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Nonequilibrium identities and response theory for dissipative particles
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We derive some nonequilibrium identities such as the integral fluctuation theorem and the Jarzynski equality
starting from a nonequilibrium state for dissipative classical systems. Thanks to the existence of the integral
fluctuation theorem we can naturally introduce an entropy-like quantity for dissipative classical systems in far
from equilibrium states. We also derive the generalized Green-Kubo formula as a nonlinear response theory for
a steady dynamics around a nonequilibrium state. We numerically verify the validity of the derived formulas for

sheared frictionless granular particles.
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I. INTRODUCTION

Construction of a nonlinear response theory around a
nonequilibrium state is one of the most challenging problems
in theoretical physics [1-3]. The most remarkable achieve-
ments in the past two decades are the generalized Green-Kubo
relation [4] and various fluctuation theorems [5—12] even in
quantum systems [13]. These relations can reproduce Green-
Kubo formula and the reciprocal relation in the linearized
limit and give a mechanical foundation of the second law of
the thermodynamics. On the other hand, there are some cases
that the heat fluctuation theorem is, at least, no longer valid for
some situations [14,15]. Thus, it is important to know whether
these identities are valid in arbitrary nonequilibrium situations.

Although it has been believed that these identities such as
the fluctuation theorem are supported by the local time-reversal
symmetry or the detailed balance condition, some experiments
suggest the existence of the fluctuation theorem or related
identities even in granular systems that have neither time
reversal symmetry nor detailed balance [16-20], though there
exists a counter argument [21]. It is remarkable that a series
of papers by Puglisi and his coworkers [22-25] clarified
that granular fluids do not hold the conventional fluctuation
theorem but have only the second-type fluctuation theorem by
Evans and Searles [26]. We note that Chong ef al. have proven
the existence of both the generalized Green-Kubo relation and
the integral fluctuation theorem [12,27] for a granular system
under a steady plane shear [28]. They also developed the
representation of a nonequilibrium steady-state distribution
function [29] and the liquid theory for sheared dense granular
systems [30].

Unfortunately, the achievement of the previous studies
[28-30] for sheared granular systems is not a response theory
from a nonequilibrium state but a relaxation theory to a
nonequilibrium steady state starting from an equilibrium state.
One may regard the previous results as the relations only valid
for sheared granular fluids, but our formulation is applicable
to any classical dissipative systems. Thus, one of the main
purposes of this paper is to extend the previous formulation
to obtain the general nonlinear response theory from any
nonequilibrium state for dissipative classical particles, in
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which the system has neither local time reversal symmetry
nor local detailed balance. We also demonstrate the validity of
the derived formulas from the direct numerical simulation of
sheared frictionless granular particles.

The organization of this paper is as follows. In Sec. I, we
summarize the general framework of our analysis in terms
of Liouville equation for a system of dissipative classical
particles and introduce some known identities that will be used
in this paper. Section III, which is the main part of this paper,
consists of four parts. In the first part (Sec. III A), we derive
the integral fluctuation theorem (IFT). We also demonstrate
the existence of a positive definite quantity during the time
evolution, which can be regarded as the entropy production
rate in the system. In the second part (Sec. III B), we discuss
how to derive the conventional fluctuation theorem for the rate
of a dissipation function without local time reversal symmetry.
In the third part (Sec. III C), we derive the Jarzynski equality
if the evolution dynamics contains a part not described by
the Liouvillian. In the fourth part (Sec. III D), we derive the
generalized Green-Kubo formula for a steady dynamics. In
Sec. IV, we simulate sheared frictionless granular particles to
verify the identities derived in Sec. III. In Sec. V, we discuss
our results and explain the physical implication of our results
toward the construction of a statistical mechanics for a classical
dissipative system in a nonequilibrium steady state. Finally,
we summarize our conclusion in Sec. VI. In Appendix A, we
introduce an alternative derivation of IFT. In Appendix B, we
explain the derivation of the Jarzynski equality when we start
from the canonical distribution to clarify its physical meaning.
In Appendix C, we discuss the effect of the measurement to
get the generalized Jarzynski equality.

II. GENERAL FRAMEWORK

Let us consider a system of N identical soft spherical
particles characterized by the positions {ri(t)}fvz , and the
momenta { pi(t)}f\': , of particles at time t. We assume that
the system involves dissipations and external forces to relax
a steady state. For a while, we do not specify the system we
consider, and we discuss universal results that can be used for
any dissipative classical system in this and the next sections.

The basic equation for the statistical mechanics of such
particles is the Liouville equation [3,31-37]. The argument in
this section is parallel to that in Ref. [3]. Let i £(¢) be the total
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Liouvillian that operates a physical function or an observable
A(I'(2)) starting from r = 0 as
dA(T (¢
WDy 0.0 LOAD),ATH) = U~ 0.0AD),
(D

where U_, (0,) = T, ¢' /o 45£6) ig the time evolution operator
with the time-ordered exponential function 7., e /o 45£6) =
Sy Jodst fy dsae e [o dspiL(sy) -+ iL(s2)iL(s1), and
@) ={r;@), p[(t)}{v= | represents all phase variables with the
abbreviation I' = I'(0). We note that there are some trivial re-
lations for U_, (ty,t) such as U_, (ty,1) = U_, (ty,s)U_ (s,t) for
to < s <t and U_(ty,t) f(F(ty)) = f(I'(¢)) for an arbitrary
function f(I'(r)).

The total Liouvillian consists of three parts, the elastic part,
the dissipative or the viscous part, and the part from an external
force. We write i L(t) as

iL(t) =T(T,1)- air

=i L) 4+ i L) 4 i Lox(T, 1), (2)

where i £ is the sum of the free part and the elastic collision
part,

N
. pi 9 (el)
L) =) (3)
el m ari

ap;’
with the mass m of each particle and the elastic or the
conservative force F Eel) acting on the ith particle, which
is assumed to be represented by the sum of the pairwise
elastic force F{>) as F{") =", F\{". Here, the pairwise
elastic force can be represented by the potential V(r;;) as

FE;D = —BV(ri_,-)/Brij, where rij = "'i —r; and rij = |rij|.
Similarly, the viscous Liouvillian i £V¥(T') is given by
y i)
L) =) FYIT) . —, 4
iLM(I) =) F{™(T) ip )

i=1

where F{"™ is the viscous force acting on ith particle. For
simplicity, we assume that F'"™”(T') does not depend on the
time explicitly, which can be a function of time through the
change of I'(¢). The explicit form of the Liouvillian i Ly (¢) in
terms of the external force will be specified later.

It should be noted that the Liouvillian is not self-adjoint
for dissipative systems. The adjoint Liouvillian is defined by
the equation of the phase function or the N-body distribution
function p(T',?):

p(T.1) = U(1,0)n(T,0), —iLI0)p(T,1), (5)

9p(T,1) _
D

where U (t,0) = Te~ lo 5L = > (=) fodsy -
Jor " dsniLi(s1) - iLT(sy) is defined by the left time-ordered
integral.

The adjoint Liouvillian satisfies
iLi(r) =i L@t) + A, (6)
where A(T) = air Tm=y, L. Fﬁvm is the phase vol-

i dp;
ume contraction. Note that A(T) is not an operator but
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merely a number in classical situations. We also note that
A(T) is directly related to the Jacobian as [0 (z)/dT'| =
exp|[ fot dtA(I'(7))]. Equation (6) implies that the non-
Hermitian part appears only through A(T'). This means that
i Lew(T',t) should be a Hermitian as in the case of i £©(T").
The average of a physical quantity A(T'(z)) is defined as

(AT(@) = / dT p(T 0)AT(1)) = / dT A1) (7)
From Egs. (1), (5), and (7) we obtain the relations
/dI’p(F)UH(O,t)A(I‘)=/dFA(F)Ue(t,O)p(F,O) ®)
and

/dl“p(l‘)iﬁ(t)A(l‘) = — f drA(r)iET(t)p(r,O). )

We also have the following relation for the inverse path:
(AT (=) = / dTp(I,0{U(z,00A(T")}

=/dI‘A(I‘){U_>(0,t)p(F,O)}, (10

where A(T'(=1)) = U_(t,00A(D)U_.(0,t) and A(L(t)) =
AT (@) = U_(0,)A)U _(z,0) for t+ > 0. Here, we have
introduced U (t,0) = T— exp[—i fot dsL(s)]. Note that
A(L(=1)) is not equal to A(I'(—t)), except for the case
that the system has time translational symmetry. Therefore,
U.(0, —t) = U3 (—1,0) and U_, (—¢,0) = U_'(0, — 1) are,
respectively, not equal to U._(¢,0) = U-'(0,) and U_(0,1) =
UZ!(t,0), in general, where U_, (0,1) = T, exp[i fot dsLi(s)].
In other words, the useful relations U _(¢,0) = U _(0, — ¢t) and
U_,(—1,0) = U_,(0,r) can be used, if the Liouville operator is
independent of time.

In the last part of this section, we introduce a useful formula
between U_, (0,7) and U, (0,r). It is easy to show that two
evolution operators U_,(0,7) and U_(0,1) satisfy Dyson’s
equation [3]:

U, (0,7) = U_>(O,7:)+/Tdslj_)(O,s)A(l")Ue(s,t), (11)
0

where we have used Eq. (6). It is straightforward to rewrite
Eq. (11) as [3,38]

U_(0,t) = exp [/ th(F(r)):| U_(0,1), 12)
0

where A(I'(2)) = U (0,0)) A(T)U(,0). From the inversion
relation U_(1,0) = UZ'(0,t), we also have another identity

U_(t,0) = U_(t,0)exp [—/ dzA(r(r))] (13)
0

III. SOME NONEQUILIBRIUM IDENTITIES

In this section, we derive some nonequilibrium identities
for dissipative classical systems. First, we introduce IFT in
Sec. IIT A, which is the consequence of the conservation of the
probability as well as another derivation of IFT in Appendix A.
We also introduce a quantity that corresponds to the entropy in
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our system. Second, we derive the standard fluctuation theorem
for the dissipation rate from IFT (Sec. III B). Third, we extend
the IFT to the Jarzynski equality if the dynamics includes a
part not described by the Liouvillian (Sec. III C) as well as
its derivation starting from the canonical state in Appendix B.
Fourth, we discuss the generalized Green-Kubo formula as
an expression of nonlinear response theory for the steady
dynamics (Sec. III D). Note that the effect of measurement can
easily be included in our formulation, which will be discussed
in Appendix C.

A. Integral fluctuation theorem

Letus consider the time evolution from a state characterized
by
—I(T)
Z
where I(TI") is the effective potential in a nonequilibrium state,
and Z = [dTe !, There are two advantages to introduce
oNe(ID) instead of using the equilibrium distribution function:
(i) We can demonstrate that the fluctuation theorem and
related identities are independent of the choice of a reference
state, and (ii) we can discuss the response theory around the
nonequilibrium state characterized by pong(T).

The normalization factor Z is invariant if the time evolution
is only described by the Liouvillian. Namely, we can rewrite
Z = [dT(t)e~!T®) From these two expressions for Z with

the aid of dT'(¢) = dTels AT we obtain

(6713 er(I‘(r)))NE — 1’ (15)

p(I,0) = pne(T) =

(14)

where
Q) = [(T() — AT (1)), (16)

and (A(D))ng = de'pNE(I')A(I‘) for an arbitrary function
A(T), and f(l“(t)) = (d/dt)I(I'(t)). Here, we have used that
I(T'(¢)) is commutable with A(T'(¢)). Equation (15) is IFT
[12,27], but the essence of IFT is the conservation law of
the probability, which is independent of the details for the
dynamics. Note that 2(I'(¢)) introduced here is an extension
of the dissipation function or a generalized entropy production
in thermostat systems [3]. We present another derivation of
IFT in Appendix A.

With the aid of Janssen’s inequality and its differentiation
with respect to the time, we readily obtain an inequality similar
to the second law of thermodynamics:

(QI@))Ne = 0,

which determines the stability of the state. This is a quite
natural result, because Q(I'(¢)) corresponds to a generalized
entropy production rate [3]. According to Eq. (17), we can
introduce the entropy-like quantity

A7)

t
S(r() = /O d (QUT(D)))xE, (18)
which increases with time. Further physical implication of the
entropy-like quantity Eq. (20) will be discussed in Sec. V.
Equation (15) is the exact relation but is not easy to be
verified from experiments and simulations because of the
limitation of accuracy for N -body correlation function. Indeed,
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Ref. [39] stated that the normalization from the conservation of
probability is difficult to be achieved by numerical simulations.
Instead, we can use an alternative expression,
t
w(t) = <Q(I‘(r)) exp [/ dtQ(I'(r))]> =0, 19
0 NE

for the practical purpose, which is obtained from the time
derivative of Eq. (15). The relation Eq. (19) is highly non-
trivial. Indeed if we adopt the decoupling approximation for
w(t), it should satisfy w(t) ~ (Q(l"(t)))NE/(e’fot QT >
0 thanks to Egs. (15) and (17). Therefore, the numerical
verification of Eq. (19), which is the result of the correlation
effects, is important for Q(I'(¢)) # 0.

B. Fluctuation theorem

It is straightforward to derive the conventional fluctuation
theorem (FT) from IFT Eq. (15), where FT is the relation
of the probability of the entropy production between the
forward path and the inverse path [3]. Now, let us derive the
conventional fluctuation theorem from the integral fluctuation
theorem Eq. (15). We, here, assume that the initial distribution
is given by /ONE(F) = peq(r):

—BH(T)

Peq(I) = Tﬂ);

p; |1
HIO) =3 oh 450 Vi), (20)
i i,j#i

with Z(B) = [ dTe #HT and the inverse temperature S.

Now let us consider the process from time O to time ¢ by
the time evolution operator U_, (0,¢) and the trajectory of the
phase variable I'(r) = U_.(0,7)I for 0 < t < ¢. The inverse
process, thus, is characterized by the time evolution operator
U_(¢,0) and the inverse phase variable I'*(t) = {r;(t — 1),
— pit — N, ={T(t — 1)} for0 < t < ¢, where the oper-
ation {I'(¢)}” represents the change of the sign of the momenta
(T = {ri@t), — pi(t)}fvzl. Because the probability of the
inverse trajectories pr(I'*(0)) = peq(I'™) is still normalized as
J dT* peg(T*) = 1 with the abbreviation T'* = I'*(0), Eq. (15)
can be rewritten as

/ dT peg(D)e ™" = / dT* peg(T), 21)

where we have introduced ©; =1 [ drQeq(T'(7)) with
Qeq(T (1) = BH(T (1)) — A(L(t)). From the definition of
A(I'(t)) and the Hamiltonian, there are some trivial rela-
tions: A(T*(7)) = —AT(t — 1)), HT*(t)) = HI'(t — 1))
and Qeq(T* (1)) = —Qeq(I'(t — 7)) for 0 < 7 <t There-
fore, we can write the probability of Q, = —A for @, =
1 Jo dTg(T*(@) = | [; dTQe((T(0))7):

Prob(@, = ~A) = [ dT"p (T, + 4)
= [aropurans@ - a)
- /drpeq(r)e—fﬁa@— A)

= [ ar i@ - 4

= e Y"Prob(Q, = A), (22)
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for the conventional fluctuation theorem, where we have used
AT(D)/0T(t — D) = 1, peq(T(1)) = peg(De # o 4*H® and
dT(t) = dTelo 47AT®) Note that the argument is still valid
for the general starting point Eq. (14) if we have the symmetry
I(T* (7)) = I(T(t — 1)).

It is easy to verify that IFT Eq. (15) can be derived from the
fluctuation theorem (FT) Eq. (22). However, it should be noted
that FT is the expression between the real trajectory and its
inverse trajectory. Although there exists the inverse trajectory
even for any dissipative systems, this trajectory cannot be
traced by any physical operation. In this sense, FT Eq. (22)
is useless, but IFT Eq. (22) still has the physical relevancy.
Nevertheless, as in recent experiments [18-20], if we use an
asymmetric rotor with some vanes in a granular gas, it might
be possible to observe FT presented here.

C. Jarzynski equality

Jarzynski equality is an identity that is related to the second
law of thermodynamics [7]. The integral fluctuation theorem
Eq. (15) can be regarded as one of the expressions of Jarzynski
equality, but Jarzynski equality in a narrow sense involves the
change of the normalization during the process we consider.
It should be noted that if the time evolution is only governed
by the Liouville operator, there is no room that Z is changed.
In other words, we should consider the dynamics that cannot
be characterized by the Liouvillian, such as the change of the
system volume.

In this subsection, we demonstrate the existence of Jarzyn-
ski equality starting from Eq. (14) with an abstract way.
More instructive proof of Jarzynski equality starting from
Eq. (20) is presented in Appendix B, in which the change
of energy in the system is connected with the work acting
on the system.

To describe such a process let us introduce a protocol
parameter A(t) for 0 < 7 < ¢, which has the value A(0) = 0 at
the initial instance and A(¢) = 1 at time ¢. As the Hamiltonian
changes by the external work in the original argument by
Jarzynski [7], the effective potential changes during the
operation from I(I',0) to I(I'(¢),1) [40]. As a result, the
normalization Z(0) = [ dTe~/T-9 at the initial instance can
become Z(1) = [dT(t)e ' TOD If we set Z(1) = e 7V, we
can write

—ar _ 20 L/ —I(T(0),1)
=20 - 20 dI'(t)e

r ~I(T.0)
=/dI‘ ar@)| e

ar Z(0)
= <exp |:— /t er(F(r),k(r))}> , 23)
0 NE

where AF = F(t) — F(0). Equation (23) is the Jarzynski
equality for dissipative systems.

We should note that Z(¢) still has the meaning of the
partition function under a nonequilibrium weight function
I(I'(¢),1). Therefore, we can regard JF(t) as the effective
free energy for dissipative system at t. If we start from
Peq(I), it is straightforward to show the Jarzynski equality
is reduced to e #2F = (exp[— fot dt QT (1),A(1))])eq, Where
AF = F(t)— F(0) with e #f0 =Z@)= [dT(t)e PHO.

e~ Jo dTI(T(@).A(D)

PHYSICAL REVIEW E 88, 032117 (2013)

Even in this case, we have to take into account the phase
volume contraction A(I'(¢)) for dissipative systems.

D. Generalized Green-Kubo formula

The generalized Green-Kubo formula is used for the
response around an equilibrium state under a nonequilibrium
steady external force [3]. Unfortunately, this relation cannot be
proven under nonstationary external forces but is valid, as will
be shown, for the response around a nonequilibrium steady
state under a sudden change of the external force.

Now, let us restrict our interest to the steady dynamics:

o=t o

where i £, and i £_ are, respectively, steady Liouville opera-
tors for the generalized Green-Kubo formula.
Therefore, we can replace Eq. (10) by

t>0

t <0, (24)

(AT (M))Ne = /dl"pNE(r)ew*’A(r)

_ / AT A pe(T).  (25)

Thus, we can obtain a compact expression for the distribution
function [3,28]:

p(L',1) = exp [fo er(L(—z))} oNe(D), (26)

where T, (£7) = ¢*4+'I. The derivation of Eq. (26)
is simple. The inverse of Eq. (5) with the help of
Egs. (12) and (14) is given by pne(T) :e’[bp(lﬂ_,t) =
els dTATL) o (T, (1),1). Let us operate e~"£+' on the both
sides. The right-hand side on this equation can be rewritten
as e*iﬁ_,_t[ef(; drA(I'_*_(tfr))p(rJr(t)’t)] — ejol drA(I’_,_(fr))p(rJr’t)’
while the left hand side is replaced by p(I'i(—1)) =
e 1T Z = ol delTe (=) 5 (T), where [(T4(—1)) =
dI(I' . (—1))/dt’ with 7" = —1. It is obvious that the deriva-
tion assumes the translational invariance of the Liouville
operator [41].

With the aid of Eq. (26), the time derivative of Eq. (25) is
reduced to

d
Z(A(r+(t)))NE = /dF+A(F)Q(F+(—I))p(F+J)

= / dT ;e “+ A(T)QUT (=) pxe(T)
= (AT 4(1)QUT))ng- 27

Its integral form, then, becomes

(AT +(M))ne = (A(D))Ne +/(; dt (AT ())2T))ne. (28)

Equation (28) states that the generalized Green-Kubo formula
in Refs. [3,28] is still valid even when we start from an
arbitrary nonequilibrium state under the steady dynamics given
by Eq. (24). Note that Eq. (28) is reduced to the well-known
Green-Kubo formula if we start from the equilibrium state in
the zero dissipation limit [28].
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IV. APPLICATION TO SHEARED GRANULAR FLUIDS

So far, our formulation is so general that we can apply
any classical dissipative systems described by the Liouville
equation, though the effect of boundaries is not clear. In this
section, we verify the validity of the identities we obtain in
the previous section from the direct simulation of sheared
frictionless granular particles.

A. Setup for sheared granular fluid

Let us consider a system of N smooth granular particles,
where the rotation and the tangential contact force of particles
can be ignored. The interaction between particles, thus, is
assumed to be characterized only by the normal contact force
for simplicity. We also assume that a sheared system can be
described by the SLLOD equations [3]

R (29a)
m

pi=F "+ F" —«@t)- p;, (29b)
where r; refers to the velocity of ith particle, p; is the
peculiar momentum defined by Eq. (29a), and «(¢) is the
shear rate tensor whose component is denoted by (). Here,
the force acting on ith particle consists of two parts, i.e.,
F; = FY + F"_ The conservative force is given by a sum

(e
F; = Zj;éz

, Fl(,;fl) of the elastic repulsive forces exerted on
the ith particle by the other jth particle:

F(el) Od —rij) f(d — rij)Fij, (30)

where d is the diameter of the particles, and ®(x) is the
Heaviside step function, i.e., ®(x) = 1 forx > 0and ®(x) =
for otherwise. In our simulation, we adopt the forms of the
elastic repulsive force:

fx) = kx, 31)

with the elastic constant k. Similarly, the viscous dissipative
force F™ due to inelastic collisions between particles is
represented byasum F"™ = Y s F f‘]-”s) of two-body contact

forces
Fg;”g) _rlfg(rlj)(gzj rlj) (32)
where P =rij/rij, i = Fij = (pi— p;)/m+ k(1) rij
and
G(rij) = O — ;). (33)

The amount of energy dissipation upon inelastic collisions is
characterized by the viscous constant ¢ . It should be noted that
Eq. (29) is reduced to Newtonian equations

mr, = F,‘, (34)

if k(¢) is independent of 7, where 7; denotes the acceleration
of r;. In this paper, we restrict our interest to the case
of kup(t) = y(t)84,x84,y, for simplicity, and adopt the Lees-
Edwards boundary condition to remove complicated effects of
the boundaries.

PHYSICAL REVIEW E 88, 032117 (2013)

The Liouville operator representing the shear flow
i‘cext(t) = l.ﬁj)(,) is given by

ad d
zcym(r)—ya)Z(yj ~Prig,— ) (39)

For our setup Egs. (29)—(35), the phase-space compression
factor, A(I'(¢)), which only depends on ¢ through I'(¢) is
written as

A(T) = Z % N —% Z ; G@rij) (36
i i jF#E

fort > 0.
We consider the case that the dynamics is given by

. _jiLy for t>20
L) = {iﬁo for —t <t <0, 37)
where i £y and i £, are, respectively, given by i Lo = i L +

iLY® 4 iy and il =iLC +iLM +iL; with the con-

stant shear rates y; # yp, where the initial distribution for
t < —tp is assumed to be given by Eq. (20) with the
inverse temperature 8. The setup at o = O is used to verify
the response theory from the equilibrium state Eq. (20),
while the general setup for #p > 0 is used to analyze the
response from a nonequilibrium state png(I'). It should be
noted that generalized Green-Kubo formula Eq. (28) is reduced
to the known definition of the viscosity,

n= ﬂVllirgofo AT {04y (T(1))0xy (T))eqgs (38)

in the zero dissipation limit with 7y = 0, where V is the
volume of the system [28] with the aid of A(I'(#)) = oxy,
which is xycomponent of the shear stress, (0, (I'))eq = 0 and
n = lim;_, oo (0xy (L' (¢)))eq/ v . For the calculation of the shear
stress we use its microscopic expression

1 PixDi,y (el) (vis)
pE P e e )| 60
J#i

01y (T) =

where p; , and Fj; , represent the x components of p; and F;,
respectively.

In order to obtain the numerical configuration {r; (t)}f\': 1
of the equilibrium state at r < —#;, we use the velocity
rescaling method. The momentum p;,(¢) at equilibrium initial
condition for ¢ < —to satisfies the Gaussian distribution
(B/27wm)*? expl—B p; /(2m)].

Our system satisfies Eq. (26) at + = 0 for the distribution
function with the replacement fot dtQ(I' 1 (—71)) and pne(T)

by /°, d7Qeq(To(—to — 7)) = [ d7Qeq(To(—7)) and peq(T)
with To(£t) = e 4T Therefore, I(T) in the distribution
function Eq. (14) is give by

4]
I(T)=pHT) - / dtQeq(To(—7)). (40)
0
In the sheared system, Q2.4(T") is reduced to

Qeq(I') = =BV ory(I) = 2BR(T) — A(T), (41
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FIG. 1. (Color online) The numerical verification of the inequal-
ity Eq. (17) for o = 0.0. Here, (Q2*(¢)) = (Q2(¢))ne/~/k/m is plotted
as a function of the scaled time t* = t//m/ k.

with Rayleigh’s dissipation function

¢ 5
R =2 ) O = rij)gij - Fij)*. (42)
i
It should be noted that the normalization Z during the
dynamics is unchanged because the dynamics does not include

any protocol parameter. Therefore, we can only verify IFT and
the generalized Green-Kubo formula through the simulation.

B. The verification of IFT

In this subsection, we verify the validity of IFT Eq. (15)
or (19) through the three-dimensional discrete element method
(DEM). As stated in the text, shear is applied to x direction,
and thus, y-dependence of the x component of the velocity
field is affected by the presence of shear. Because of the
numerical difficulty of the check of Eq. (15), as stated in the
previous section, we examine whether Eq. (19) is valid. In our
simulation, we adopt the viscous constant { = 0.00045@,
which corresponds to the restitution coefficient e = 0.999. The
number of the particles is N = 18. The volume fraction is
¢ = 0.66, which is above the jamming point for a sufficiently
large system. The temperature of the equilibrium state at t <
—tp is B~ = 0.004kd>. We use the initial and the secondary

shear rates Yy = 0.1/k/m and y; = 0.2./k/m, respectively.

0 10

*

t

FIG. 2. (Color online) The numerical verification of the inequal-

ity Eq. (17) for #y = 1.05/k/m. Here, (Q*(t)) = (Q(t))ne/+/k/m is
plotted as a function of the scaled time t* =t/ /m/k.
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FIG. 3. (Color online) The numerical verification of the integral
fluctuation theorem Eq. (19) for #yp = 0.0, where w*(t) = w(t)v/m/k
is plotted against the scaled time t* = t/k/m.

We adopt the leapfrog algorithm with the time interval
At = 0.003/m/k. In order to obtain Q(I'(¢)) numerically,
we approximate I(T(t)) in Eq. (16) as I(T@®)) ~ {I(T(r +
AT)) — I(T(¢))}/ At with At = 0.00001/m/ k.

First, we have verified Eq. (17) starting from both an
equilibrium and a nonequilibrium states as in Figs. 1 and 2.
For the case starting from an equilibrium state, we use 800 000
independent samples, while we use 24 000 samples for the case
from a nonequilibrium state. For the nonequilibrium setup, we
use o = 1.04/m/ k. These figures clearly exhibit that (€2(¢))nE,
which takes almost the identical values in both two initial
conditions increases with time. From the absolute positivity of
(2(#))nE, it can play a role of the entropy production rate in
nonequilibrium dissipative systems.

Figures 3 and 4 demonstrate that w(#) introduced in Eq. (19)
keeps to be zero within the numerical accuracy regardless
of the choice of an initial condition, where Fig. 3 begins
with an equilibrium condition (fp = 0), and Fig. 4 starts
from a nonequilibrium condition (ty = 1.04/m/k). This result
supports the validity of IFT Eq. (15) as well as its time
differentiation Eq. (19). The results presented in Figs. 1-4
are remarkable, because, as stated previously, the higher-
order correlations produces w(t) = 0, while w(t) >~ (2(t)) is
expected to be held under the decoupling approximation.

We note that IFT Eq. (15) contains all order of cumulants,
which is not suitable for numerical calculation. Nevertheless,

w (t)

*

t

FIG. 4. (Color online) The numerical verification of the integral
fluctuation theorem Eq. (19) for #y = 1.0/m/k, where w*(t) =
w(t)s/m/k is plotted against the scaled time t* = t/k/m.
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0.002

0.001

<04y t)>

FIG. 5. (Color online) The numerical verification of the general-
ized Green-Kubo formula in Eq. (28) for #§ = t9o/k/m = 0.0 and 5.0
through the plot of (o, (t)) = {(04,(¢))/(k/d) against the scaled time
t* = ty/k/m, where DS and GK, respectively, denote the numerical
result in terms of the direct simulation of granular particles and the
generalized Green-Kubo formula Eq. (28).

such an identity is useful to test the validity of an approximate
theory such as perturbation expansion.

C. The verification of the generalized Green-Kubo formula

Let us verify the generalized Green-Kubo formula Eq. (28)
in this subsection. Because we restrict our interest to the
combination of steady processes as in Eq. (37), the gen-
eralized Green-Kubo formula Eq. (28) should be held. To
verify the Green-Kubo formula we measure the average of
the microscopic stress o,,(¢) in Eq. (39). Figure 5 shows
the results of two cases with tp = 0 and ¢ty = 5.04/m/k, where
we use N = 800000 independent samples. Although we have
large fluctuations for the data with ¢y # 0, we can conclude
that the generalized Green-Kubo formula Eq. (28) is still valid
even if we start from a nonequilibrium initial condition.

V. DISCUSSION

In this paper, we obtain some exact nonequilibrium re-
lations, though the generalized Green-Kubo formula is only
held for steady dynamics. To verify the validity, we have
performed DEM of granular particles. We should stress that
the identities presented in this paper can be used above the
jamming transition.

Even after we confirm the validity of the nonequilibrium
relations such as IFT and the generalized Green-Kubo formula,
it is not easy to calculate the correlation function Eq. (28)
analytically. One possible method is to use the mode-coupling
theory (MCT). It is helpful to apply MCT for sheared
liquids to characterize rheology near the jamming transition
[34,36,42—47]. It is notable that Ref. [36] develops a linear
response theory for a sheared thermostat system around a
nonequilibrium steady state. The application of this type of the
response theory for granular fluids will be discussed elsewhere.

A different approach is to analyze the eigenvalue problem
of the Liouville equation with the aid of full counting statistics
[48]. This is also a promising approach, but the eigenvalue
problem of the Liouville equation for granular liquids is not

PHYSICAL REVIEW E 88, 032117 (2013)

easy. We will also look for the possibility of this approach
elsewhere.

We believe that Eq. (17) is the most important result in
this paper, because this suggests that we may introduce the
entropy-like quantity S(I'(¢r)) in Eq. (18) for an arbitrary
dissipative system. In the standard statistical mechanics, the
differentiation of the entropy with respect to the energy gives
the inverse temperature. This idea still can be used for the
statistical mechanics of granular gases.

For sheared and jammed granular systems under a
constant volume condition, there are some papers to
construct a statistical mechanics by using the stress
ensemble [49-52], which might be the counter part of
known Edwards ensemble [53] for a system with a changing
volume. Indeed, there are some advantages to use the
stress Xy, (I'(?)) = Voy,(I'(t)) for sheared and jammed
granular systems, because the energy itself is small, and the
stress should be spatially uniform in a steady state, while
the energy is localized. Furthermore, we should indicate
TrY;; is not far from the energy itself. Therefore, this
paper may give some justification to introduce the effective
temperature  Tegr = 1im, .00 (dS(T(1))/d((Z, (T(1))ng)) ™!
in the stress ensemble. The possibility to construct a statistical
mechanics of granular systems that can cover granular gases,
stress ensembles, and the Edwards ensemble along this line
will be discussed elsewhere.

V1. SUMMARY

We obtained some exact relations for dissipative classical
particles. We derived the integral fluctuation theorem Eq. (15)
and its equivalent expression Eq. (19) around a nonequilibrium
state and confirmed the positivity of (Q(I'(¢)))ng asin Eq. (17).
From IFT we confirmed the existence of an entropy-like
quantity Eq. (18) in an arbitrary dissipative system. We also
derived the conventional fluctuation theorem Eq. (22). We gave
a simple derivation of the Jarzynski equality Eq. (23). We
also obtained the generalized Green-Kubo formula Eq. (28)
for the steady dynamics around a nonequilibrium state. We
numerically verified the validity of the obtained identity
Egs. (19) and (28) as well as Eq. (17) for the case of sheared
granular fluids.
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APPENDIX A: ALTERNATIVE DERIVATION OF THE
INTEGRAL FLUCTUATION THEOREM

It is possible to obtain IFT from a different manner.
Substituting Eq. (12) into Eq. (10) under the initial condition
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Eq. (14) for t > 0 we obtain

(A(T(=0)ne = / dT A(T)0. (0,1)pri(T)

- / dTAM) [eh 478D (T | (Al

Setting A(T) = 1, the left-hand side of Eq. (A1) becomes one
because of Eq. (10). On the other hand, if we adopt Eq. (14)
with the aid of

pae(T(0) = T /2 — =l dsITE) pp(T), (A2)

we obtain IFT Eq. (15).

APPENDIX B: JARZYNSKI EQUALITY OF A GAS
STARTING FROM EQ. (20)

In this appendix, we only focus on the Jarzynski equality
of a gas starting from an equilibrium initial condition Eq. (20)
to illustrate the meaning of the generalized Jarzynski equality
introduced in Sec. III C. We also assume that the protocol
parameter A(t) is proportional to the volume of system V.
Here, we introduce the Hamiltonian H; = H(I'(7),A(t)) of
the system for 0 < 7 < ¢.

Because the pressure P is given by P = —(0H, /0V)s for
an adiabatic process in thermodynamics, the work W (¢) acting
on the system during the volume change V(A(7)) for 0 <
T <t can be represented by W(t) = fot dtV(0H,/dV)s =
fot df)‘\.(aHx/a)\.)S, where X = dX(t)/dt for an arbitrary
X(7).

Now, let us discuss the change of the energy in the system

H(I'(z),1) — H(I'(0),0) = / dt%H(I’(t),A(t))
0

= / dt{i(t)
0

. dH(IL(7),A
+1(D).- —(8(;()1) @,

=W+ 0@), (BI)

dH(I'(7),A(1))
Ir(T)

where we have introduced the absorbing heat Q(¢) =

fot dtI'(7)- %&?(T» = fot dtiL(T(1))H) of the system.

Note that Q(r) is given by Q)= —BVa, (L) —
2B R(T'(¢)) for sheared granular systems introduced in Sec. IV.

Let us introduce the partition function Z(8,t)=
[ dT(t)e PHTOMO=D with the initial inverse temperature f.
The change of Z(8,t) is associated with the change of the free
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energy AF as

_ Z(137t) — 1 /\dr(t)e*ﬂﬂ(r(f)vl)
Z(B,0)  Z(B,0)

o BAF

= / dr or@) ﬂe*ﬁfédf%ml‘(r).k(r))
ol Z(B,0)
t
:<exp [—/ d‘rQeq(F(‘l:),)»(r)):|> , (B2)
0 eq

where Qeq(T'(7),A(1)) = BW (1) + BO(T) — A(L'(7)). If the
system dynamics is nondissipative, we have the relation
0(t) = A(I'(r)) = 0, then the relation Eq. (B2) is reduced to
the conventional Jarzynski equality. For dissipative systems,
it is reasonable that there exists a contribution from the ef-
fective absorbing heat Qe () = Q) — ! [, dTA(T(7)) =
B~ [ d7Qeq(T(1),A(7)). In other words, the phase volume
contraction is associated with the effective heat. This result is
also reasonable, because the entropy production is given by
5 dTQeq(T(2),1(7)).

APPENDIX C: EFFECT OF MEASUREMENT

Recently, Sagawa and Ueda [54] have extended nonequilib-
rium identities to those under the effect of measurement. The
effect of measurement appears through the mutual information

POY®OIT (@)
P(y(0))
where y(t) represents a measurement outcome, and
P(y(#)|I'(¢)) is the conditional probability. The original for-
mulation is applied to Hamilton dynamics, but it is easy to

apply to the dissipative dynamics.
The generalized Jarzynski equality for sheared granular
liquids is given by

<<exp [— f [ dssz(r(s))] e IMeAF >> =1, (C2
0

e~ Z(M)

where ((A)) represents de' I, dy@) Z0) P(y(®)|T'(¢))A for
any function A. Indeed, the left hand side of Eq. (C2) is
rewritten as

I[T(); y@)] = In ; (ChH

—I1(T",0)

s = [ ar [Jayo’; 5 POOIre)

X exp [— / ds{I(T'(s),(s)) — A(I‘(s))}i|
0
y P(y(s)) Z(0)
P(y(s)IT(s)) Z(1)’
where Z(t) = [ dT e !TO-*0=D Thisisreduced to 1 by using
[dT(t) = [ dTeldaC@),
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