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Abstract 

Adverse antenatal maternal environments during pregnancy influence fetal development that 

consequently increases a risk of mental health problems including psychiatric disorders in 

offspring.  Therefore, behavioral and brain alterations caused by adverse prenatal 

environmental conditions are generally considered as deficits.  In this article, we propose a 

novel hypothesis, along with summarizing a body of literatures supporting it, that fetal 

neurodevelopmental alterations, particularly synaptic network changes occurring in the 

prefrontal cortex, associated with adverse prenatal environmental conditions may be adaptation 

to cope with expected severe postnatal environments, and therefore, psychiatric disorders may be 

able to be understood as adaptive strategies against severe environmental conditions through 

evolution.  It is hoped that the hypothesis presented in this article stimulate and open a new 

venue on research toward understanding of biological mechanisms and therapeutic treatments of 

psychiatric disorders. 
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1. Introduction 

Extensive investigation has now unveiled that antenatal maternal environments during pregnancy 

substantially influences fetal brain development that could ultimately cause mental health 

problems in offspring.  Epidemiological studies have shown that prenatal exposure to adverse 

environmental factors such as stress, famine, and virus infection, is associated with increased 

risks of psychiatric disorders such as schizophrenia, attention deficit/hyperactivity disorder 

(ADHD), and autism in offspring (Malaspina et al., 2008; Rice et al., 2010; Kinney et al., 2008; 

Ronald et al., 2011; van Os and Selten, 1998; Rodriguez and Bohlin, 2005; Khashan et al., 2008; 

Brown et al., 1995a; Brown et al., 2000; Susser et al., 1996; Favaro et al., 2011; Mednick et al., 

1988; Brown et al., 1995b; Brown, 2006; Machon et al., 1997). 

It is generally agreed that behavioral and brain changes caused by prenatal exposure to 

adverse environmental conditions are “deficits”, “impairments”, and “abnormalities”.  However, 

this doctrine may be challenged by the following two apprehensions.  First, the fetal brain is 

likely to be highly plastic.  For instance, even in the adult brain in which plasticity, an ability of 

the system to be modulated by experience and environments, would be more limited than that in 

the fetal brain, the plasticity mechanism try to recover damages caused by stroke or ischemia 

(Kolb and Whishaw, 1998; Hallett, 2001; Hosp and Luft, 2011).  If there is any defect in the 

process of brain development, plasticity mechanism should overcome such a deficit.  

Nevertheless, studies have found no trace of any compensatory action that correct a deficit, 

interruption, or deviation of fetal brain development incurred by prenatal exposure to 

environmental insults.  This provokes a question of why the highly dynamic plasticity 

mechanism in the fetal brain does not fix developmental changes that produce unfavorable 

consequences.  Second, if maternal exposure to environmental insults yields negative influences 
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on fetal development, why does the biological system has to be existent that deliberately 

transmits adverse environmental information from mothers to fetuses that produces unfavorable 

changes in fetuses?  Existence of such an unfavorable system is especially inexplicable from the 

evolutionary biological perspective. 

One possible answer to the above questions is a hypothesis that fetal developmental 

changes caused by prenatal exposure to environmental insults are not deficits, but adaption to 

prepare for expected severe environmental conditions after birth.  Indeed, we usually consider 

prenatally-induced alterations as deficits in a daily postnatal environmental condition (the 

environmental condition that the majority of lifetime is spent).  In contrast, we have missed to 

consider how prenatally-induced changes could fit into a rather unusual postnatal environmental 

condition. 

 The idea that fetal developmental alterations with adverse prenatal environmental 

conditions may be adaptation to prepare for postnatal severe environments is, although barely 

considered in the field of neuroscience, in fact not a new, but it has been originally proposed by 

the UK medical scientist, David Barker, and therefore known as Barker hypothesis.  The 

finding that led him to propose the hypothesis is a significant association between low birth 

weight and adverse adult health outcomes such as coronary heart disease and diabetes (Barker, 

1997; Godfrey and Barker, 2000).  This observation can be explained as following.  Thus, low 

birth weight in fetuses may indicate insufficient nutrition during pregnancy.  To cope with low 

nutrition, fetal metabolism is lowered to conserve more energy.  However, when such offspring 

with low metabolism is exposed to adequate nutrient after birth, it results in abnormally 

excessive energy conservation and consequently causes health problems.  Increasing empirical 
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evidence has now supported this hypothesis (for instance, see review papers such as Lumey et al, 

2011, for the summary of research supporting the Barker hypothesis). 

 

2. Prenatal stress as environmental adaptation 

2.1. Effects of prenatal stress in humans 

A huge body of literatures has unveiled the effects of prenatal stress on fetal development and 

consequent postnatal behavioral changes in both humans and animals (for instance, summaries of 

human and rodent studies can be found in the review papers by Kingston et al., 2012 and 

Weinstock, 2008).  It is not possible to review all of these findings, and also not the scope of 

this paper.  Instead, here we summarize some of major findings on prenatal stress-induced 

behavioral alterations and discuss them in the context of environmental adaptation. 

Both retrospective and prospective studies have been conducted to examine the 

relationship between prenatal stress/anxiety and offspring behaviors in human subjects.  These 

studies found that prenatal stress/anxiety causes increased rate of low birth weight and preterm 

deliveries (Wadhwa et al., 1993), and augmented stress responses in offspring (Vrekoussis et al., 

2010; Austin and Leader, 2000; Knackstedt et al., 2005; Phillips and Jones, 2006).   

Whether a single, severe stress exposure during pregnancy may impact offspring 

behavior was investigated in mothers exposed to disasters.  In the study with mothers who were 

stressed by Chernobyl exposure, offspring born from such stressed mothers were found to show 

slower motor and mental development as infants (Huizink et al., 2007).  Children born from 

mothers exposed to Canadian ice storm exhibit altered pattern of play, lower general IQ, and 

language abilities than control groups, although whether these children have deficits in specific 

domain of cognitive functions other than language has remained unclear (Laplante et al., 2008).  
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The study with mothers exposed to World Trade Center attack during pregnancy has reported 

that among these mothers, those who had subsequently developed post-traumatic stress disorder 

(PTSD) was found to exhibit lower baseline stress hormone level than others who did not 

develop PTSD (Yehuda and Bierer, 2008).  Offspring born from such mothers who had 

developed PTSD have lower cortisol level and are more likely to develop PTSD than offspring 

born from the mothers without PTSD (Yehuda and Bierer, 2008). 

Other studies examined the effects of prenatal stress with milder, but more prolonged 

exposure.  Convergent evidence from various studies (for examples, O'Connor et al., 2002; 

Niederhofer, 2004; Rieger et al., 2004; Huizink et al., 2007) suggests that maternal anxiety/stress 

level during pregnancy is correlated with emotionality in offspring.  Thus, offspring born from 

mothers with high anxiety/stress during pregnancy exhibit heightened anxiety and greater 

negative emotional behaviors.  In contrast, whether maternal stress/anxiety during pregnancy 

affects cognitive function in human offspring has essentially remained unclear.  For instance, 

maternal stress/anxiety during pregnancy has been also shown to increase intra-individual 

variability in performance of the reaction-time task in boys, but not girls (Loomans et al., 2011).  

This finding, however, does not necessarily mean that these offspring have cognitive 

impairments.  Bergman and colleagues have reported that offspring born from mothers with 

higher stress hormone level during pregnancy exhibit greater fearfulness and slower cognitive 

development than offspring without prenatal stress.  Moreover, these changes are more 

prominent in offspring born from stressed mothers experience insecure infant-mother attachment 

(Bergman et al., 2008).  Niederhofer and colleagues have examined motor responses to 

vibroacoustic stimuli in the third trimester fetuses (Niederhofer, 2004).  They found that the 

responses were attenuated in fetuses of mothers exposed to stress.  Although they have 
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suggested based on this finding that such attenuated responses to stimuli may be associated with 

learning impairments, this is apparently over-interpretation of the results.   

Based on these studies, one seemingly convergent conclusion is, unlike animal studies 

discussed in the next section, the effects of prenatal stress on any specific domain of cognitive 

function in human offspring are not clear, whereas prenatal stress-induced alterations on 

emotionality are documented in some extent.  Thus, a caution has to be given not to overtly 

apply findings of prenatal stress effects on cognitive impairments made in animals into human 

cases. 

 

2.2. Effects of prenatal stress in rodents and non-human primates 

A majority of animal studies investigating prenatal stress effects is conducted in rodents (mostly 

in rats), and less extent in non-human primates (mostly in rhesus macaques).  Although in 

human studies, increased rate of lower birth weight and preterm deliveries are relatively 

consistently observed, these are controversial in rodents.  Although one study has reported that 

prenatal stress results in smaller size of newborn pups (Drago et al., 1999), others were unable to 

find smaller pups (Guo et al., 1993; D'Mello and Liu, 2006) and altered duration of gestation 

(D'Mello and Liu, 2006), suggesting that general effects of stress on pregnancy may slightly 

differ between human subjects and rodents.  However, similar to human offspring born from 

stressed mothers, stress response in rodent (Weinstock et al., 1992; Vallee et al., 1999; Koenig et 

al., 2005; Mastorci et al., 2009) and primate (Clarke et al., 1994) offspring exposed to prenatal 

stress seem more robust (i.e. prolonged stress hormone release) than that in animals without 

prenatal stress. 
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An assortment of behavioral alterations, some of which are relatively consistently 

reported and others are controversial, has been reported to be caused by prenatal stress in rodents 

and non-human primates.  These prenatal stress-induced behavioral alterations include deficits 

in cognitive function such as spatial learning (Vallee et al., 1999) and working memory (Vallee 

et al., 1999), affective function such as heightened anxiety (Vallee et al., 1997), fear-related 

behavior (Lehmann et al., 2000; Griffin et al., 2003), and abnormal social behaviors (Clarke and 

Schneider, 1993; Lee et al., 2007), and auditory sensory gating (Hunter et al., 2012; Koenig et al., 

2005). 

 

2.3. Is spatial learning deficit adaptive behavioral change? 

Whether the behavioral alterations mentioned above are adaptation to cope with expected 

postnatal stressful condition is not apparent.  Moreover, most of these altered behavioral 

phenotypes are clearly disadvantages in the non-stressful environmental condition.  However, a 

cautious consideration on the relationship between stressor types and induced alterations may be 

able to provide a novel insight that indicates a possibility of adaptation, rather than deficit, of 

brain function to cope with an expected postnatal stress condition.  In this context, it is 

interesting to note that majority of rodent studies examining prenatal stress effects have utilized 

restraint stress procedure. 

Spatial learning and memory in rodents born from dams exposed to stress during 

gestation has been extensively investigated.  In almost all studies utilizing restraint stress 

procedure, spatial memory has been reported to be impaired in offspring born from mothers 

exposed to prolonged, repeated restraint stress [for examples (Bustamante et al., 2010; Lui et al., 

2011; Szuran et al., 1994; Vallee et al., 1999; Lemaire et al., 2000; Son et al., 2006; 
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Hosseini-Sharifabad and Hadinedoushan, 2007; Yaka et al., 2007)], whereas there are also 

several studies showing enhancement of spatial memory with prenatal restraint stress (Fujioka et 

al., 2001; Cannizzaro et al., 2006), in which, however, restraint stress given to dams was milder 

(e.g. only single exposure) than the more commonly used procedure.  Strikingly, spatial 

memory appears to be relatively intact or even enhanced with repeated exposure to stressors 

other than restraint such as exposure to stressful sensory stimuli (Kapoor et al., 2009), unfamiliar 

social group (Aleksandrov et al., 2001), and psychological stress by observation of other rodents 

being electrically shocked (Abe et al., 2007).  Moreover, prenatal administration of 

glucocorticoids (Salomon et al., 2011) or dexamethasone (Brabham et al., 2000), does not affect 

spatial memory in offspring.  These studies collectively indicate that spatial memory deficits 

may not be in fact “deficit” but rather “adaptation”.  Indeed, the most characteristic feature of 

restraint stress is rigorous limitation of spatial information processing while pregnant rodents are 

exposed to stress.  If restraint stress given to dams is prolonged and repeated (i.e. it is 

inescapable from stress by moving to other place), and this is the stress condition that offspring 

expects to encounter postnatally, spatial learning ability may be less important as it is 

inescapable from stress by moving to other places, and attenuated spatial learning ability may 

actually enable to better cope with anxiety/stress response associated with place-specific stress 

encountering.  On the other hand, when stress is milder and brief (i.e. the condition that stress 

can be avoided by moving to another place), the most important action is to escape from and not 

to return to the place where stress is provoked.  Thus, enhanced spatial learning may increase a 

chance to escape from danger or stress-provoking place.  Adaptation, but not deficit, of spatial 

learning caused by prenatal restraint stress may be further supported by sexually dimorphic 

effects of prenatal stress.  Although spatial memory is impaired in male offspring with severe 
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prenatal restraint stress, it is conversely enhanced in female offspring (Bowman, 2005; Zuena et 

al., 2008).  If altered spatial learning with prenatal restraint stress is a deficit, the reason of 

sexual dichotomy of prenatal stress-induced alterations on spatial learning is less clear.  Indeed, 

enhancement of spatial memory may yield advantages to female animals, since information of a 

particular location is critical to them for assurance of resources (i.e. foods and shelters) for 

perseveration of the species even in the severe stress condition (New et al., 2007). 

 

2.4. Gender-associated behavioral changes as adaptation to social stress 

A further support that behavioral changes caused by prenatal stress may be adaptation to 

postnatal stress condition comes from a series of studies by Kaiser and colleagues investigating 

the effects of prenatal social stress in guinea pigs.  In their studies, dams were exposed to social 

stress by placing them in unfamiliar groups of animals.  Female offspring born from socially 

stressed dams exhibit a trait of masculinization such as high level of male-typical courtship 

behavior, increased testosterone level, and male-like (increased) androgen receptor distribution 

in the limbic system (Kaiser et al., 2003b).  In contrast, male offspring born from socially 

stressed dams exhibit a trait of infantalizaiton/demasculinization such as less sexually-motivated 

courtship behavior, delayed maturation of the male hormonal system, infant-typical behavior 

such as resting with body contact on other animals, and down-regulation of androgen receptor 

expression in the limbic system (Kaiser et al., 2003a).  Based on these observations, they have 

proposed that these gender-related changes in offspring caused by prenatal social stress may be 

adaptation to cope with a socially stressful (crowding) environment expected to encounter after 

birth (Kaiser and Sachser, 2009).  Thus, masculinization may enable females to facilitate the 

attainment of dominant social class that may benefit securing of foods and shelters in the 
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crowding environment.  In contrast, infantilization/demasculinization may enable males to 

avoid agonistic encounters at early age and thereby increase a chance of later siring in the group 

and reproduction. 

 

2.5. Cognitive impairments with prenatal variable unpredictable stress 

The studies by Koenig and colleagues have utilized variable unpredictable stress to examine the 

effects of prenatal stress on offspring behaviors (Markham et al., 2010; Koenig et al., 2005).  

Variable unpredictable stress procedure employs exposure to different types of stressors over 

gestation.  Interestingly, these studies found a wide range of behavioral alterations from sensory 

gating deficit to working and long-term memories, which are not to be reported in other studies 

with repeated exposure to a single modality of stress.  There must be reasons that such various 

behavioral alterations are produced with exposure to variable prenatal stressors, and it may be 

adaptation to cope with expected postnatal stress condition, but such stress is originated in 

variable sources.  For instance, decreased social interaction and working memory impairments 

caused by prenatal stress appear to cause only disadvantages, and there is no apparent benefit at 

all.  Nevertheless, for instance, a stressful environment expects less survivors and poor social 

organization than the non-stressful condition.  In such condition, prenatal stress-induced 

decrease of social interaction may increase a chance of survival with less social-dependence and 

greater resistance against social isolation.  In a life-threatening severe environment, analytical 

and critical thinking that depends on working memory may not be much useful, whereas almost 

automatic stimulus-response (escape) behavior may even increase a chance of survival. 

 

3. Biological mechanisms of maternal-to-fetal communication of stress 
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Studies often report variable, and sometimes even opposite, effects of prenatal stress.  It is 

believed that such differential stress effects may be associated with timing, severity, and duration 

of stress exposure, as well as stressor types.  In prenatal stress effects, timing of stress exposure 

appears to be the greatest concern, as depending on when maternal stress is given during 

pregnancy, stress may affect different developmental stages in fetuses, leading of distinct 

outcomes.  However, timing of stress exposure alone apparently does not explain all differences 

of prenatal stress-induced alterations, as the results of studies with prenatal stress given at the 

identical developmental stage are still mixed (Charil et al., 2010; Grizenko et al., 2008; Kinney 

et al., 2008; Weinstock, 2008). 

In contrast, from both human and animal studies described above, it appears that 

behavioral changes caused by prenatal stress are significantly associated with stressor types.  

This challenges the generally accepted belief that prenatal stress-induced alterations in fetuses 

are achieved by maternal-to-fetal transfer of stress hormones (Charil et al., 2010; Avishai-Eliner 

et al., 2002).  Indeed, some alterations in offspring born form dams exposed to stress may be 

associated with maternal-to-fetal transfer of stress hormones.  Such alterations would be 

mutually produced by exposure to stress regardless of stressor types.  In contrast, behavioral 

changes associated with a specific stress modality may involve molecules other than stress 

hormones.  For instance, this is clearly supported by the studies showing that, unlike restraint 

stress, administration of stress hormones, corticosterone (Salomon et al., 2011) or 

dexamethasone (Brabham et al., 2000), to dams does not impair spatial memory in offspring.  

One potential candidate of such molecules may be microRNA (miRNA).  miRNA is an 

endogenous, short, double strand, RNA (Carthew and Sontheimer, 2009).  miRNA has been 

shown to be an important regulator of brain development (Sayed and Abdellatif, 2011; Coolen 
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and Bally-Cuif, 2009).  miRNA can circulate the body with exosome encapsulation, and plays 

important role on cell-cell communications (Valadi et al., 2007; Mitchell et al., 2008).  

Moreover, specific classes of miRNA are dynamically expressed in the placenta throughout 

pregnancy (Chiu and Lo, 2010; Miura et al., 2010; Chim et al., 2008), and their 

pregnancy-related expression are altered by maternal conditions such as smoking (Maccani et al., 

2010) and hypoxia (Mouillet et al., 2010).  Indeed, placenta-derived exosomes have been 

implicated to influence fetal growth (Mincheva-Nilsson and Baranov, 2010).  Collectively, 

maternal-to-fetal transfer of miRNA may be involved in maternal-to-fetal communication and 

produce environmentally-specific alterations on fetal development. 

 

4. Adaptation to other environmental factors 

The effects of prenatal exposure to various environmental factors other than stress on offspring 

health outcomes have been also examined.  These include prenatal exposure to 

immunotoxicants including viruses and allergens.  Consistent findings are potentiated responses 

to postnatal exposure to the stimuli that are exposed in utero.  Thus, organisms exposed to 

immunotoxicants in utero exhibit heightened immune and inflammatory activation, often 

expressed as autoimmune diseases (Holladay, 1999).  Children born from mothers exposed to 

allergens during pregnancy exhibit greater allergic responses, but also improved respiratory 

function (Woodcock et al., 2004).  Potentiated responses to environmental stimuli could add a 

significant advantage in organisms for survival in the adverse environmental conditions by 

enabling early detection of threats, and escape from them.  Moreover, prenatal exposure to 

environmental stimuli such as viruses, famine, and stress produces various behavioral changes in 

offspring, some of which are, however, mutually observed regardless of exposure to completely 
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distinct environmental stimuli.  These mutual behavioral changes caused by distinct prenatal 

environmental factors may therefore be considered as adaptation to generalized adversities or 

threats independent of a modality of environmental conditions. 

Adaptation to environmental stimuli may also happen at the perinatal and neonatal 

periods as well as even in adulthood.  Obstetric complications, especially the case that involves 

hypoxia, have been shown to induce behavioral changes in offspring (Boksa, 2004).  Such 

hypoxia-induced alterations may be similar to prenatal exposure to high altitude that could alter 

uterine artery blood flow and arterial PCO2/O2 saturation (Julian et al., 2007), but hypoxia in 

obstetric complication is more brief and severe than the high altitude condition.  Studies of 

cerebral ischemia in adult brains suggest that glial cells play a major role on protective (adaptive) 

response to ischemia (Nedergaard and Dirnagl, 2005).  Thus, if obstetric complication may 

induce adaptive changes, it may alter glial function, which in turn alters behaviors of offspring.  

In this context, it is interesting to note that obstetric complication is a robust risk factor of 

schizophrenia [e.g. 10-fold greater likelihood of developing schizophrenia in offspring (Verdoux 

et al., 1997)], and altered glial function has been implicated in the pathology of schizophrenia 

(Mitterauer, 2011; Moises and Gottesman, 2004; Rothermundt et al., 2007). 

 

5. Prenatal environmental adaptation hypothesis 

Collectively from the studies described above, it appears that behavioral alterations observed in 

offspring born from mothers exposed to a particular environmental condition follow a specific 

modality of that environmental factor.  Thus, for instance, if prenatal stress-induced alterations 

are adaptation (i.e. preparing to anticipated postnatal stressful life) rather than deficits, offspring 

born from mothers exposed to stress may be benefited with the alterations in the postnatal 
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stressful condition, whereas these individuals may have disadvantages with the alterations in the 

non-stressful environmental condition.  In contrast, the phenotypes that develop during 

environmental conditions without stress could be also adaptive.  This leads to a hypothesis that 

prenatal environmental conditions influence the development of behavioral phenotypes in 

offspring that can represent adaptations that match with expected postnatal environmental 

conditions.  Indeed, such a hypothesis is not a new, but has been already proposed by others 

(Kaiser and Sachser, 2009). 

 

6. Prenatal and postnatal stress interaction 

The hypothesis implicates the importance of longitudinal investigation of stress effects, which 

has been barely conducted previously.  Extensive studies have been conducted to examine the 

effects of prenatal or postnatal stress alone.  In contrast, there are only few studies examining 

stress effects with multiple times of exposure along different ages.  Indeed, stress exposure is 

not a single life event, but more likely to be multiple times throughout the life.  In particular, 

whether alterations caused by stress are deficits or adaptation must be withdrawn only by 

examining how alterations produced at the first time of stress exposure impact on responses to 

subsequent stress exposure. 

Several studies have investigated interaction between the effects of prenatal stress and 

postnatal stress; however, almost all of them are limited during the neonatal period.  A line of 

evidence has argued that expression of at least some aspects of behavioral alterations caused by 

prenatal stress requires a neonatal stress condition such as decreased maternal care.  This is 

based on the finding that dams exposed to stress provide less maternal care to pups than 

non-stressed mothers (Champagne and Meaney, 2006).  Moreover, cross-fostering of pups born 
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from stressed dams to non-stressed dams diminishes prenatal stress-induced behavioral 

alterations (Del Cerro et al., 2010; Maccari et al., 1995; Barbazanges et al., 1996; Burton et al., 

2006).  It has been also shown that prenatal stress effects are reversed by neonatal handling 

(Wakshlak and Weinstock, 1990).  These studies suggest that neonatal period may be a window 

to match with prenatal and postnatal environmental condition, with early postnatal stress such as 

insufficient mother-infant attachment augmenting, whereas better than the expected 

environmental condition such as sufficient mother-infant attachment reversing, the effects of 

prenatal stress. 

Modulation of prenatal stress effects by postnatal environmental condition also supports 

that alterations caused by prenatal stress are adaptation.  If prenatal stress-induced alterations 

are “deficits”, ceiling effects are expected (e.g. maternal deprivation has smaller effects on 

prenatal stress-induced alterations).  Moreover, it appears that potentiation by maternal 

deprivation, and reversal by increased maternal care, of prenatal stress effects may be best 

interpreted as the process that maternal deprivation (i.e. matching with prenatal and postnatal 

conditions as stressful) ensures the necessity of behavioral changes caused by prenatal stress, 

whereas prenatal stress-induced alterations are reversed because the postnatal environmental 

condition does not meet with the prenatal stressful condition.  Indeed, in this context, that 

stressed mothers provide less maternal care to pups is more reasonably understandable. 

 

7. Biological substrate of prenatal environmental adaptation 

Development of synaptic connections in the cortex and limbic structures starts during the 

prenatal period.  In human prefrontal cortex (PFC), synaptogenesis and synaptic proliferation 

continues up around 5~6 year olds, and subsequently subjected for synaptic pruning throughout 
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adolescence for fine tuning of the network (Huttenlocher, 1984; Rakic et al., 1986).  Thus, 

development and maturation of PFC synaptic network continues from the prenatal period to early 

adulthood, and thereby, dynamic synaptic changes can be influenced by both prenatal and 

postnatal environmental conditions.  A similar pattern of over-production of synaptic 

connections followed by pruning is also observed in limbic structures such as the hippocampus 

of rodents (Afadlal et al., 2010), although this appears to be less clear in the human hippocampus 

(Eastwood et al., 2006).   

Prenatal stress (Afadlal et al., 2010; Mychasiuk et al., 2012; Murmu et al., 2006) and 

malnutrition (Diaz-Cintra et al., 1994) have been shown to decrease synaptogenesis in the 

cortex/hippocampus, whereas prenatal viral infection and associated immune activation appears 

to produce more complex patterns of alterations through development and maturation of the 

brain (Soumiya et al., 2011; Baharnoori et al., 2009).  Such alterations are generally accepted as 

neurodevelopmental deficits that cause brain function.  However, if fetal alterations caused by 

prenatal environmental exposure is adaptation, decreased synaptogenesis should be also 

interpreted as adaptation, which (i) may be a form of accelerated brain maturation (e.g. decreased 

synaptic connections may be considered a similar state to adult brain after pruning, or the amount 

of synaptogenesis and pruning may be smaller, and thereby maturation is achieved quicker), 

advantaging the organisms to survive the severe environmental condition during early postnatal 

period, and/or (ii) may provide protective effects on behavioral and brain changes caused by 

postnatal environmental threats.  There has been no evidence so far that whether and how 

alterations of PFC synaptic development and maturation caused by prenatal and postnatal stress 

may interact.  However, the ingenious study by Lueba and Rabinowicz indirectly supports these 

possibilities (Leuba and Rabinowicz, 1979).  They found that postnatal under-nutrition caused 
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dendritic atrophy and decreased number of dendritic spines in the mouse cortex, which persisted 

into adulthood.  However, postnatal under-nutrition was combined with maternal 

under-nutrition during pregnancy, cortical cell dendritic alterations were, although they were still 

present during the juvenile period, not observed when offspring reached adulthood.  Further 

investigation on how prenatal and postnatal environmental interaction shapes cortical and limbic 

synaptic network would be a promising venue. 

 

8. Psychiatric disorders as environmental adaptation 

One dilemma, if prenatal/neonatal changes are adaptation process to environments, is since 

prenatal exposure to environmental insults such as exposure to stress, famine, and viral infection 

are suggested to increase the risks of psychiatric disorders such as schizophrenia, ADHD, and 

autism, these psychiatric disorders associated with prenatal environmental insults and involving 

PFC dysfunction may consequently be considered as environmental adaptation, rather than 

deficits, of the brain.  This deviant idea from the generally accepted belief of psychiatric 

disorders as brain dysfunction may be reconciled by consideration of the evolutionary 

biology/medicine. 

 Evolutionary biology/medicine suggests that psychiatric disorders may in fact arise by 

environmental adaption through evolution to bring benefits on survival and fecundity of 

organisms.  Thus, although the symptoms of several psychiatric conditions are incompatible 

with the modern society, they may benefit in certain specific environmental conditions.  It is 

also possible that psychiatric disorders may still be disadvantageous if it is a by-product of 

evolution (i.e. an extreme variant of adaptive behavior). 
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 For instance, Jensen and colleagues have suggested that the core symptoms of ADHD 

such as hyperactivity, impulsivity, and attention deficit, although these symptoms are clearly 

problems in the modern society, bring significant benefits on survival of organisms in a specific 

environment where dangers and threats are approaching (Jensen et al., 1997).  Thus, 

hyperactivity enables greater exploration of surrounding environments for threats and 

opportunities.  Impulsivity enables quick response to environmental cues while not considering 

alternative responses to the cues to escape form dangers and threats.  Attention deficit observed 

in ADHD subjects is inability to sustain attention to a particular object.  However, this in turn 

results in shifting of attention and scanning from one object to another rapidly to monitor 

dangers and threats. 

 Andrews and Thomson have proposed that the symptoms of major depressive disorder 

MDD are beneficial behavioral changes (Andrews and Thomson, 2009).  Patients with MDD 

are known to exhibit highly persistent and analytical thinking on a particular issue (i.e. 

rumination).  Moreover, primary MDD symptoms are social withdrawal/isolation and loss of 

pleasure on other activities.  These behavioral phenotypes, however, enable to prevent 

interruption of thinking, and therefore, MDD patients can concentrate on overcoming the 

problem that gives stress and causes MDD.  They further suggests that, since serotonin (5HT) 

1A receptor is involved in the pathologies of MDD, 99% identical composition of the functional 

part of 5HT1A receptor between rodents and human subjects supports emergence of MDD as 

positive evolutionary selection.  However, it is important to note that 5HT1A receptor also plays 

an important role in cognitive processing (Beste et al., 2010; Winstanley et al., 2003; Meneses 

and Perez-Garcia, 2007), and therefore, the argument that conservation of 5HT1A receptor may 

explain the positive evolutionary selection of MDD is overstretching. 
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From the evolutionary perspective, it is also interesting to note some similarities between 

MDD and hibernation.  First, occurrence of MDD is higher during the winter term with shorter 

day light (Blehar and Rosenthal, 1989).  In addition, one of the major symptoms of MDD is 

sleep problems (Thase, 1998).  During hibernation, circadian rhythm is suppressed (Hut et al., 

2002).  Disruption of circadian rhythm is also observed in MDD (Monteleone et al., 2011).  

Hibernation is the mechanism of energy conservation with lower metabolic rate.  In MDD 

patients, the metabolic syndromes such as type II diabetes are frequent co-morbid disorders 

(Musselman et al., 2003).  Finally, MDD and hibernation appear to have the common biological 

mechanisms that involve 5HT transmission and 5HT1A stimulation in the hippocampus (Albert 

and Lemonde, 2004; Horrigan et al., 1997; Naumenko et al., 2008) as well neuronal activity in 

the epithalamic nucleus, habenula (Li et al., 2011; Yu et al., 2002).  Although there are indeed 

clear differences between MDD and hibernation, it may not be too much anomalous to think 

based on the similarities that MDD may be a trace of hibernation that has remained through 

evolution in human subjects as the energy conservation mechanisms with the MDD symptoms 

such as withdrawal from the society and decreased interest to various activities.  Indeed, 

hibernation is a strategy that some animals take for energy conservation during the winter time 

while not many foods are available.  In this regard, MDD may be also considered as an energy 

conservation strategy, which makes MDD patients await without loss of much energy until that 

the problems that the subjects are facing with pass away (Schmale and Engel, 1975). 

 

9. Psychiatric disorders involving neurodevelopmental changes 

It is interesting to note that psychiatric disorders appear to be strongly associated in 

neuorodevelopmental changes.  Even in psychiatric disorders such as MDD, anorexia nervosa, 
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and schizophrenia, in which symptoms typically emerge in adolescence or young adulthood, 

epidemiological studies have shown the increased risks of these disorders in offspring with low 

birth weight (Abel et al., 2010; Cnattingius et al., 1999; Mick et al., 2002; Costello et al., 2007), 

obstetric complication [anorexia nervosa (Favaro et al., 2006) and schizophrenia (Geddes and 

Lawrie, 1995), but not for MDD (Bain et al., 2000; Preti et al., 2000)], and exposure to prenatal 

environmental factors such as stress (Ronald et al., 2011; van Os and Selten, 1998; Rodriguez 

and Bohlin, 2005; Khashan et al., 2008; Malaspina et al., 2008), famine (Brown et al., 1995b; 

Brown et al., 2000; Susser et al., 1996), and virus infection (Favaro et al., 2011; Mednick et al., 

1988; Brown et al., 1995a; Brown, 2006; Machon et al., 1997).  Thus, prenatal period may be 

the critical time window for environmental adaptation incorporated into evolution, which in turn 

may originate psychiatric conditions that bring benefits for survival of organisms in severe 

environmental conditions. 

 

10. PFC dysfunction in psychiatric disorders  

The PFC is thought to be the brain region that is evolutionarily the latest and most complex area 

(Smaers et al., 2011; Teffer and Semendeferi, 2012).  The PFC plays a central role on executive 

function, along with integration of information from other parts of the brain such as limbic 

structures, basal ganglia, cerebellum, and other corticies (Fuster, 2001; Wood and Grafman, 

2003).  Allometric analysis of brain structures suggest that the human PFC is approximately 

twice larger, and almost six times larger than predicted based on overall brain and body sizes, 

respectively, of other non-human primates (Deacon, 1988; Stephan et al. 1988; McBride et al., 

1999; Rilling, 2006; Semendeferi et al., 2002).  
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 In particular, dysfunction of the PFC has been implicated in almost all psychiatric 

disorders (Pietrini et al., 2011; Weinberger et al., 1994; Seidman et al., 2005; Drevets, 2000).  It 

is surprising that just one brain region is involved in various distinct psychiatric symptoms.  

However, this could be explained by that the PFC has extensive connections with many other 

parts of the brain, such that deficits in other brain structures are reflected in activity of the PFC, 

even if there is no deficit in the PFC itself. 

 Alterations in developmental trajectory of PFC synaptic network have been suggested in 

the disorders such as schizophrenia (Eastwood and Harrison, 2005) and ADHD (Shaw et al., 

2007).  Indeed, the PFC is highly plastic brain region and altered by various prenatal and 

postnatal environmental conditions including stress (Lyons et al., 2002; Murmu et al., 2006).  

Moreover, development of PFC synaptic network starts from the prenatal period, continues to 

develop even after birth, and does not mature up until adulthood (Petanjek et al., 2011).  

Therefore, the PFC synaptic network may be particularly sensitive for both prenatal and 

postnatal environmental conditions.  

 Collectively, PFC synaptic network appears a crucial neural substrate through which 

prenatal and postnatal environmental adaptation can take place. 

 

11. Psychiatric disorders in evolution 

The Darwinian evolutionary theory, which has been widely accepted, argues that the primary 

driving force of evolution is stochastic, random genetic drifts, which create various phenotypes.  

These variable phenotypes are subjected for natural selection, and organisms with the phenotype 

that is most suitable to the specific environment have been inherited into descendents.  

Nevertheless, such stochastic genetic drifts appear to be unfavorable explanation for emergence 
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of psychiatric disorders in evolution.  For instance, malaria infection and sickle-cell trait are the 

well-documented example of evolution (Kwiatkowski, 2005).  Malaria infection is a common 

fatal disorder in Africa, and sickle-cell trait is thought to emerge in African people to reduce the 

risk of death by Malaria infection.  It has been shown that approximately 10% of African 

people possesses sickle-cell trait.  In contrast, however, only about 4% in African-Americans, 

who are five generation descendants of African people immigrated to US, exhibit such a trait 

(Hassell, 2010).  Indeed, Malaria is an uncommon disease, and therefore, sickle-cell is 

unnecessary trait for people living in US, suggesting that evolution of the sickle-cell trait was 

subjected for natural selection.  On the other hand, evolution of psychiatric disorders appears to 

be challenged by the fact of high constant prevalence in population all over the world throughout 

the history (World Health Organization, 2000).  If psychiatric disorders are evolved by 

stochastic genetic drifts with subsequent natural selection, it is likely that prevalence of disorders 

decreases because of mismatch with the modern human society. 

 

12. Epigenetic-based mechanisms of transgenerational inheritance of behaviors 

The French naturalist, Lamarck proposed the mechanism of evolution that was different from the 

Darwinian theory.  In Lamarckian inheritance, the primary driving force of evolution is 

adaptation of organisms to their specific environments in the life, and acquired phenotypes are 

inherited into descendants.  This theory was once doomed as incorrect, and only few people 

have supported it.  However, emerging evidence has proved that Lamarckian-like inheritance 

does occur. 

In human studies, it has been shown that offspring of mothers who exposed to Dutch 

famine in 1943-1947 in utero exhibit increased neonatal adiposity and poor health outcomes such 
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as autoimmune, respiratory, infectious, and dermatological problems, later in life (Painter et al., 

2008).  Similarly, offspring of mothers who exposed to diethylstilbestrol in utero have higher 

rate of hypospadias (Brouwers et al., 2006), suggesting that maternal lineage of transmission of 

changes caused by prenatal environmental insults across generation. 

Animal studies further supports transgenerational inheritance of behavioral phenotypes 

caused by prenatal exposure to environmental stimuli.  Such transgenerational transmission was 

first reported by Wehmer and colleagues (Wehmer et al., 1970).  They found that progenies (F2) 

of female rats (F0) subjected for foot shock stress before mating and during pregnancy exhibited 

hyperactivity compared to F2 descendants of non-stressed F0 mothers.  More recently, Drake 

and colleagues examined the effects of maternal administration of stress hormone during 

pregnancy (Drake et al., 2005).  Male and female progenies (F2, F3) of fathers and mothers (F1) 

exposed to stress hormone in utero were found to be smaller in birth weight and develop glucose 

tolerance with increased phosphoenolpyruvate carboxykinase activity.  Similarly, the study by 

Morgan and colleagues has shown that male offspring (F2) of fathers (F1) exposed to stress in 

utero exhibit more female-like gene expression pattern than that in male progenies of 

non-prenatally stressed fathers, suggesting paternal lineage of transgenerational transmission of 

alterations (Morgan and Bale, 2011).   

Studies have also shown transgenerational inheritance of phenotypes in response to 

prenatal exposure to environmental stimuli other than stress.   In one study, pregnant rats (F0) 

were exposed to protein restriction diet (Bertram et al., 2008).  Female offspring (F1) born from 

such dams with protein restriction were grown up with either protein restriction or adequate diet.  

Insulin resistance was observed in male offspring (F2) of F1 females grown with protein 

restriction, whereas female offspring (F2) of F1 females grown with adequate diet exhibited 
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insulin resistance.  Zambrano and colleagues investigated maternal nutrient restriction diet 

during pregnancy in guinea pigs (Zambrano et al., 2005).  Female offspring (F1) were grown up 

in the adequate nutrient and mated with non-nutrition restricted males to produce progenies (F2).  

F1 and F2 male offspring exhibited altered cardiovascular function and elevated stress response 

compared to descendants of adequate nutrition across generation. 

Transgenerational transmission of behavioral phenotypes appears not constricted to those 

associated with prenatal environmental conditions, but neonatal or even adult environments.  

Thus, descendants of fathers exposed to maternal deprivation during the neonatal period have 

been shown to exhibit behavioral phenotypes associated with depression (Franklin et al., 2010).  

Moreover, in these descendants, DNA methylation on corticotrophin-releasing factor receptor 2 

and cannabinoid receptor-1 are inherited from the fathers exposed to maternal deprivation.  

Another study examined the effects of neonatal exposure to lipopolysaccharide (LPS), which has 

been shown to induce anxiety-like behavior, in male and female rats.  Offspring of female rats 

who received LPS was found to exhibit heightened anxiety-like behavior and potentiated stress 

response, whereas offspring of male rats with neonatal LPS exhibited anxiety-like phenotype, but 

no alteration on stress response (Walker et al., 2012).  Whether behavioral changes caused by 

chronic stress given in adult rodents were also transmitted into offspring was examined in the 

study by Dietz and colleagues.  They found that male offspring of stressed fathers, but not 

mothers, exhibited increased stress hormone level, as well as increased anxiety and decreased 

reward seeking behavior (Dietz et al., 2011).  This finding in rodents is, however, slightly 

different from the human case (Yehuda and Bierer, 2008), which reports that offspring of 

Holocaust survivors with PTSD demonstrate lower stress hormone level than offspring of 



26 
 

Holocaust survivors without PTSD, this is inherited from female survivors rather than male 

survivors. 

Epigenetic mechanisms play a central role of Lamarckian-like transgenerational 

inheritance of behavioral phenotypes.  Epigenetic regulation of gene expression usually 

involves chromatin modification such as histone acetylation and DNA methylation (Borrelli et 

al., 2008).  Although inheritance of typical chromatin modification across generation has been 

confirmed in some studies (Franklin et al., 2010), it appears that miRNA transmitted across 

generation through gametes also plays significant role on this type of inheritance (Daxinger and 

Whitelaw, 2012; Rechavi et al., 2011; Rassoulzadegan et al., 2006). 

 

13. Transgenerational epigenetic inheritance as evolutionary biological bases of psychiatric 

disorders 

Collectively from the studies described above, we propose a hypothesis that rapid, 

epigenetic-based mechanisms of environmental adaptation, especially during the prenatal period, 

may be the primary driving force for generation of psychiatric disorders in evolution.  Thus, 

psychiatric disorders may be better understood under the concept of environmental adaptation of 

fetal development with epigenetic reprogramming. 

This hypothesis has both pros and cons.  Pros of the hypothesis are non-Mendelian 

pattern of expression of transmitted genes (Morgan et al., 1999; Sutherland et al., 2000), which is 

consistent with the observed non-Mendelian inheritance of psychiatric disorders.  Moreover, 

epigenetic transgenerational inheritance also has an explanatory value on parental imprinting.  

It is often suggested that psychiatric disorders such as schizophrenia and autism are paternal or 

maternal origin (Shelton et al., 2010; Brown et al., 2002; Crespi and Badcock, 2008).  Cons of 
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the hypothesis include unknown mechanisms transferring epigenetic changes into equivalent 

DNA changes.  However, the mechanisms such as that proposed by Baldwin (Baldwin and 

Mark, 1896), and genetic assimilation that Waddington has experimentally demonstrated for 

stimulus-dependent (i.e. heat shock-induced) to stimulus-independent inheritance of 

crossveinless in drosophila (Waddington, 1953) would enable transfer of epigenetic changes into 

DNA changes.  In addition, investigation of epigenetic inheritance and its mechanisms has been 

mostly conducted in rodents and lower vertebrates/invertebrates.  It still remains to be examined 

that similar epigenetic-based inheritance mechanisms may be observed in primates.  It is of 

particular interest to investigate whether any commonality may be found on epigenetic patterns 

of transgenes between psychiatric patients and subjects exposed to adverse environmental 

conditions. 

 

14. Conclusion 

In this article, we have proposed the two hypotheses.  First, neurodevelopmental changes 

particularly occurring in the PFC of fetuses with exposure a specific prenatal environmental 

condition may be adaptation to cope with the environment that is anticipated in postnatal life.  

Extensive studies have unveiled the effects of prenatal environmental effects on offspring 

behaviors and brain function.  These studies, however, took environmental exposure as a single 

life event, and did not consider the longitudinal aspect of environmental exposure.  Taking this 

into account, it is important to consider how alterations caused by the first exposure of a specific 

environmental condition interact with re-exposure to the identical or even different 

environmental condition to fully understand the significance of the environment-associated 

alterations occurring in organisms. 
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The second hypothesis is that psychiatric disorders may be emerged through evolution as 

environmental adaptation with epigenetic inheritance.  In particular, presence of the mechanism 

that can auspiciously transmit a defect across generation is unfavorable.  Thus, epigenetic-based 

transgenerational inheritance of behavioral phenotypes prefers the explanation that such inherited 

alterations may not be deficits, but rather adaptation, to cope with environmental threats.  

Investigation and understanding of alterations in the context of such views will bring a novel 

insight on our understanding of psychiatric disorders. 
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