimental results 

(Table 7.2). 

 

 

Figure 7.8 Relationships between diameter and mechanical properties for the fibrovascular bundles 

from different palm species. (a) Tensile strength plotted as a function of diameter in palm 

fibrovascular bundles. (b) Young’s modulus plotted as a function of diameter in palm fibrovascular 

bundles. 
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It was noted that the diameter of fibrovascular bundles influenced the tensile 

strength and Young’s modulus for all palm species. The general relationships between 

diameter and mechanical properties of fibrovascular bundles from 8 selected palm 

species are illustrated in Figure 7.8. It was striking phenomenon that as diameter 

increased, tensile strength and Young’s modulus decreased. A similar phenomenon was 

found in fiber bundles from flax (Baley 2002), ramie, abaca leaf, and pineapple leaf 

(Munawar et al. 2007). Unfortunately, any reasonable explanation on this phenomenon 

has not been given by any papers. This phenomenon cannot be easily explained, 

because if the characteristics of fiber bundles are the same, the mechanical properties of 

fiber bundles of different diameters should also be the same. Our previous publication 

pointed out that the thick-walled sclerenchyma fibers predominantly contribute to the 

mechanical properties of fibrovascular bundles in windmill palm, while vascular tissues 

tend to reduce mechanical strength (Zhai et al. 2012). Considering the similar structural 

and mechanical properties of the individual fiber cells in a fibrovascular bundle, the 

ratio of vascular tissue to the entire transverse sectional area (sclerenchyma + vascular 

tissue) would be a key factor affecting mechanical properties of the fibrovascular 

bundles in palm species. In the present research, it was noted that this ratio increased 

markedly with increasing diameter of fibrovascular bundles (Fig. 7.4), indicating that 

the percentage of sclerenchyma fibers that affected mechanical properties decreased. 

These results demonstrated that the larger the diameter of fibrovascular bundles, the 

lower the mechanical strength, in all of the palm species examined. 

7.6 Summary 

This study on the anatomical characteristics of fibrovascular bundles from different 

palm species showed 3 types of fibrovascular bundles, based on the shape and 

localization of vascular tissues. These 3 types of fibrovascular bundles showed 

correlation with the phylogenetic classification of palm species. 

The correlation between diameter and mechanical properties of fibrovascular 

bundles was further confirmed in all examined species. By observing the area occupied 

by sclerenchyma fibers and vascular tissue, it is noted that the proportion of the 
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transverse sectional area composed of vascular tissue increased markedly with 

increasing diameter of palm fibrovascular bundles. These findings explain why tensile 

strength and Young’s modulus decreased with increasing diameter of fibrovascular 

bundles. 

The large MFAs of palm fibers in combination with high lignin contents, result in 

limited elastic deformation, long-term plastic deformation, and relatively low tensile 

strength of palm fibrovascular bundles. However, it is difficult to find the major factors 

that contributed to the mechanical properties of palm fibrovascular bundles among 

different species. The mechanical properties are effected by fiber dimensions (fiber 

length, fiber diameter and cell wall thickness), vascular tissue area, fibrovascular 

bundle’s diameter, MFAs, lignin contents, etc. among different palm species. 
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Conclusion 

The Palmae distributes worldwide and is one of the biggest groups together with 

bamboo and rattan among monocotyledon. Many palm species, for instance windmill 

palm, oil palm and coconut palm, are important plants for the daily life of human beings. 

In daily life, palm fibers have been widely used to make different products such as ropes 

with excellent durability/stability, Tawashi (a type of traditional-style brush used in 

Japan) and Houki (brooms). These fibers are from leaf sheath of palms. 

According to the measurement, the height of leaf sheath almost had no change 

from top to bottom of the stem. The circumference length of leaf sheath was the same 

with circumference length of palm stem. The bottom part showed living tissue, while 

the top part a sheet or assembly of mature fiber bundles only. In between top and bottom, 

there was a transition area with light brown color where parenchyma tissues already 

died and still attached to vascular bundles loosely. When observing the vascular bundles 

embedded in the living tissue of leaf sheath closer, vascular bundles with crossed 

structure was visualized. The evidence was further confirmed by the microscopic 

observation of the longitudinal section parallel to a living tissue. It is noted that crossed 

structure of mature leaf sheath originated from it developmental stage. The 

transformation of chemical contents in leaf sheath along the axial direction including 

transition area was found by FTIR analysis. As fibers becoming matured and separated, 

the contents of cellulose and hemicellulose tended to decrease gradually, while lignin 

increased. 

The cell wall structure of windmill palm fibers appeared different from that of 

common fibers/tracheids of hardwoods and softwoods, and even from bamboo and 

rattan. In case of the windmill palm fiber, the secondary wall comprises just two layers 

(outer and inner ones) with a crossed orientation of cellulose microfibrils in a single cell 

wall. The ratio of the S1 to the whole cell wall thickness of the windmill palm fibers was 

much higher than that of fibers/tracheids in softwood and hardwood. The MFA of the S1 

layer of the windmill palm fibers was smaller and MFA of S2 was larger compared to 
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that of normal wood fibers and tracheids. Further, the fibrovascular bundles of windmill 

palm showed a high lignin content. These evidences could help to explain the high 

durability and large elastic extension of windmill palm fibers. After investigating the 

cell wall structure of leaf fibers from 20 different palm species by light and electron 

microscopy, it was confirmed that the secondary wall consisted of only two layers, S1 

and S2. The occurrence of S3 layer claimed in fibers from leaf part of coconut palm and 

oil palm (Abdul Khalil et al., 2006, 2008) was not confirmed in leaf fibers of 18 palm 

species examined in the present investigation. Therefore, it was concluded that the 

two-layered structure of S1 and S2 was the unique and specific character in palm leaf 

fibers being different from other monocotyledons (such as bamboo and rattan) and 

wood. 

 Fibrovascular bundles taken from a mature windmill palm leaf sheath can be 

divided into three groups according to their size, orientation, and location in one sheet 

of leaf sheath: inner, middle, and outer layers. The diameter of fibrovascular bundles in 

the middle layer was the largest, while the diameter of those in the inner layer was the 

smallest. Tensile strength and Young’s modulus showed a decreasing tendency with an 

increasing diameter of these fibrovascular bundles. SV and SF were measured by 

observing transmitted- and polarized-light photomicrographs of fibrovascular bundles 

from the three layers. The ratio of SV versus transverse sectional area in the inner layer 

was just 6%, while that in the middle layer was 33%. These findings strongly suggest 

that the tensile strength of fibrovascular bundle increases in parallel with a decrease of 

SV, while the presence of fibers predominantly contributes to mechanical strength. 

Therefore, the fibrovascular bundles in the inner layer were stronger that those in the 

middle layer.  

The anatomical characteristics of fibrovascular bundles from 18 different palm 

species showed 3 types of fibrovascular bundles, based on the shape and localization of 

vascular tissues. These 3 types of fibrovascular bundles showed correlation with the 

phylogenetic classification of palm species. The correlation between diameter and 

mechanical properties of fibrovascular bundles was further confirmed in all 18 palm 

species. By observing the area occupied by sclerenchyma fibers and vascular tissue, it 
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was noted that the proportion of the transverse sectional area composed of vascular 

tissue increased markedly with increasing diameter of palm fibrovascular bundles. 

These findings explain why tensile strength and Young’s modulus decreased with 

increasing diameter of fibrovascular bundles commonly to a number of palm species. 

The large MFAs of palm fibers in combination with high lignin contents, result in 

limited elastic deformation, long-term plastic deformation, and relatively low tensile 

strength of palm fibrovascular bundles. However, it is difficult to find the major factors 

that contributed to the mechanical properties of palm fibrovascular bundles among 

different species. The mechanical properties are influenced by fiber dimensions (fiber 

length, fiber diameter and cell wall thickness), vascular tissue area, fibrovascular 

bundle’s diameter, MFAs, lignin contents, etc. among different palm species. 
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