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Abstract 

Bottom-up self-organization approaches are promising for fabricating higher-order patterned 

surfaces composed of colloidal particles. The first example among the patterns that have been 

extensively studied would be stripes; however, the formation of stripe patterns has so far been 

confined to partially or fully hydrophobic surfaces. By contrast, we have succeeded in 

preparing well-defined stripe patterns even on strongly hydrophilic substrates via a convective 

self-assembly technique. By using this technique, a stripe pattern was produced simply by 

suspending a substrate in a dilute suspension, without any complicated procedure; the stripes 

spontaneously aligned parallel to the contact line. Driven by this finding, we further 

investigate this self-assembly process, and find out that the convective self-assembly is quite 

promising as a template-free pattern formation technique. In the present paper, we first 

overview the convective self-assembly technique which is originally developed for uniform 

film formation, and then present our recent results on the pattern formation of colloidal 

particles through the convective self-assembly. This technique can produce various patterns 

including stripes, cluster arrays, and grids in response to macroscopic experimental 

parameters such as particle concentration and temperature. 

 

Keywords: Self-assembly, Patterned structure, Template-free, Drying, Particulate film, 

Bottom-up approach, Convection 
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1. Introduction 

Significant progress has recently been made in techniques of surface patterning over large 

areas because micro-, meso-, and nanostructured surfaces exhibit anomalous properties due to 

enhanced interfacial effects [1-3]. Colloidal particles are fundamental building elements for 

fabricating patterned structures on a substrate including stripes, rings, grids, and dot-arrays, 

which can find potential applications such as controlled cell growth platform [4], transparent 

conductive electrodes [5, 6], and plasmonic sensing materials [7]. The fabrication of complex 

particulate patterns in a precisely controlled manner has been achieved by top-down 

lithography techniques, e.g., photolithography, laser interference lithography, and 

electron-beam lithography. Although these top-down approaches are quite effective, the use of 

bottom-up self-assembly processes becomes necessary to complement them as the required 

structure sizes become of the order of nanometers. The advantages of self-assembly 

techniques are its simplicity, versatility, cost-effectiveness, and compatibility with 

heterogeneous integration processes [8-10]. Among various techniques so far reported, a 

widely-used one is template-directed colloidal self-assembly. In this approach, a suspension 

droplet is allowed to evaporate on a topologically grooved substrate which acts as a template 

to guide and arrange the particles into the desired pattern with the aid of the convection that 

brings the particles to the drying front [11-13]. Instead of the topological modification, the use 

of chemically patterned substrates is also proposed, in which a specific interaction with 

particles/polymers directs them into the pre-defined pattern [14-16]. These approaches, 

however, require direct modification of substrate surface, and accordingly the material type of 

the substrate is limited. Celio et al. and Harris et al. enabled the colloidal patterning of a flat 

substrate without topological or chemical pre-modification by introducing a template mask set 

above the substrate to control solvent evaporation, thereby avoiding this problem, which they 

call confined dewetting lithography or evaporative lithography [17, 18]. However, this 
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approach still encounters a critical problem that any desired change in pattern periodicity or 

morphology requires another template mask that needs to be created by costly and 

complicated top-down lithography techniques. In that respect, a template-free or 

lithography-free self-assembly technique is strongly required to realize controlled fabrication 

of patterned structures of colloidal particles. 

As a possible candidate for the template-free fabrication, it has been demonstrated that 

the dewetting of a thin liquid film can yield several patterns composed of particle aggregates, 

such as stripes [19-21], “spoke”-like radial shapes [19], dot arrays [20, 22-24], and polygonal 

patterns [25], owing to the fingering instability [26] or Rayleigh instability [27]. However, the 

dewetting process is very sensitive to experimental conditions and accordingly poses 

difficulties in controlling resultant structures. Another template-free process is contact line 

pinning and subsequent slip motion to produce patterned structures of particles such as 

ring-shaped patterns on horizontally placed substrates [28-31], known as “coffee stain” 

patterns [32], and stripe patterns on vertically suspended surfaces in a suspension [33-35]. For 

the stick-and-slip motion to occur, it is said that the wettability of the substrates is quite 

important; partially wet substrates are favorable, while easily wettable substrates do not 

induce the stick-and-slip motion of the contact line [34]. With regard to the stick-and-slip 

motion, a critical problem in controlling the surface pattern is that the time required for the 

contact line to remain stuck until the next slip occurs is unavailable a priori because of its 

stochastic nature, leading to difficulties in predicting the periodicity of the structures. Another 

problem in the stick-and-slip motion is that the resultant stripes often show distorted shapes 

and a low degree of periodicity, although several elegant techniques recently reported have 

made it possible to produce well-defined patterns by successfully controlling the 

stick-and-slip motion in confined geometries [36-39]. 

The difficulty in controlling and modeling the dewetting process or stick-and-slip motion 
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stems from the uncertainty of the contact line motion due to the inherent instability of the 

meniscus. Instead of partially wet substrates, the use of well wet substrates on which fluids 

spread stably can avoid the problem regarding the uncertainty of the meniscus motion, and 

more importantly, patterned structures can spontaneously form even on completely wetting 

substrates. In fact, while studying the formation of continuous particulate film by a 

vertical-deposition self-assembly process called the convective self-assembly method [40], we 

unexpectedly noticed emergence of stripe patterns on hydrophilic substrates. As a matter of 

fact, very few studies was succeeded in preparing pattern structures on solvophilic substrates 

[41]; in addition, the formation mechanism of such patterns was not clarified. 

The finding of the stripe pattern formation showed us the potential of the combination of 

the vertical deposition process with wettable substrates as a template-free pattern formation 

technique, and highly motivated us to further investigate the convective self-assembly process. 

Through the investigation, we have revealed excellent performance of the process to 

spontaneously produce patterned structures of particles on flat substrates, and found out that 

the key factor in controlling the pattern is the behavior of the meniscus tip at which particulate 

films form. In this invited review paper, we first overview the convective self-assembly 

technique, and then introduce our recent results on pattern formation of colloidal particles by 

using the technique. 

 

2. Convective Self-Assembly 

The convective self-assembly technique is proposed by Dimitrov and Nagayama in 1996 

to produce a monolayer composed of the close-packed structure of particles [40], which is 

based on their precedent experimental investigation on “nucleation” of a close-packed 

structure of particles [42]. This technique features the control of the homogeneous growth of 

particle arrays on the basis of a model equation derived from a mass balance in the film 
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formation region. The equation is demonstrated to apply to multi-layer film formation [43]. 

The schematic of the experimental setup we used is shown in Fig. 1a. In this process, a 

well-wetted substrate is immersed vertically into a colloidal suspension and the temperature is 

controlled to allow the solvent to evaporate. As the liquid level descends because of 

evaporation, the substrate becomes dry and a particulate film appears on the substrate. A basic 

principle of the particle assembly is as follows. The evaporation rate around the tip of the 

meniscus formed on a well-wet substrate is larger than that of the bulk solvent owing to the 

heat transfer from the substrate. As shown in Fig. 1b, evaporation at the meniscus tip induces 

an upward convective flow to compensate the amount of the solvent evaporation. The 

convective flow then carries particles into the meniscus tip, at which the assembled particles 

form a close-packed particle array due to the laterally acting capillary force between the 

particles. By appropriately adjusting the experimental parameters such as particle 

concentration, humidity, and temperature as required by the operating window of parameters, 

this technique can produce uniform particulate films [44] and thus has been applied to various 

fields [45]. This technique is applicable to a wide range of particle size and type as long as the 

particles are stably dispersed in a solvent. As for the particle shape, not only spherical 

particles but also cubes [46], polyhedrons [47], nanoplates [48], nanowires [49, 50], 

nanotubes [51, 52], sheets [53, 54] can be assembled on a substrate. However attention should 

be paid to the use of particles with high density and/or large size because this technique 

transfers particles against gravity. In the case of the silica particle, we have confirmed that the 

effect of gravity is negligible for the particle size less than 500 nm. Thus for the assembly of 

larger size of particles, mechanical agitation or convection flow needs to be introduced in the 

process to keep the particles suspended against the gravity [55-57], or another approach is to 

use the horizontal convective assembly [58-60]. 

Although the convective self-assembly by vertical deposition is originally developed to 
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produce uniform particulate films, a precise control of the particle flux towards the meniscus 

tip can result in patterned deposits of colloidal particles because particles accumulate only at 

the meniscus tip, which is our prime focus of research. Following this concept, we have 

mainly investigated the effect of the particle concentration and temperature because the two 

experimental parameters directly affect the particle flux. In our experiments, the solvent was 

water, the substrate was glass, silicon wafer, and mica, and the particle was silica, silver, gold, 

and polystyrene latex (PSL). Right before use, the glass and silicon wafer substrates were 

treated with plasma cleaner or a 5:1:1 mixed solution of water, ammonium hydroxide (28 %), 

and hydrogen peroxide (30 %) [61] to clean their surface, and the mica substrate was cleaved 

with scotch tape, thereby obtaining fully hydrophilic surfaces. The particle assembly was 

conducted in a temperature-controlled incubator with the temperature from 60 to 80 °C. 

 

3. Pattern Formation by Convective Self-Assembly 

3.1 Stripe Pattern [62, 63] 

The resultant self-assembling structure of colloidal particles prepared by the vertical-type 

convective self-assembly process changes depending on the particle concentration in the 

suspension. In the case of the silica particle with the diameter of 120 nm, a high concentration 

suspension with the volume fraction of 10-3 v/v typically yields a multi-layer particulate film, 

an example of which is shown in Fig. 2a. As shown in Fig. 2b, the film is composed of a 

close-packed array of particles. Note that the white lines observed in Fig. 2a are cracks 

formed at the drying process of the film [64, 65], and the prevention of their formation has 

been an important topic although we do not discuss here [66, 67]. The film thickness naturally 

decreases with the decrease in the particle concentration because of the smaller particle flux 

toward the drying front. However, we find that there exists a thickness limit for the uniform 

film formation (e.g. 5 layers for 120 nm silica particles), below which no uniform films form. 
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Instead, a striped pattern spontaneously forms (Figs. 2c, d). The white lines in Fig. 2c are the 

stripes composed of close-packed arrays of silica particles (Fig. 2d), while the gray bands 

form the spacing where almost no particles exist. When observed under an optical microscope, 

stripes exhibit brilliant colors (Fig. 2e) due to the interference of light [68]. A sharp color 

change corresponds to the difference in the thicknesses of the stripes (Fig. 2f), enabling us to 

easily identify the number of layers. The sharp color transition in the optical images of the 

stripes indicates that the number of layers increases stepwise with an interval of several 

micrometers in the upper portion of a single stripe. The stripes form parallel to the 

air-liquid-substrate three-phase contact line. A typical concentration range for the stripe 

formation is 10-4 v/v, and we have confirmed stripe formation of several particles including 

silica, gold, silver, and PSL in the concentration regime. The stripe pattern thus appears to 

depend on the particle concentration rather than on the exact particle type. Here it should be 

noted that the boundary concentrations are valid only for the vertical deposition on stationary 

substrates, and can vary depending on experimental setups such as the vertical deposition on 

moving substrates [40] and the horizontal convective assembly [59]. 

The stripe width increases linearly with the particle concentration, as demonstrated for 

two different sizes of particles, and the number of layers also increases with the concentration 

(Fig. 3a). This is qualitatively natural because a higher particle concentration drives more 

particles into the meniscus tip where a particulate film is growing, resulting in a wider and 

thicker stripe. In contrast, the stripe spacing does not depend on the particle concentration but 

exhibits a mild dependence on the number of layers of the stripes (Fig. 3b). Further, we 

confirmed that a different descent rate at another temperature yields almost the same stripe 

width and spacing as far as the particle concentration remains constant. To clarify the 

mechanism, we directly observed the behavior of the meniscus tip during the stipe formation, 

the snapshots of which are shown in Fig. 4. In Fig 4a, the two pale-orange bands at the upper 
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side of the figure are stripes that have already formed; the next gray band at the meniscus tip 

is a stripe in the process of formation, and this stripe grows in the downward direction 

because of the particles brought in by the convective flow. After a few moments, the meniscus 

tip starts to slide off from the growing stripe and exposes the substrate surface (Fig. 4b). The 

sliding motion of the meniscus propagates along the growing stripe from right to left, thereby 

terminating the stripe’s growth. As a result, a new stripe forms at a regular spacing (Fig 4c). 

This behavior seems different from the one referred to as the pinning-depinning phenomenon 

which is observed experimentally [69] and described by a theoretical model [70], in which the 

pinned contact line jumps off from a particulate film. 

The key factor to cause the sliding behavior, which we have finally found out, is that the 

meniscus can form a concave surface against the substrate because the meniscus is attached to 

the outermost particle layer that is at a certain distance from the substrate, which is in contrast 

to the meniscus attached to a bare substrate. The proposed mechanism is as follows. As shown 

in Fig. 1b, the meniscus tip vertically touches the tail end of the particulate film, whose width 

is growing due to the particle flux from underneath. Because of the present condition of a 

reasonably low particle concentration, the particle flux is so small that the growth rate of the 

particulate film becomes slower than the rate of the liquid level drop. This rate difference 

accordingly elongates the meniscus into a concave shape against the substrate in order to 

satisfy the Laplace equation in static mechanics because the formation rate is slow enough to 

be regarded as a quasi-static process, as shown in Fig. 5a. The concave shape of the meniscus 

then suppresses the particle flux to the meniscus tip because the “path” of the thin liquid film 

becomes narrow. The solvent evaporation further elongates and curves the meniscus, and at a 

certain limit, most probably the stability limit of a thin liquid film, the meniscus breaks to 

slide off from the particulate stripe, propagating in the lateral direction.  

According to the proposed mechanism, a meniscus stuck to a thicker stripe can elongate 
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further, and it accordingly offers a wider area than that obtained when the meniscus is stuck to 

a thinner film, which results in the dependence of the stripe spacing on the thickness of the 

stripe (Fig. 3b). Quantitatively, we can calculate the stripe spacing because it corresponds to 

the space to which particles cannot get access due to the steric hindrance of the concave shape 

of the meniscus that is defined by the Laplace equation. The calculated results are shown to 

compare with experimental results in Fig. 3b, and the both agree fairly well, demonstrating 

the validity of our mechanism. For more details of the model calculation, please refer to Ref. 

[62].  

The concavely curved meniscus against the substrate is thus crucial in the mechanism. In 

order to confirm further the validity of the mechanism, we attempt to directly observe the 

shape of the meniscus that is attached to the outermost particle layer away from the substrate. 

As a model system for the observation, we use a slide glass with the thickness of 1 mm as a 

substitute for the particulate film and capture a side view of the behavior of the meniscus 

shape attached to the bottom-right edge of the slide glass, when the liquid level descends 

gradually. Because the present matter of interest in the stripe formation is on the 

micrometer-scale, which is sufficiently large to exhibit bulk-like behavior, the physical 

properties of water are the same for its contact with both micrometer-scale and 

millimeter-scale materials. We therefore believe that this observation is surely adequate to test 

the mechanism. The observation result shows that the meniscus shape indeed starts deforming 

into a concave shape as the liquid level descends. Furthermore the shape can be well 

described by the Laplace equation, as shown by the dashed line (Fig. 5b), which strongly 

supports our proposed mechanism of the stripe pattern formation in which a concavely shaped 

meniscus plays a crucially important role. This new mode of stripe pattern formation thus 

enables us to predict the stripe spacing quantitatively, leading to the establishment of a simple 

and versatile approach to prepare periodic striped microstructures. 
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3.2 Cluster Array Pattern [63] 

In a lower concentration condition below the stripe formation region (< 10-6 v/v), another 

periodic structure spontaneously appears through the convective assembly process. The 

decrease in the particle flux towards the meniscus tip interestingly turns particulate 

continuous lines into “dotted” ones, as shown in Fig. 6a. The structure is composed of dotted 

stripes that are aligned at a constant spacing along the parallel to the contact line. Within these 

dotted lines, the “dot” line up at an almost constant separation (Fig. 6b), and a dot is found out 

to be a cluster of silica particles (Fig. 6c). This cluster array pattern is then a 3-fold 

hierarchical structure formed on completely flat substrate via a one-step self-assembly process, 

without any chemical or physical template. Further decrease in the particle concentration 

below 10-8 produces no periodic patterns but random deposition of particles. 

Temperatures of 60 and 70 °C are favorable for cluster array formation, while assembly at 

lower temperature of 50 °C results in a rather disordered deposition of clusters due to 

insufficient convection caused by a lower evaporation rate. This suggests that faster drying 

favors cluster array formation. In contrast, at a higher temperature of 80 °C, a similar “dotted” 

structure forms, although the particulate lines are composed of small particle clusters such as 

dimers, trimmers, and tetramers with small and rather irregular separations, possibly because 

a faster evaporation rate at the meniscus tip does not allow enough time for the assembled 

particles to reorganize into cluster aggregates. 

The size of the circular cluster linearly increases with the particle concentration (Fig. 7a) 

simply because a higher concentration brings more particles to the meniscus tip, resulting in 

larger clusters. The center-to-center separation between clusters, in contrast, shows no clear 

trend but rather remains constant against the increase in the particle concentration (Fig. 7b). 

Although we speculate the solvent physical properties govern the separation, the detailed 

mechanism on the constant separation is not actually clear, which will be investigated in a 
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future study. Similar to the cluster-cluster separation, the spacing between dotted lines is also 

constant (Fig. 7c). However, the spacing distance is narrower by 5-10 µm than that of the 

striped patterns, which suggests that the formation process of the line spacing in cluster arrays 

involves a factor that is absent in the stripe formation process. 

The direct observation in fact reveals that the formation process of the cluster arrays is 

quite different from the lateral sliding motion of the meniscus tip in the stripe formation 

process, as shown in Fig. 4. Particles get assembled at the drying front and fluctuate 

vigorously along the contact line to form discrete clusters (Fig. 8a). After a while, the entire 

meniscus tip suddenly retreats in an instantaneous parallel shift (Fig. 8b) until it stabilizes at a 

new position, which turns out to be rather close to the stick-and-slip motion (Fig. 8c). This 

difference in the meniscus tip behavior would come from a different morphology of the 

assembled structure at the drying front. In the case of the cluster array formation, the 

meniscus is held by discrete clusters of particles, which is contrast to the case of the stripe 

formation in which a particulate “line” strongly suspends the meniscus. Because the retention 

ability of the discrete domains to keep the meniscus must be lower than that of the continuous 

particulate lines, the discrete domains do not allow the meniscus to stretch unlike the case of 

the particulate lines, but rather they cooperatively release it at a certain limit, resulting in the 

observed stick-and-slip motion and a narrower spacing between the dotted lines. Hence, the 

sliding propagation mode along a particulate line produces a wider spacing, whereas the 

stick-and-slip mode from a dotted line gives rise to a narrower spacing. In this manner, the 

convective self-assembly process is demonstrated to have the self-regulating characteristics to 

produce colloidal patterns, whose structure depends on particle concentration and 

temperature.  

3.3 Grid Pattern [71] 

 As described so far, stripe pattern spontaneously forms on a flat substrate under a specific 
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concentration condition through convective self-assembly. We then naturally hit on an idea 

that a grid pattern fabrication is possible by conducting the stripe formation process twice; in 

the first step, a hydrophilic substrate is immersed in a suspension to produce a stripe pattern 

on the substrate, and then in the second step, the substrate with the stripe pattern is rotated by 

90° and again immersed in the suspension (Fig. 9a), which we call two-step convective 

self-assembly. In spite of apparent simplicity and easiness of the idea itself, the grid pattern 

formation was found out to be difficult because simply immersing the substrate in the second 

step did not yield the grid pattern but accumulated particles only around the vertical stripes to 

form raindrop shaped deposits aligned periodically (Fig. 9b, c). The key requirement we 

determined for the reproducible formation of well-defined grid patterns is plasma treatment 

before the second immersion in the suspension to clean the surface and recover the 

hydrophilicity of the substrate which was degraded during the first assembly step due to its 

exposure to the atmosphere [72]. In fact, performing the second step after the plasma 

treatment successfully produces a grid pattern as shown in Fig. 9d, e. Interestingly, the width 

and spacing of the stripes formed in the first step remains almost unchanged after the second 

step. The second immersion in the suspension does not remove the particles deposited on the 

substrate, while those in the second step are narrower by 1 µm for the width and 3 µm for the 

spacing than the first ones. Another characteristic observed in the grid structure is that the 

stripes formed in the second step connect smoothly with the first ones without clear 

boundaries and their width is broadened near the junctions. Furthermore, most of the 

junctions are monolayers (Fig. 9f), which is contrary to our expectations in which particles 

deposited in the second step overlap the first stripes at the junctions. Although some junctions 

are bilayer, the bilayer area is limited to the lower part of the junction. 

 An important factor to account for the above results is biased convective flows toward the 

vertical stripes induced by increased solvent evaporation from wet particulate films. The 
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biased flows transfer particles preferentially toward the vertical stripes so that these particles 

are trapped in the gaps at the side edges of the vertical stripes, resulting in smooth connection 

of the vertical and horizontal stripes without any clear boundaries. Another critical factor is 

meniscus geometric effect to guide particles along its shape. We have observed that the 

meniscus is raised by the vertical stripes probably because they possess a hydrophilic porous 

body that sucks in the solvent when a substrate with the vertical stripes is immersed in a 

suspension. There is not enough space for particles to pass through the red-colored region in 

the schematic shown in Fig. 10a, b because the space is confined by the meniscus, whereas 

enough space exists for the green-colored region. The particles carried by the biased 

convective flows accordingly cannot enter the red space, but instead align along the contact 

line to form a monolayer junction, which results in the broadened stripe shape at junctions 

(Fig. 9e, f). Under a low concentration condition as in Fig. 9d, e, f, the particle deposition in 

the green region to form multi-layers barely happens because the growing front of the 

particulate line is separate from the green region, which is depicted in Fig. 10a. According to 

this mechanism, a higher concentration condition where the growing front is rather close to 

the green region because of larger particle flux, as shown in Fig. 10b, would result in the 

formation of domains of bilayers on the junctions. To confirm this, we conducted the grid 

formation with a higher concentration in the second step. Fig. 10c shows the resultant grid 

pattern, and for comparison, Fig. 10d shows the stripe pattern produced on a flat substrate 

under the same concentration as that employed for the second step. Thus, the difference 

between Figs. 10c and 10d simply originates from the presence of the vertical stripes. In the 

grid pattern, only the junctions discretely have a bilayer structure with a compass shape, 

which would reflect the meniscus geometry on the vertical stripe (Fig. 10c). In contrast, the 

assembly without vertical stripes produces monolayer stripes (Fig. 10d), demonstrating the 

preferential assembly toward vertical stripes. 



 15 

 One of the advantages of the convective self-assembly technique is the versatility to 

arrange various types and sizes of particles. We have actually confirmed the grid pattern 

formation with small-sized silica particles (45 nm) and large-sized silica particles (270 nm). 

The grid pattern is also produced from particles of different material: silver particles with 

diameters of 10−15 nm (Fig. 11a). These grid patterns exhibit a high degree of periodicity, 

similar to the one obtained using 120 nm silica particles (Fig. 9d). This wide applicability 

further enables the formation of a hybrid grid pattern where vertical and horizontal stripes are 

constructed from different types of particles (Fig. 11b), whose anisotropic property would find 

various technological applications in electronics and sensors. The facile fabrication of 

well-defined hybrid patterns by our technique exemplifies an advantage over other methods, 

particularly those that use templates. 

3.4 Active Control over Stripe Pattern Periodicity [73] 

 The convective self-assembly with a fairly low concentration produces well-defined 

stripe pattern in which the spacing between particulate stripes is dependent on the thickness of 

the stripes. This in turn means that the possible combinations of stripe widths and spacings are 

naturally limited by the particle size and the number of layers. To overcome the structural 

limitation in the stripe periodicity, we incorporate a liquid-level manipulation into the 

convective self-assembly process to control the contact line motion by pumping the colloidal 

dispersion out of its reservoir by using a programmable syringe pump (Fig. 12a). While the 

pump is in paused, dispersed particles assemble to form a particulate stripe, and the liquid 

level falls gradually due to the solvent evaporation. After a certain period (period of particle 

deposition), the dispersion is pumped out and the liquid level quickly drops (liquid-level drop 

distance), thereby terminating the particulate stripe growth. Because the rate of the 

liquid-level drop (90 µm/s) is quick enough to prevent the contact line from being pinned, 

particles are not deposited on the substrate during the liquid-level drop, resulting in the 
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formation of spacing. After the suction, the contact line is pinned again, and the next stripe 

starts to form. A typical example of resultant stripe pattern is shown in Fig. 12b, in which the 

sets of stripes and subsequent spacings labeled as i and ii are fabricated with different 

combinations of the two operating parameters (period of particle deposition, liquid-level drop 

distance). A longer deposition period clearly gives wider stripes, while a longer drop distance 

gives wider spacings, demonstrating the ability to control the periodicity of the stripe patterns. 

In addition, multilayer stripes can be produced as well as monolayer stripes simply by using 

dispersions with a high particle concentration and changing the deposition period. The 

thickness of particulate stripes increases with a particle concentration (Fig. 12c, d, from 

bilayer to trilayer) and also a deposition period (Fig. 12d, e, from trilayer to four-layer), 

because a higher concentration and a longer deposition period can transport more particles 

into the contact line. 

In principle, the stripe width and spacing can be increased without limit by increasing the 

particle concentration, deposition period, and liquid-level drop distance. Although there exists 

a lower limit to the width and spacing, the liquid-level manipulation can break the threshold 

minimum encountered in the normal convective self-assembly. The thinnest stripe with 

close-packed structure we have achieved so far is ~2 µm (when 120 nm silica particles are 

used) by using a high concentration suspension and a short deposition period. On the other 

hand, narrowing the spacing is not straightforward; a smaller amount of suction did not 

produce a narrower spacing than that obtained by the spontaneous cut-off of the meniscus 

without liquid-level manipulation, because the liquid-level drop has to be large enough to 

induce the cut-off of the meniscus tip. We thus introduce the liquid-level raise immediately 

after the suction, which successfully narrows the spacing in a controlled manner.  

 Extending the technique by combining it with the multi-step convective self-assembly 

produces network patterns, as shown in Fig. 13 [74]. The resultant grid structure from 
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two-step assembly is well-defined and uniform over the whole substrate (Fig. 13a), and 

three-step assembly with 60° rotation of a substrate in each step successfully yields a triangle 

network structure (Fig. 13b). Furthermore, a flexible substrate (polyethylene terephthalate; 

PET) with relatively large size (5 cm×5 cm) can be easily coated with a grid pattern without 

clear dependence of the structure on substrate position (Fig. 13c-e). 

 Although the liquid-level manipulation is the same as the substrate withdrawal method in 

terms of the substrate motion relative to the liquid level, it is easily integrated into the 

convective self-assembly process just by using an inexpensive syringe pump. Another 

advantage of the liquid-level manipulation technique, which we found through our experience 

using a substrate withdrawal approach, is stable operation because the substrate is 

disconnected from the driving motor of the pump. This allows the fabrication of uniform 

patterns with fewer structural defects and distortions than are observed for the normal 

convective self-assembly, and furthermore enables quick and large-scale fabrication. Although 

similar approaches have been reported to control the meniscus tip motion [37, 39, 49, 75, 76], 

the main advantage of our technique is controlled fabrication on the basis of theoretical 

models built up for the stripe width and spacing. We believe this technique has potential for 

various applications because of its versatility and scalability. 

 

4. Concluding Remarks 

In the present paper, we introduce our recent results on patterned structure formation of 

colloidal particles by using the convective self-assembly method of vertical deposition type. 

This technique can produce several patterns including films, stripes, and cluster arrays, which 

changes depending on the particle concentration, on completely flat substrates without any 

chemical or physical templating. Particulate uniform films form on substrates fixed in 

suspensions at high particle concentrations (> 10-3 v/v for 120 nm silica particle), while 
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striped patterns spontaneously appear at lower volume fractions of 10-4−10-6 v/v. The decrease 

in the particle concentration slows the growth rate of a particulate film, which leads to the 

elongation of the meniscus into a concave shape that plays a primary role in the stripe 

formation mechanism. Grid patterns are produced by conducting the stripe fabrication process 

twice with 90° rotation of a substrate after the first assembly. Upon further decrease in the 

concentration, cluster arrays are formed from extremely dilute suspensions of 10-6−10-8 v/v. 

The transition from the stripe to cluster array occurs when the particle concentration is so 

small that the particles assembled at the drying front cannot form a continuous line. The 

morphology of self-assembled structures at the meniscus tip determines the meniscus tip 

behavior at the moment when the spacing is created: the sliding propagation mode for the 

stripes and the stick-and-slip mode for the cluster arrays. The convective self-assembly 

process is thus demonstrated to have an anomalous self-regulating tendency that leads to 

varying assemblies of microscopic colloidal structures in response to macroscopic 

experimental parameters. In addition to the self-regulating property, incorporating the 

liquid-level manipulation protocol enables the active control in the pattern periodicity and the 

fabrication of stripe patterns with various stripe widths and spacings that are unachievable 

with the normal convective self-assembly technique. In this way, the convective self-assembly 

process is a simple, inexpensive, and versatile template-free technique for fabricating 

patterned structures of particles, and is believed to have the potential for technological 

applications in variety of fields. 
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Figure Caption 

Fig. 1 (a) Schematic illustration of the convective self-assembly technique. (b) Magnified 

schematic around the meniscus tip. 

 

Fig. 2 (a) SEM image of a particulate film of 120 nm silica particles prepared from a 

suspension with concentration of 1.3×10-3 v/v. White lines are cracks formed during drying. 

(b) Magnified SEM image of a. (c) SEM image of a stripe patterned film of 120 nm silica 

particles prepared from a suspension with concentration of 2.5×10-5 v/v. (d) Magnified SEM 

image of a stripe in c. (e) Optical image of stripes in c. (f) Confocal laser microscope image 

and height profile of a stripe in c. Black arrow in panels a, c, e, and f indicates the direction of 

liquid-level drop, i.e., the stripe growth direction. Panels c, d, e and f of this figure are adapted 

with permission from Ref. [62]. Copyright 2009 American Chemical Society. 

 

Fig. 3 (a) Stripe width as a function of the particle concentration, shown for two particle sizes. 

The numbers on the error bars denote the number of layers of stripes. The error bars indicate 

the standard deviation of the data. (b) Stripe spacing as a function of the stripe thickness, 

shown for two particle sizes. The dotted lines show the results obtained using the present 

model, i.e., the calculated stripe spacing as a function of the stripe thickness. 
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Fig. 4 Snapshots of the stripe formation process of 270 nm silica particles at a concentration 

of 1.0×10-5 v/v. Reprinted with permission from Ref. [63]. Copyright 2012 American 

Chemical Society. 

 

Fig. 5 (a) Concave shape of the meniscus that produces the stripe pattern. (b) Meniscus shape 

that attaches to the bottom-right edge of a glass slide when the liquid level descends gradually 

by aspirating the solvent (water) with a syringe. Panel b is adapted with permission from Ref. 

[62]. Copyright 2009 American Chemical Society. 

 

Fig. 6 (a) Optical image of cluster arrays obtained using 60 nm gold particles from a 

suspension of 1.5×10-7 v/v. Black arrow indicates the direction of liquid-level drop. (b, c) 

Magnified SEM images of cluster arrays in a. Reprinted with permission from Ref. [63]. 

Copyright 2012 American Chemical Society. 

 

Fig. 7 Dependence of (a) the number of constituent particles in a cluster, (b) the 

center-to-center separation between clusters, and (c) the spacing on the particle volume 

fraction at different temperatures. Error bars indicate the standard deviation. Reprinted with 

permission from Ref. [63]. Copyright 2012 American Chemical Society. 

 

Fig. 8 Snapshots of the cluster array formation process of 100 nm gold particles at a 

concentration of 1.0×10-7 v/v. Reprinted with permission from Ref. [63]. Copyright 2012 

American Chemical Society. 

 

Fig. 9 (a) Schematic illustration of two-step convective self-assembly method for fabrication 

of grid patterns. (b) Optical image of a resultant structure from the two-step convective 
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self-assembly without plasma treatment of the substrate after the first step. (c) Magnified 

optical image of a raindrop shaped deposit in b. (d) Optical image and (e) SEM image of grid 

pattern. (f) Topographic image of grid pattern in d. The particle used is 120 nm silica particle 

in this figure. Panels a, d, and e of this figure are adapted with permission from Ref. [71]. 

Copyright 2011 American Chemical Society. 

 

Fig. 10 (a, b) 3D schematics of meniscus raised by vertical stripes, demonstrating particle 

deposition process under conditions of (a) low and (b) high particle concentration. (c) Optical 

image of grid pattern prepared from suspensions with a concentration of 1.0×10-5 v/v in the 

first step and 2.0×10-5 v/v in the second step. (d) Optical image of stripe pattern formed 

without vertical stripes at the concentration of 2.0×10-5 v/v. The particle used is 120 nm silica 

particle in this figure. Black arrow indicates the direction of the liquid-level drop. Reprinted 

with permission from Ref. [71]. Copyright 2011 American Chemical Society. 

 

Fig. 11 (a) Optical image of grid pattern using a suspension of 10−15 nm silver particles at 

5.0×10-6 v/v both in the first and second steps. (b) Optical image of silica−silver hybrid grid 

pattern obtained in first step using 120 nm silica particles at 1.0×10-5 v/v and second step 

using 10−15 nm silver particles at 5.0×10-6 v/v. Reprinted with permission from Ref. [71]. 

Copyright 2011 American Chemical Society. 

 

Fig. 12 (a) Schematic illustration of the convective self-assembly with liquid-level 

manipulation technique. (b) Optical image of a typical stripe pattern obtained from a 120 nm 

silica particle suspension of 3.0×10-5 v/v by convective self-assembly with liquid-level 

manipulation. The sets of particulate stripes and subsequent spacings labeled as i and ii are 

fabricated with different combinations of the two operating parameters, (deposition period, 



 22 

liquid-level drop distance) = (60 s, 40 µm) and (120 s, 70 µm). (c-e) Optical images of 

multilayer stripe patterns. (c) Bilayer, 5.0×10-5 v/v, (60 s, 70 µm). (d) Trilayer, 1.0×10-4 v/v, 

(120 s, 70 µm). (e) Four-layer, 1.0×10-4 v/v, (180 s, 70 µm). Reprinted with permission from 

Ref. [73]. Copyright 2012 American Chemical Society. 

 

Fig. 13 Optical images of (a) grid pattern and (b) triangle network from a 20 nm gold particle 

suspension at 1.0×10-4 v/v by combining the convective self-assembly with liquid-level 

manipulation with the two/three-step convective self-assembly. (c) Photograph and (d, e) 

optical micrographs of a large-sized grid network pattern of silver nanoparticles that was 

fabricated on the 5 cm ×5 cm PET substrate from a 10−15 nm silver particle suspension of 

1.0×10-5 v/v. Panels a and b of this figure are from Ref. [74], and c, d, and e are adapted with 

permission from Ref. [73]. Copyright 2012 American Chemical Society. 
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