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METHODOLOGY ARTICLE Open Access

Application of permanents of square matrices for
DNA identification in multiple-fatality cases
Maiko Narahara1, Keiji Tamaki2 and Ryo Yamada1*

Abstract

Background: DNA profiling is essential for individual identification. In forensic medicine, the likelihood ratio (LR) is
commonly used to identify individuals. The LR is calculated by comparing two hypotheses for the sample DNA: that
the sample DNA is identical or related to a reference DNA, and that it is randomly sampled from a population. For
multiple-fatality cases, however, identification should be considered as an assignment problem, and a particular
sample and reference pair should therefore be compared with other possibilities conditional on the entire dataset.

Results: We developed a new method to compute the probability via permanents of square matrices of
nonnegative entries. As the exact permanent is known as a #P-complete problem, we applied the Huber–Law
algorithm to approximate the permanents. We performed a computer simulation to evaluate the performance of
our method via receiver operating characteristic curve analysis compared with LR under the assumption of a closed
incident. Differences between the two methods were well demonstrated when references provided neither
obligate alleles nor impossible alleles. The new method exhibited higher sensitivity (0.188 vs. 0.055) at a threshold
value of 0.999, at which specificity was 1, and it exhibited higher area under a receiver operating characteristic
curve (0.990 vs. 0.959, P = 9.6E-15).

Conclusions: Our method therefore offers a solution for a computationally intensive assignment problem and may
be a viable alternative to LR-based identification for closed-incident multiple-fatality cases.

Keywords: DNA polymorphism, DNA-based identification, Multiple-fatality cases, Permanent of square matrix,
Assignment problem

Background
DNA profiling is crucial in the identification of human re-
mains, particularly when other physical clues are absent.
Currently, the genetic status of an individual is commonly
profiled by short tandem repeat (STR) loci. There are two
types of approaches to DNA-based identification of an un-
identified body: 1) direct matching, and 2) kinship testing.
Direct matching is performed when the reference DNA of
a victim can be obtained from his/her belongings (direct
reference). When direct reference is not available, indirect
reference is obtained from the victim’s relatives, and a
probability distribution of genotypes is inferred for the vic-
tim. In either approach, identification is determined based
on the likelihood ratio (LR) between two hypotheses: that

the DNA of an unidentified body is that of a particular
missing person (MP) (hypothesis H1), and that it is ran-
domly sampled from a population (hypothesis H2). This
approach with use of STRs has been spread since mid-
1990th as a routine use for individual identification. The
first application to mass disaster identification was
reported in 1997 [1], and DNA identification with STRs
became the major tool in mass disaster identification. Al-
though the methodology has been well studied and
established for one-to-one identification problem, assign-
ment between many bodies and many families (many-to-
many identification) has not been studied well. Potential
problems of applying the one-to-one comparison to
many-to-many situation are 1) that the confidence in
assigning a body to a family is not independent of the con-
fidence in assigning others, 2) that the confidence in as-
signment is not independent of the number of missing
data (such as unrecovered bodies and unreported MPs).
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To illustrate the problems, if we assume that the number
of victims is two and that the DNAs of two bodies and ref-
erence DNAs for two MPs are all available, we can assume
with a high degree of confidence that either body 1 or
body 2 is MP 1 or MP 2. The conventional LR-based
method (LR method) independently compares body 1 to
MP 1, body 1 to MP 2, body 2 to MP 1, and body 2 to MP
2. However, these four comparisons are not independent;
if the probability of body 1 corresponding to MP 1 is very
high, the probability of body 1 corresponding to MP 2
should be very small because only two possibilities are
considered for the identity of body 1 and the two probabil-
ities must add up to 1. Another concern with the LR
method is as follows. If we consider a LR of 1000 to be suf-
ficiently high to approve the identity of a body, what if the
LRs for both of our MPs exceed 1000? In this case, we
might decide that the MP with the higher LR is body 1.
But what if the LR for MP 1 is 1001, and that for MP 2 is
1002? Should we elect MP 2? When the number of victims
is small, for example less than 10, the “best” assignment
might be successfully determined by “intelligence”, but this
method would fail if the number of victims is as large as
1000 or above. The fact that LR is always independent of
the probabilities of other pairs in the data raises another
problem in LR: Unavailable data cannot be taken into ac-
count. Here, “unavailable data” means unrecovered bodies
and MPs with no available reference. As unavailable data
are a source of uncertainty, the amount of unavailable data
should affect the test result. Note that LR is reduced by
considering a prior probability, one divided by the total
number of victims, but test results do not differ regardless
of whether data are complete or most are absent.
To address these problems, many-to-many approaches

need to be developed. Lin et al. [2] proposed a global
approach that compares the likelihood of assigning all
samples obtained from human remains to all reporting
families to the likelihood of the null hypothesis where
all the samples were assumed to be obtained randomly
from a population, which was computationally easy but
not realistic. We propose a new method, called the per-
manent method, in which we compare two hypotheses:
H1, that the identity of body i is MP j; and H’

2, instead
of H2, that the identity of body i is any MP other than
MP j. Clearly, this comparison is more realistic in that
all possible hypotheses involving victims of the same in-
cident are considered, and importantly, these two hy-
potheses together comprise all possibilities, unlike the
LR method; that is, the probabilities for the two hypoth-
eses must add up to 1. Therefore in the example above, if
the probability that body 1 is MP 1 is 0.99, the probability
that body 1 is MP 2 is 0.01.
We considered identification in multiple-fatality cases

as an assignment problem and developed a method to
compute the probability that body i corresponds to MP j

conditional on the entire dataset. This approach can be
summarized as follows. Assume that every recovered
body has been genotyped and that a probability distri-
bution of its genotypes is given. Assume that every
reported MP has DNA available for genotyping from a
“reference” person (either the victim or a close relative),
which in turn can be genotyped to obtain a probability
distribution of the genotypes. Using this information,
we can compute the matrix P, which quantifies the com-
patibility of the body’s genotype with that of a refer-
ence person. The matrix P is then used to compute
matrix Q, which computes the probability that body i
be assigned to MP j. This computation takes into account
the number of victims, the number of “unreported” vic-
tims, and the number of “unrecovered” bodies. If the
resulting probability exceeds a certain threshold v, then
the body is matched to the person. By employing the
threshold-based decision made for each pair of one
body and one MP, this approach does not necessarily
optimize an assignment as a whole, but uses information
that is global.
To handle this problem, data must contain the same

number of bodies and MPs both theoretically and technic-
ally: Theoretically, the number of bodies (whether or not
they were recovered) must be the same as the number of
MPs (whether or not they were reported); technically, the
algorithm to solve this problem requires a square matrix
as described below. Therefore, when some of the bodies
are not recovered, then they are assumed to exist, but with
a genotype probability distribution that is the same as that
of the population. Similarly, when some of the victims are
not reported as missing or have no available reference
DNA, then they are assumed to exist, but with a genotype
probability distribution that is the same as that of the
population. The key idea in computing the probability is
to find the sum of weights of perfect matching in a bipart-
ite graph, known as the permanent of a square matrix.
Exact computation of a permanent is #P-complete [3].
A #P class is a set of counting problems that belongs to
nondeterministic polynomial time, and a problem is #P-
complete if and only if it is in #P. Because it has been
proved that the permanent is #P-complete, exact compu-
tation of the permanent is not possible in polynomial time,
and algorithms for polynomial time approximation have
therefore been proposed [4-7]. We employed the Huber–
Law algorithm [6], which is, to the best of our knowledge,
currently the fastest algorithm when the matrix is dense.
The Huber–Law algorithm is an exact sampling algorithm
based on the sequential acceptance/rejection method. The
accuracy of estimation depends on the acceptance num-
ber obtained from an iteration process, and thus when
the probability of acceptance is small, computation time
may increase dramatically. What is particularly relevant
in the case of DNA identification is that a permanent
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becomes extremely small as the total number of victims
increases. Computation time for an extremely small
permanent estimation has not been investigated in pre-
vious studies.
In this paper, we first describe the logic of our

method. We then present the results of a computer
simulation performed to evaluate the performance of
our method compared with that of the conventional
LR-based method, along with results showing the influ-
ence of the presence of unavailable data, using receiver
operating characteristic (ROC) curve analysis, and the
results of assessment of the accuracy and processing
time of the approximation algorithm in the case of
DNA identification.

Methods
Notation
Assume that a fatality incident has a total of nw victims.
Assume that their bodies (some of which may not have
been recovered) are denoted by B = (bi), i = 1, 2,⋯, nw,
and the corresponding MPs (some of whom may not have
been reported) are denoted by M = (mj), j = 1, 2,⋯, nw. Be-
cause all bodies may not have been recovered, let nb ≤ nw
be the number of recovered bodies. Similarly, because
some victims of the fatality may not have been reported,
let nm ≤ nw be the number of reported MPs. A victim is
considered “reported” if either a direct or an indirect
reference is available for genotyping. There are four
possible situations: 1) nw = nb = nm, 2) nw > nb and nw =
nm, 3) nw = nb and nw > nm, and 4) nw > nb and nw > nm. In
cases 2), 3), and 4), unrecovered bodies and/or unre-
ported MPs exist. β = (βi), i = 1,⋯, nw denotes the prob-
ability distributions of the genotypes of nw bodies with
the following properties of βi; 1) the number of ele-
ments equals to the number of possible genotypes, 2) each
element represents the probability of the genotype being
consistent with the genotype of bi, 3) the sum of all the
elements equals 1, and 4) when the genotype can be de-
termined, one element is 1 and the other elements are 0.
The elements of βi take either one of the two possible
forms:

βi ¼
γb;i;
γ�;

i¼1;⋯;nb
i ¼ nb þ 1;⋯; nw

;

�

where γb,i denotes the probability distribution of the
genotype of bi, given that the DNA from the body is
available for genotyping, and γ* is the probability dis-
tribution of genotypes in a population, whereby geno-
types of nw – nb unrecovered bodies are assumed to
follow γ*.
Similarly, μ = (μj), j = 1,⋯, nw denotes the probability

distributions of the genotypes of nw MPs, and μj has the

same properties as βi. The elements of μj are also given
as follows:

μj ¼
γm;j; j ¼ 1;⋯; nm
γ�; j ¼ nm þ 1;⋯; nw

:

�

Here, γm,j is the probability distribution of the genotype
of mj, given its reference DNA, and the probability distri-
bution for nw – nm unreported MPs is assumed to follow
γ*; βi and μj can be expressed as a vector in which the
value of each element is the probability of each genotype.
We define an nw × nw matrix P = (pi,j), where pi,j is the

probability that bi and mj have an identical genotype, and
is calculated as the inner product of βi and μj. We also de-
fine an nw × nw matrix Q = (qi,j), where qi,j is the probabil-
ity that bi and mj are identical conditional on a matrix P.
To calculate a matrix Q from a matrix P, we consider

the permanents of square matrices [8]. We use perm(A)
to denote the permanent of an n × n matrix A = (αi,j).
The set of permutations on {1, 2,⋯, n} is Sn and is

needed to define perm(A). Let S i;jð Þ
n denote a subset

of Sn, S i;jð Þ
n ¼ σ σ ið Þ ¼ jg∈Snjf , where σ(i) denotes the

ith element of σ. We use A-i,-j to denote the
(n – 1) × (n – 1) matrix obtained by removing the
ith row and jth column from A.
For the criterion for assignment based on Q, we use

v ∈ [0, 1]. The output of the permanent method is either
“assigned” or “suspended” for each pair of one body and
one MP. A bi and mj pair are “assigned” when qi,j ex-
ceeds v, and therefore we can approve the identity of bi
to be mj. Otherwise, the identity of bi is “suspended”, i.e.,
not approved to be mj. P, Q, and perm(A) are defined in
the following sections.

Matrix P
Probability pi,j is calculated as the inner product of βi
and μj. A matrix P consists of four submatrices

Here, p*,j, pi,*, and p*,* indicate the inner products of
γ* and γm,j, γb,i and γ*, and two γ*, respectively. More-
over, ∂1 is an nb × nm matrix; ∂2 is an (nw – nb) × nm

matrix consisting of identical rows, p�;1⋯p�;nm
� �

; ∂3 is

an nb × (nw – nm) matrix consisting of identical columns,
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p1;�⋯pnb;�
� �T

; and ∂4 is an (nw – nb) × (nw – nm) matrix

consisting of identical values, p*,*. Each submatrix
corresponds to the collection of each of the following
four cases:

Case 1. bi is recovered and mj is reported.
Case 2. bi is not recovered and mj is reported.
Case 3. bi is recovered and mj is not reported.
Case 4. bi is not recovered and mj is not reported.

Matrix P is required to have at least one non-zero
values in each row and column to obtain matrix Q.
However, it can happen that all elements in a row or
column are zero because mutations and genotyping er-
rors may cause Mendelian errors between truly related
individuals. The problem can be overcome by consider-
ing the probabilities of these factors; for example, when
the genotyping error rate is 0.05, in βi, the probability
of an observed genotype is 0.95, and the total probabil-
ity of other genotypes is 0.05. By this, any Mendelian
errors do not cause zero in matrix P. In our simulation,
we did not assume mutations and genotyping errors
to simplify the comparison with the LR method, but
all elements in the matrix P were non-zero values be-
cause we limited the family types (see Methods “Gener-
ating families with status patterns”). Not assuming
mutations and genotyping errors favors neither our
method nor the LR method because mutation influence
on only values of matrix P, which is also used in the LR
method, but not on computation process from matrix P
to matrix Q.

Permanent
In this section, we define the permanent and describe
the equations that are important for explaining our
method.
The permanent of a matrix A is defined as follows:

perm Að Þ ¼ ∑
σ∈Sn

Yn
k¼1

ak;σ kð Þ: ð1Þ

Each term expresses the likelihood, or weight, of a per-
mutation. The permanent of A–i,–j can be expressed by

S i;jð Þ
n and αi,j as follows:

perm A‐i;‐j
� � ¼ ∑σ∈S i;jð Þ

n
∏n

k¼1ak;σ kð Þ
ai;j

ð2Þ

The numerator is the sum of weights of permutations
in which αi,j is included. Here, perm(A–i,–j) is given by

canceling αi,j in all terms, and perm(A) can be rewritten
by using A–i,–j and αi,j as follows:

∀i∈ 1; 2;⋯; nf g perm Að Þ ¼
Xn
j¼1

ai;jperm A−i;−j
� �

;

∀j∈ 1; 2;⋯; nf g perm Að Þ ¼
Xn
i¼1

ai;jperm A−i;−j
� �

: ð3Þ

Matrix Q
Assigning each of B to exactly one of M without selecting
the same MP more than once is considered to be an as-
signment problem. If a certain permutation σ∈Snw is
adopted, bi and mσ (i) are paired with each other. That is, if

a permutation σ∈S i;jð Þ
nw is adopted, bi and mj are always

paired with each other. Here, we refine the definition of

qi,j as the ratio of the sum of the likelihoods of σ∈S i;jð Þ
nw to

the sum of the likelihoods of σ∈Snw . By considering Eq. (1)
and Eq. (2), we express qi,j as follows:

qi;j ¼
∑
σ∈S i;jð Þ

nw
∏nw

k¼1pk;σ kð Þ
∑σ∈Snw∏

nw
k¼1pk;σ kð Þ

¼ pi;j � perm P−i;−j
� �

perm Pð Þ : ð4Þ

A matrix Q is given by calculating qi,j for all pairs of i
and j.
Because both the numerator and the denominator of

Eq. (4) include the permanent, we apply the following
strategy to minimize estimation error. Let Q' = (q' i,j) de-
note an nw × nw matrix consisting of the numerator of
Eq. (4). We avoid using perm(P), instead substituting
∑nw
i¼1q

0
i;j and ∑nw

j¼1q
0
i;j for perm(P) by Eq. (3):

qi;j ¼ min
q′i;j

∑nw
i¼1q′i;j

;
q′i;j

∑nw
j¼1q′i;j

" #
ð5Þ

Here, ∑nw
i¼1q′i;j ¼ ∑nw

j¼1q′i;j up to an approximation

error. We take a smaller value for stringency.

Determining assignment
We determine assignment based on a matrix Q and on
v, a threshold value for approving identification. Thus,
we can approve bi and mj to be identical if qi,j > v. To
avoid confusion, we say that bi and mj are paired if they
are coupled with each other in a permutation σ, and that
bi and mj are assigned if qi,j > v. If qi,j ≤ v, we say that the
decision for this pair is suspended. We assign or suspend
all pairs using the identical value of v. Typically, an as-
signment problem is an optimization problem, in which
the solution attempts to find a permutation that opti-
mizes an objective function. For the multi-fatality victim
identification problem considered here, such a global
objective function is not necessarily appropriate. There-
fore, we can decide to either assign or suspend each pair

Narahara et al. BMC Genetics 2013, 14:72 Page 4 of 16
http://www.biomedcentral.com/1471-2156/14/72



based on v. This strategy may lead to the result that none
of the elements in a row or a column exceed the value of v.
In this case, we make no assignment for the corresponding
body or MP.
When the value of v is set above 0.5, a unique so-

lution can be derived for the problem: For a given bi,
when qi,j > v > 0.5, for any j′≠j; qi;j′ < 1−ν < 0:5 because

∑nw
j¼1qi;j ¼ 1. This can be shown by Eq. (3) as follows.

Equation (3) indicates that all column totals and row to-
tals of a matrix Q′, which is an nw × nw matrix consisting
of the numerator of Eq. (4), are equal to perm(P). There-
fore, all column totals and row totals of a matrix Q,
which is a matrix Q′ divided by perm(P), are equal to 1.
A similar solution can be found for a given mj.
In other words, a matrix Q is approximately a doubly

stochastic matrix, which is defined as a square matrix of
nonnegative real numbers, of rows and columns each
summed to 1. Therefore, when one element in a column
is larger than 0.5, no other elements in the same column
can be larger than 0.5. The same can be said in terms of
rows. Therefore, v > 0.5 is the condition sufficient to en-
sure the uniqueness of the solution. Hereafter, we call
this method the permanent method.
What value should be used for cutoff depends on situa-

tions and criteria conventionally accepted in a society.
Typically, in the LR method, LR of 106 is used, which is
equivalent to probability of 0.999999. However, the LR
method does not tell you the true probability of making a
mistake because there are only two possibilities considered
in the LR method; 1) the body is obtained from the MP
and 2) the body is randomly drawn from the population.
On the other hand, the probability given by the permanent

method is truly the probability of making a wrong assign-
ment. Therefore, we consider that the permanent method
does not need to follow the conventional cutoff. After
close discussion with a forensic expert, expecting one mis-
take in 1000 of the times is stringent enough to discuss
the utility of the permanent method.
The permanent method is illustrated by Figure 1.
We summarize the permanent method here so that the

advantage of the permanent method would be clear. As-
suming that we are interested in the probability that the
identity of body 1 (b1) is MP 1 (m1). p1,1 is the probability
that m1 has the genotype of b1 given the reference DNA
for m1, and relationship between m1 and the reference
person. Therefore, p1,1 is independent of genotypes of
other bodies and reference DNAs of other MPs. A likeli-
hood of a possible hypothesis of pairing nw bodies and nw
MPs is calculated by multiplying elements in matrix P that
correspond to the paired bodies and MPs. q1,1 is given by
the proportion of the sum of the likelihoods of the hypoth-
eses in which b1 and m1 are paired to the sum of the likeli-
hoods of all possible hypotheses. By using matrix Q
instead of matrix P, a probability of b1 corresponding to
m1 influences the probabilities of b1 corresponding other
MPs. For example, in matrix P, two elements in the same
row may have high probability such as p1,1 = 0.95, and
p1,2 = 0.98; p1,2 is only slightly higher than p1,1, so we
would not determine the identity of b1. Matrix Q is com-
puted by considering all the other elements in matrix P.
And it may result in q1,1 = 0.0001 and q1,2 = 0.9999 depend-
ing on other elements in matrix P. What makes this hap-
pen? It can happen when, p2,1 is much higher than p1,1, for
example p2,1 = 0.9999999999, and all the other elements in
the first column is 0 or very small. In this case, matrix Q

0.999

0.9999 0 0 0.0001

0 0 0.0005 0.9995

0.0001 0.9999 0 0

0 0.0001 0.9995 0.0004

Matrix Q

Figure 1 An example of output of the permanent method. The matrix on the left represents a matrix Q. The bipartite graph on the right
corresponds to assignment indicated by the matrix Q. The grey cells in matrix Q indicate assigned pairs at v = 0.999, and the solid lines connect
the assigned pairs. For example, the probability of the identity of b1 being m1, or q1,1, is 0.9999, and therefore, b1 is assigned to m1. The identity
of b1 cannot be m2 or m3, and it can be m4 but not probable. Note that values in a column and row in the matrix Q add up to 1; the matrix Q is
a doubly stochastic matrix. Because all four bodies are successfully assigned to missing persons, this example obtained a perfect match.
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reflects this logic: b2 is assigned to m1, and therefore, b1
must not be m1, and therefore, b1 is assigned to m2.

Likelihood ratio and posterior probability
The LR of bi corresponding to mj is defined as pi,j di-
vided by the genotype frequency of bi in a population,

LR ¼ βi⋅μj
βi⋅γ�

: ð6Þ

The numerator of Eq. (6) corresponds to the likelihood
that hypothesis H1 is true (the DNA of an unidentified
body is that of a particular MP), and the denominator cor-
responds to the likelihood that H2 is true (the DNA is
randomly sampled from a population). Therefore, the nu-
merator is equal to pi,j defined in the permanent method.
The difference between the two methods becomes appar-
ent after we calculate matrix P: Unlike in the permanent
method, in the LR method, the matrix P is divided by the
genotype frequency of the corresponding body. For ex-
ample, p1,j, j = 1,2,…, nw are divided by the genotype fre-
quency of b1.
In multiple-fatality cases, the prior odds are commonly

considered as 1/(nw – 1), and according to the Bayesian
theorem, the posterior odds are given by the product of
LR and the prior odds, r = LR/(nw – 1). We use the pos-
terior odds, r, for test values of the LR method.

Assessment of performance
Probability and odds are interchangeable, and therefore
we can use the same assignment criterion, v, to compare
qi,j and r. We can assess the performance of discrimin-
ation between identical and non-identical pairs by using
the area under a ROC curve (AUC) [9]. We state that a
body and MP pair is identical when the body is that of
the MP, and that the pair is non-identical when the body
is that of another MP. A ROC curve plots sensitivity
against 1 − specificity, and the AUC is commonly used
to evaluate the performance of a measure. Larger values
of AUC indicate higher performance.
In our case, sensitivity is defined as the ratio of the

number of assigned truly identical pairs to the total
number of truly identical pairs, and specificity is defined
as the ratio of the number of suspended truly non-
identical pairs to the total number of truly non-identical
pairs. AUC is calculated by summing the areas of trape-
zoids formed between two adjacent cut-off points (trap-
ezoidal method), and its confidence interval (CI) is
estimated by the DeLong method [10]. Two ROC curves
are compared by testing their AUCs with a nonparamet-
ric method described by DeLong et al. [10].
In the LR method, two or more MPs can be assigned

to a body by any cutoff v. In a practical situation, the iden-
tity of the body needs to be determined to one, otherwise,

it remains undetermined. However, here we consider that,
the LR method assigns all pairs that exceeded the cutoff be-
cause decision for this case in practice is made with com-
binatorial information other than DNA, and because the
ROC analysis is to assess discriminating performance of an
index itself. The same strategy was applied to the perman-
ent method when the cutoff value was set to be v ≤ 0.5.

Simulating a population
We performed a computer-based simulation to assess the
performance of the permanent method for DNA profiles
of 15 STR loci available in the ABI AmpFISTR Identifiler®
PCR Amplification Kit (Applied Biosystem, Foster City,
CA, USA). Theoretically, as the number of markers in-
creases, the performance of both the permanent and the
LR methods increases. However, both methods assume in-
dependence of markers. That is a possible limitation to
the number of independent markers, and currently identi-
fication by a large number of loci has not been applied to
practice. The amelogenin locus was excluded from the
study because it is used for sex determination. Although
two loci are located within chromosome 2 and another
two loci within chromosome 5, we assumed that all 15 loci
are independent because the influence of the recombin-
ation rate is not an issue when assessing the performance
of measures. We used previously reported allele frequen-
cies in a Japanese population [11].
DNA profiles of 12,500 families were simulated for

the 15 STR loci. Simulated pedigree trees are shown in
Figure 2. Genotypes of founders (I-1, I-2, I-3, I-4, and
II-5) were randomly provided under the assumption of
the Hardy–Weinberg equilibrium, and the genotypes of
other family members were determined stochastically
based on founders’ genotypes without mutations. Each
individual has two types of information: One is his/her
genotype, and the other concerns the relationship with

1 2

1

1 2

2

3

3

3

4

4 5

I

II

III

Figure 2 An example of simulated family pedigrees. All
simulated families have this form of tree. Gender pattern in
generation II and III may differ.
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family members. We describe the simulated 12,500 fam-
ilies as pooled families.

Generating families with status patterns
For each individual, we set one of three statuses, missing,
typed, or not-typed, without allowing for multiple MPs
in a family. Missing status means that a body is being
sought for the person, typed status is assigned when the
DNA of the person is available for genotyping as a refer-
ence for the MP, and not-typed means that the family
members’ DNA is not available. The status pattern of a
family indicates which person is assigned to which sta-
tus. For example, if in a family of father, mother, and a
child, the child is missing, and the mother provides her
DNA as a reference, while the DNA of the father is un-
available, then the status pattern of this family is that the
child is missing, the mother is typed, and the father is
not-typed. The simulated genotype of the MP serves as
the genotype of an unidentified body. We assume that
no error occurs in genotyping, and thus, one element of βi
is 1 with all the others 0. A vector μj, which is to be esti-
mated from the reference DNA, was computed by an al-
gorithm and program implemented by the authors [12].
We calculated a matrix P between all typed individuals

in each family and each body, not between each typed in-
dividual and each body. Throughout, we assumed that
only kinship testing is employed, because direct matching
has almost absolute discriminatory power such as 1 in
2.5 × 1017 [13]. LR may not be sufficiently high to deter-
mine the identity when kinship testing is performed using
a reference DNA that provides no obligate alleles or im-
possible alleles. Obligate alleles are those that an individual
must carry and are revealed by the genotypes of his/her
parents. Impossible alleles are those that cannot be carried

without mutations; they are revealed, for example, when a
child has an allele that is carried by none of his/her par-
ents. In other words, therefore, these references that were
considered in our simulation do not reveal Mendelian error
in any genotypes. We used 10 status patterns that provide
neither obligatory alleles nor impossible alleles for MPs.
Otherwise, both the LR and the permanent method were
highly accurate with little difference between them. Col-
umns headed “Family types” in Table 1 list these 10 types
of families. The position of each individual in the pedigree
tree is expressed as a combination of generation and a
number shown below each symbol in Figure 2 (e.g., I-2 in-
dicates a person numbered 2 in generation I).

Data for ROC analyses
For comparison with the LR method, we assumed a
complete dataset, i.e., nw = nb = nm. Complete data are re-
quired to compare two methods under the same condition
because the LR method does not take unavailable data
into account. We generated 20 datasets, each of which
consisted of 20 families randomly drawn from the pooled
families. Uniform data were generated by assigning the
same status pattern to all 400 families, 20 datasets × 20
families. Because we used 10 types of pedigrees, there were
200 datasets, 10 types × 20 sets, in total. We used the same
400 families for all family types, so that performance could
be compared using a set of families derived from the same
set of founders. For comparison in a more realistic situ-
ation, 20 mixed datasets were generated by assigning sta-
tus patterns randomly chosen from the 10 types with an
equal probability to the same 400 families. The same sets
of families were used again for the same reason. To
summarize the results of 20 datasets, we pooled 8,000
(20 datasets × 20 bodies × 20 families) values of matrix Q

Table 1 Area under curve observed via computer simulation

Family types Permanent LR

M T AUC (95% CI)a Mean (SD)b Se/spc AUC (95% CI)a Mean (SD)b Se/spc P

1 III-1 III-2 1.000 (1.000-1.000) 1.000 (0.000) 0.990/1 0.999 (0.998-0.999) 0.999 (0.001) 0.445/1 1.6E-05

2 I-1 II-3,III-1 0.999 (0.998-0.999) 0.988 (0.005) 0.285/1 0.976 (0.969-0.984) 0.976 (0.021) 0.045/1 1.2E-10

3 I-1 III-1 0.982 (0.977-0.987) 0.982 (0.020) 0.038/1 0.944 (0.932-0.956) 0.945 (0.030) 0.005/1 1.9E-13

4 III-1 I-1 0.982 (0.977-0.987) 0.982 (0.020) 0.035/1 0.944 (0.932-0.956) 0.945 (0.030) 0.005/1 2.1E-13

5 II-1 III-1 0.975 (0.969-0.980) 0.974 (0.020) 0.030/1 0.933 (0.920-0.947) 0.933 (0.029) 0.010/1 1.2E-16

6 III-1 II-1 0.974 (0.969-0.980) 0.974 (0.021) 0.032/1 0.933 (0.920-0.947) 0.933 (0.029) 0.010/1 1.3E-16

7 III-1 I-1,I-3 1.000 (1.000-1.000) 0.999 (0.002) 0.673/1 0.988 (0.984-0.992) 0.988 (0.011) 0.118/1 2.1E-08

8 I-1 I-3,I-4,III-1 0.995 (0.993-0.997) 0.994 (0.009) 0.168/1 0.962 (0.953-0.972) 0.962 (0.020) 0.033/1 2.8E-15

9 I-1 I-3,III-1 0.990 (0.987-0.993) 0.989 (0.014) 0.078/1 0.951 (0.940-0.961) 0.951 (0.026) 0.015/1 9.6E-20

10 III-1 III-3 0.821 (0.799-0.843) 0.818 (0.074) 0.000/1 0.788 (0.764-0.812) 0.788 (0.068) 0.000/1 2.5E-08

Mix 0.990 (0.987-0.993) 0.988 (0.013) 0.188/1 0.959 (0.950-0.968) 0.958 (0.022) 0.055/1 9.6E-15

M missing, T typed, Permanent: permanent method, LR LR method.
aArea under curve (AUC) of pooled results of 20 datasets for each family type (estimated 95% confidence interval (CI)).
bMean of AUC (standard deviation (SD)) of 20 datasets for each family type.
cSensitivity and specificity at threshold 0.999.
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obtained from the 20 datasets, and a ROC curve was
drawn using all the values. We describe the AUC obtained
from this ROC curve as pooled AUC. Results for uniform
datasets are summarized in Table 1 for each family type
and shown with mean AUC (standard deviation (SD)),
pooled AUC (95% CI), and P values of the DeLong test for
the alternative hypothesis that the pooled AUC of the per-
manent method is greater than that of the LR method.
Similarly for the mixed data, the results were summarized
with mean AUC (SD), pooled AUC of all 20 datasets, and
P values (Table 1).
For assessing the influence of unavailable data, 20 fam-

ilies were randomly drawn from the pooled families. The
bodies of MPs of these families were assumed to have
been recovered, and we call this data complete part. Ap-
propriate numbers of bodies and/or families were ran-
domly drawn and added to the data. These additional
bodies or families did not have identical counterparts, and
we call this data additional part. Data for the additional
part were drawn 10 times to obtain 10 datasets, each with
the same complete part. We simulated three types of situ-
ations: 1) nb < nm = nw, 2) nm < nb = nw, and 3) nb, nm < nw.
For situation 1, family data were added to the complete
part, and body data that were unavailable were completed
using γ*. For situation 2, body data were added, and family
data that were unavailable were completed via γ*. For situ-
ation 3, equal numbers of families and bodies were added,
and the remainder were completed with γ*. A matrix Q
was calculated using the entire dataset, and only values of
the complete part were used to draw the ROC curve. This
is because the aim of this simulation was to compare per-
formance using complete data to demonstrate how the
amount of unavailable data influences the performance.
The reason for this is as follows. The number of identical
pairs depends on the size of the complete part, i.e., 20 in
our simulation. On the other hand, the number of non-
identical pairs increases according to the size of the in-
complete part, because all entries in the incomplete part
are incorrect matches. Therefore, the number of non-
identical pairs differs between a complete dataset and an
incomplete dataset. This means that the influence of one
incorrect assignment on specificity differs between the
complete dataset and the incomplete dataset; the influence
is weaker in the incomplete dataset because the number of
non-identical pairs is larger in the incomplete dataset than
that in the complete dataset. Therefore, the performance
would be naturally different when all entries in both
complete and incomplete parts are taken into account.
However, we are interested in how the performance is
changed by the presence of the incomplete part, compared
to the performance in the complete dataset. Therefore,
we performed a ROC analysis for the complete part in
the incomplete dataset. On the other hand, the results
of sensitivity and specificity at the threshold v = 0.999

were obtained from all the entries in both the complete
and incomplete parts.

Approximation of the permanent of the square matrix
We employed an algorithm to approximate a permanent
of a nonnegative square matrix, as described by Huber
and Law [6]. Briefly, two parameters, δ and ε, define the
accuracy of the approximation as follows: For any ε ≥ 0
and δ ∈ (0, 1], the permanent of a square matrix with arbi-
trary nonnegative entries can be approximated within a
factor of 1+ δ with probability at least 1–ε. That is, δ gives
the lower and upper limits of the estimate, and ε gives the
probability that the estimate falls within the limits. The al-
gorithm is based on a sequential acceptance/rejection pro-
cedure, in which the ratio of the number of accepted trials
(the acceptance number) to the total number of trials is
used to approximate a permanent. The two accuracy pa-
rameters define the acceptance number as k = 14δ–2ln(2/ε).
Because both small δ and ε increase k, a large accept-
ance number means that accuracy is high. The sequential
acceptance/rejection iteration process ends when a preset
k is achieved. We used δ = 0.5 and ε = 0.0001, and thus
k = 555, when not specified. We chose these values to
maximize accuracy within a practical computational cost
range. We verify these values next under “Assessment of
approximation accuracy and computation time” and in the
Results under “Accuracy parameters of approximation and
computation time”.

Assessment of approximation accuracy and
computation time
To assess accuracy and computation time in our case, test
matrices were generated using values obtained from a
matrix P of the mixed datasets used in the ROC analyses.
To obtain practical matrices, each matrix contained
exactly one value for an identical pair in each row and col-
umn, and values for non-identical pairs in the remaining
elements. We prepared matrices of sizes 20 and 30 for
assessing accuracy, and matrices of sizes of 10, 20, 30, and
40 for assessing computation time. We calculated the per-
manents of these matrices 100 times each, with combina-
tions of two accuracy parameters, δ = (0.5, 1) and ε = (0.1,
0.01, 0.001, 0.0001, 0.00001). For δ = 0.5 and ε = 0.0001,
we also simulated a worst-effect scenario, in which ap-
proximation errors affect the test result in the worst man-
ner. The worst-effect scenario is defined as that in which,
for a body, q

0
ij for an identical pair is approximated to be

equal to the lower limit, and in which q
0
ij of the most prob-

able pair among non-identical pairs in the same row for
the body in matrix Q′ is approximated to be equal to the
upper limit. Because ε = 0.0001 is sufficiently low, we con-
sider that no more than one non-identical pair in each
row of matrix Q′ is approximated to be equal to the upper

Narahara et al. BMC Genetics 2013, 14:72 Page 8 of 16
http://www.biomedcentral.com/1471-2156/14/72



limit. Here, the most probable non-identical pair is not
the result of an approximated permanent, but is
obtained if it were possible to exactly compute the per-
manent. Therefore, in the worst-effect scenario, the
probability of the most probable non-identical pair is
overestimated, the probability of the identical pair is
underestimated, and thus these errors maximize the
influence on specificity and sensitivity. We assessed
the performance of the permanent method for a case
in which this worst effect of errors occurred to all bod-
ies in a dataset. We assumed that the matrix Q′ of the
same mixed dataset used in the ROC analysis was
obtained from an exact computation of permanents,
and we generated matrix Q′ for the worst case from
the assumed exact results, and computed matrix Q
with the same method as described in the Methods
under “Matrix Q”.
Mean computation time was obtained by approximat-

ing three times for each matrix size and for the same
combinations of parameters.

Computation environment and software
Genotype simulation, computation of conditional probabil-
ities and LRs, evaluation of performance, and assessment
of accuracy and processing time were performed with R
v2.13.1 [14]. The computation environment was as fol-
lows: Vostro 260S (Dell), 64-bit Windows 7 operating sys-
tem, Intel Core i5-2400 CPU (3.10 GHz). We computed a
probability distribution of genotypes of a MP, μj, a matrix
P and LR using an algorithm proposed and implemented
by the present authors [12] to compute kinship applicable
to general forms of pedigrees, including large extended
families. ROC analysis was performed with the pROC
package [15] in R.

Results
Comparison of permanent method and LR-based method
First, we assessed performance on uniform datasets to
compare performance for each family type. Figure 3A–C
shows distributions of probabilities obtained with the
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permanent method and posterior odds obtained with the
LR method for uniform datasets of family types 1, 4, and
10 respectively, corresponding to family type in Table 1.
The histograms indicate that the distributions of identi-

cal pairs and non-identical pairs overlap less when family
types 1 and 4 were tested with the permanent method as
compared with the LR method. Notably, when tested with
the permanent method, the distributions of identical pairs
and non-identical pairs show no overlap for family type 1,
or sibship tests. Therefore, the two distributions are
more clearly separated when the permanent method is
used. For family type 10, or between-cousins test, how-
ever, the distributions do not differ much between the
two methods. Figure 4A–C shows ROC curves of
pooled results of 20 uniform datasets for the same three
family types. For all the three types, the permanent
method significantly outperformed the LR method in
terms of AUC (P = 1.6E-05, 2.1E-13, and 2.5E-08 for
type 1, 4, and 10, respectively). Figure S1 and S2 show
histograms and ROC curves for other family types, and
Table S1 lists statistics for each dataset (see Additional

file 1: Figure S1, Additional file 2: Figure S2, Additional
file 3: Table S1). The permanent method exhibited sig-
nificantly better performance than the LR method for
all family types in terms of AUC. When the threshold
value was set to 0.999, a realistic threshold in practice,
the permanent method exhibited higher sensitivity than
the LR method for all family except type 10, while speci-
ficity was 1 with both methods for all family types.
Next, we assessed performance on mixed datasets for

comparison in a more practical situation. Counts of simu-
lated family types included in each dataset are listed in
Table S2 (see Additional file 3: Table S2). Figure 3D shows
the distributions of identical pairs and non-identical pairs.
The overlapping area is smaller when the permanent
method is used. Figure 4D shows ROC curves for pooled
results of 20 mixed datasets. Table 1 and Table S3 show
statistics for the pooled results of all datasets and the re-
sult of each dataset, respectively (see Additional file 3:
Table S3). The permanent method exhibited significantly
better performance (AUC: 0.990 vs. 0.959, P = 9.6E-15).
This suggests that the permanent method should be
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available for use in practical situations. In a practical situ-
ation, achieving high specificity is considered to be more
important than optimizing both sensitivity and specificity.
In this paper, we use v = 0.999, which means that, when
the probability of a body and missing-person pair exceeds
0.999, the sum of probabilities of the other pairs in the
same column or row is 0.001, and thus we consider
0.999 to be a highly reliable threshold (our choice of the
threshold value is discussed further in the Discussion).
With v = 0.999, the permanent method exhibited higher
sensitivity than the LR method (0.188 vs. 0.055), while spe-
cificity was 1 with both methods (Table 1, Figure 5A,
Figure 5B).
ROC analysis indicated some difference between the

two methods in terms of overall performance. We also
compared differences in the judgment of each pair.
Figure 6 shows the distributions of values of the perman-
ent method and LR method. Dashed lines indicate the
level of v = 0.999, with the four regions divided by the
dashed lines demonstrating the following judgments:

� top right: assigned by both methods,
� top left: assigned by LR method and suspended by

permanent method,
� bottom left: suspended by both methods, and
� bottom right: assigned by permanent method but

suspended by LR method.

Top-right and bottom-left regions indicate that the
judgments of the two methods were consistent, while the
top-left and bottom-right regions indicate that the judg-
ments between the two methods differed. Table 2 shows
pair counts classified into each region at threshold values
0.999 and 0.9999. At the level of 0.999, neither method
assigned any non-identical pairs. The permanent method
assigned 75 truly identical pairs, among which the LR

method failed to assign 53 pairs. The LR method assigned
22 truly identical pairs, all of which were assigned by the
permanent method. At the level of 0.9999, the permanent
method assigned 43 truly identical pairs, among which the
LR method failed to assign 31 pairs. The LR method
assigned 12 pairs, all of which were assigned by the per-
manent method. Figure 5A and Figure 5B plot specificity
and sensitivity, respectively, at various values of v.
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Specificity curves are similar with both methods, and the
permanent method and LR method reached the specificity
of 1 at 0.993 and 0.952, respectively. On the other hand,
sensitivity differed between the two methods, with the per-
manent method exhibiting a higher sensitivity at any value
of v. These results suggest that, at the level of 0.999 or
higher, both methods safely discriminate non-identical
pairs, and the permanent method demonstrates higher
sensitivity. As shown in Figure 3D, Figure 6 also indicates
that the test values of non-identical pairs are distributed
more widely when the permanent method is used.

Demonstration of how the permanent method performs
for incomplete data
Here we demonstrate the performance of the permanent
method on incomplete data compared with complete data.
Table S4 lists the counts of family types drawn by random
sampling in each dataset (see Additional file 3: Table S4).
Table 3 lists the mean decrease in AUCs resulting from
the complete part of incomplete datasets from AUC of the
complete dataset in each situation and each number of
additional bodies and/or families. Statistics of each dataset
are listed in Table S5 (see Additional file 3: Table S5). Sen-
sitivity and specificity at the level of 0.999 were calculated
from all the entries in both complete and incomplete
parts, and are listed in Table 3. Note that all the complete

parts of the incomplete datasets and the complete dataset
include the identical set of bodies and reference families,
but conditional probabilities resulting from the permanent
method differ because of variation in the additional part.
Although the number of total victims is limited in our
simulation because of computation time constraints,
discussed in the next section, as the amount of additional-
part data increased, mean decreases from complete data
increased, and sensitivity at v = 0.999 showed a tendency
to decrease. Even with 10 additional bodies and/or refer-
ence families, which means that about 30% of the data are
missing, the permanent method still exhibited equal or
higher sensitivity at 0.999 and higher AUC compared with
the LR results for the corresponding complete data.

Accuracy parameters of approximation and
computation time
We investigated the distribution of the estimates of the
permanent in the setting of DNA identification. Figure 7A
shows the distribution of estimates obtained from 100 es-
timates of permanents plotted against the acceptance
number, k. Table S6 shows values of δ and ε and their cor-
responding values of k (see Additional file 3: Table S6).
Under the condition used to assess performance with the
above results (k = 555), the differences between the min-
imal and the maximal estimates were 0.09 and 0.08 in a
log scale for the matrix sizes 20 and 30, respectively, which
means that the maximal estimate fell on the minimal esti-
mate multiplied by 100.09 = 1.23 and 100.08 = 1.20, respect-
ively (Figure 7A). When simulating the worst case, we
observed a decrease in sensitivity from 0.19, which was
the sensitivity obtained from the mixed datasets shown in
Table 1, to 0.18 (four pairs assigned in the assumed exact
result failed to exceed v = 0.999 in the worst case), and no
changes in specificity (1 even in the worst case). Figure S3
shows that the assumed exact test results and the test re-
sults in the worst case only differ slightly; test values for

Table 3 Area under curve of datasets with missing bodies or families

Data Situation Method Additional data AUC (SD)b Decrease from complete data (SD)c Se/spb

Completed Perm. 0 0.9945 0.20/1

LR 0 0.9651 0.05/1

Incompletea 1 Perm. 4 0.9937 (0.0005) 0.0008 (0.0005) 0.06/1

Perm. 10 0.9913 (0.0015) 0.0032 (0.0015) 0.05/1

2 Perm. 4 0.9928 (0.0018) 0.0017 (0.0018) 0.14/1

Perm. 10 0.9908 (0.0017) 0.0036 (0.0017) 0.09/1

3 Perm. 4 0.9920 (0.0016) 0.0025 (0.0016) 0.05/1

Perm. 10 0.9882 (0.0048) 0.0063 (0.0048) 0.05/1

SD standard deviation, Perm. permanent method, LR LR method, AUC area under curve.
aData shown for incomplete cases were results of permanent method.
bFor incomplete datasets, the complete parts with the same 20 victims were used to calculate AUC. Sensitivity and specificity were calculated from all entries in
both the complete part and the incomplete part. Mean values of 10 datasets for each situation and each number of additional data are shown for AUC.
cMean decrease from AUC of complete data measured with the permanent method.
dData shown for complete cases were obtained using only a complete part with the permanent method (Perm.) and LR method.

Table 2 Counts of assignment status

Judgment v = 0.999 v = 0.9999

Permanent LR Non-
identical

Identical Non-
identical

Identical

Suspend Suspend 7600 325 7600 357

Assign 0 0 0 0

Assign Suspend 0 53 0 31

Assign 0 22 0 12

Permanent: permanent method, LR LR method, v: threshold value.
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identical pairs in the worst case are slightly lower than
the corresponding assumed true values, and test values
for non-identical pairs in the worst case are slightly
higher than the corresponding assumed true values (see
Additional file 4: Figure S3). Figure 7B plots computa-
tion time against acceptance number. When the matrix
size was 40, computation time increased dramatically,
and it took approximately 11,000 seconds = 3 hours to
obtain the acceptance number used in the simulation.

Discussion
The individual identification of unidentified bodies is an
important issue. Developments in DNA-based techniques
have provided strong evidence for personal identification.
Despite progress in genotyping, challenging cases are still
encountered, such that LR fails to provide strong evidence
because kinship between sample and reference DNA itself
is not close. If it occurs in a single-fatality case, DNA
would not be the first-line evidence. In the case of mul-
tiple fatalities, approaches optimized for multiple-fatality
cases may overcome this problem to some extent. LR-
based identification is optimal when comparison is only
possible with a random person from a population, i.e., a
single-fatality case. In multiple-fatality cases, however,
comparison can be performed with other DNA obtained
from the same case. Currently, identification in multiple-
fatality cases is based on a conventional LR weighted by
prior odds. Although the LR method can take the total
number of victims into account via the prior odds, it still
compares each pair only with the population where the
possible identity of a body can be limited to one of MPs.
The new approach we have described in this paper con-
siders the identification problem as an assignment prob-
lem and provides the probability for a particular pair of
sample and reference DNA conditional on the entire ob-
served data. Because the permanent method considers all
assignment hypotheses, it can be reasonably speculated
that, given pairs assigned with high confidence, condi-
tional probabilities of non-identical pairs decrease and
those of other identical pairs increase. Thus, we expect the
permanent method to be capable of discriminating be-
tween identical and non-identical pairs that cannot be
clearly discriminated with LR.
In a separate study, the distribution of combined sibship

index (CSI) with 15 STR loci was investigated, and it was
found that the distribution of CSI for siblings overlapped

with that for random pairs; it was also found that 1.3–
1.6% of siblings had CSI less than 1, and 1.4–1.9% of ran-
dom pairs had CSI greater than 1 [16]. Thus, a sibship test-
ing, or type 1 in our simulation, in multiple-fatality cases
would be more difficult, where prior odds reduce LR.
The results of our computer simulation show that the

performance of the permanent method is significantly
higher than that of the LR method. In the case of individ-
ual identification, high specificity is required even at the
cost of sensitivity, because finding an incorrect identity is
a crucial problem. Thus, we also focused on sensitivity
and specificity at v = 0.999 and higher, and the permanent
method displayed higher performance in this range. How-
ever, the choice of threshold value in practice is rather ar-
bitrary depending on the situation and the criteria
conventionally accepted in a society. After close discussion
with a forensic expert, we decided to use v = 0.999 and v =
0.9999 to discuss our results. For other threshold values,
Figure 5A and Figure 5B show sensitivity and specificity
according to the values of threshold in our simulation.
Uniform datasets were tested to assess performance in
terms of difficulty levels for a problem. The three family
types, 1, 4, and 10, were expected to represent levels of
relatively easy, difficult, and very difficult, respectively. Be-
cause type 1 corresponds to a sibship testing, the fact that
the permanent method resulted in no overlap between
distributions of identical pairs and non-identical pairs, and
that non-identical pairs showed distributions with larger
variance, indicate well the greater discriminating power of
the permanent method (Figure 3A).
In this paper, we used only cases in which references

provide neither obligate alleles nor impossible alleles; that
is, any genotypes are consistent without assuming muta-
tion. This is because the current genotyping system pro-
vides a discriminating power strong enough to overcome
the theoretical problem in the LR method, and both
methods perform highly with almost no difference be-
tween them (data not shown). Thus, the power of the per-
manent method may be maintained up to some extent,
but not as far as between cousins (although the ROC ana-
lysis indicated that the permanent method performed bet-
ter in terms of AUC, the sensitivity and specificity at the
practical threshold did not differ between the two
methods). In practice, it is clear that we should attempt to
collect reference DNA from relatives who are as closely
related as possible, in order to obtain obligate alleles. If

(See figure on previous page.)
Figure 7 Accuracy and computation time of approximation of permanent. (A) Distribution of 100 estimates of a permanent for each matrix
size 20 (top) and 30 (bottom). Acceptance number k = 555 is equivalent to the accuracy used in the simulation to assess performance. Bars on
the right indicate the difference between the highest and lowest estimates at k = 555. (B) Computation time and acceptance number. CPU time
(seconds) is plotted against the acceptance number for matrices of size 10 (circle), 20 (triangle), 30 (square), and 40 (cross). Dashed lines indicate
the acceptance number, k = 555, used in the simulation to assess performance.
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this is not possible, it is important to consider whether ref-
erences provide impossible alleles. Consider a situation in
which the DNA of the parents of a MP is not available but
that of all four grandparents is available, but for financial
reasons we can only type two persons. Two grandparents
on the same side may provide impossible alleles, but
two from each side do not. In our simulation, these two
situations led to a substantial difference in results; when
two grandparents on the same side were used, both the
permanent and the LR method were more powerful in
determining the identities (data not shown).
Importantly, the permanent method can take uncer-

tainty into account. Two situations lead to uncertainty:
the presence of unavailable data, and the number of un-
known victims. As simulated in this paper, the former
can be considered by the permanent method. Although
the latter is not demonstrated, the same strategy can be
applied: We would set an expected total number of vic-
tims and complete the unavailable data with γ*. As we
do not know the exact number of victims, the expected
number would be arbitrary to some extent. Judgment in
the LR method does not change no matter how much
unavailable data exist, whereas assignment by the per-
manent method becomes more difficult with more un-
available data. Therefore, the test value of the permanent
method appears to reflect our assignment confidence
better than that of the LR method.
Although the theoretical basis of our approach is reason-

able and adequate, the approach is computationally challen-
ging, because the permanent method requires estimation of
the permanents nw × nw times. Computation time can be
the primary cause of limitation. The most efficient algo-
rithm for the exact permanent requires Θ(n2n) arithmetic
operation. It has been proven that exact computation of the
permanent is a #P-complete problem, even for 0,1 matrices,
and thus computation in polynomial time is not possible
[3]. Since then, researchers have focused on approximation
algorithms. Currently, to the best of our knowledge, the ap-
proximation approach described by Huber and Law [6] is
the fastest algorithm when the problems become dense.
Huber and Law achieved O(n4 log n) expected running
time, though there is no a priori bound on the running
time for matrices with arbitrary nonnegative entries. In
our study, we implemented the Huber–Law method-
ology to simulate our approach. In our simulation en-
vironment, we experienced a dramatic increase in
computation time when the matrix size was 40. There-
fore, the permanent method is currently practically ap-
plicable to the assignment of relatively small numbers
of victims in a closed incident. However, we are hope-
ful about the possibility of extending the application,
even to large open incidents, because of advances in
two areas: (1) approximation algorithms and combin-
ation theory, and (2) computer performance. On the

first point, approximation algorithms for the perman-
ent of a matrix are a vigorously studied field of math-
ematics. Recent improvements include those of Jerrum
et al. (2004) [7], Bezáková et al. (2006) [4], and Huber
and Law (2008) [6]; the computational complexities of
these methods are O(n10 (logn)3), O(n7 (logn)4), and O
(n4 log n), respectively. These dramatic decreases in
complexity have been experienced only in the last ten
years, and further developments can therefore be
expected. Second, we expect that the permanent
method will enjoy more extended application in the
near future because computer performance is continu-
ally improving. For these reasons, we believe that there
is merit in our new idea for DNA identification in
multiple-fatality cases, even with current computational
limitations.
Because computation of the permanent method depends

on approximation algorithms of a matrix, we must de-
scribe the algorithm-specific consideration. The Huber–
Law algorithm defines two accuracy parameters δ and ε.
The acceptance number k, given by δ and ε, only influ-
ences the computation process. This means that various
sets of δ and ε that give the same k are mutually inter-
changeable. However, here we suggest using values of δ
and ε to better understand the accuracy. Smaller values of
δ and ε give a more accurate approximation. We verified
that δ = 0.5 and ε = 0.0001 can give sufficiently accurate
test results for our simulation condition, and thus we sug-
gest using δ ≤ 0.5 and ε ≤ 0.0001.
To reduce computation time, a Monte Carlo method

can be applied where the total number of iterations is set
instead of k. However, with a Monte Carlo method, we
must take care how many accepted trials are obtained
after the iteration. In the case of DNA identification, we
found lower probabilities in obtaining one accepted trial
as the matrix size increased. In this case, the Monte Carlo
method may result in small values of k, and estimates may
become highly unreliable, as shown in Figure 7A. There-
fore, the Monte Carlo method is not recommended for
practical DNA identification problems.

Conclusions
The permanent method provides further evidence for
identification in terms of conditional probability. We
have shown that this method is capable of detecting
identical pairs of low LR and is highly robust in terms of
specificity. With two methods used in combination,
DNA-based identification may exhibit higher perform-
ance. It is also important that the permanent method is
capable of weighting the presence of unavailable data,
unlike the LR method. Currently, the permanent method
is computationally limited to relatively small datasets
obtained from closed incidents.
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Additional files

Additional file 1: Distributions of conditional probabilities of
permanent method and posterior odds of LR method. Distributions
of identical pairs and non-identical pairs are shown in red and blue,
respectively. Probabilities obtained with the permanent method are
shown as odds. Values are obtained from 20 uniform datasets of family
types 2, 3, 5, 6, 7, 8, or 9. Family types are defined in Table 1.

Additional file 2: ROC curves of pooled results obtained from 20
datasets for each family type. ROC curves of test results for family
types 2, 3, 5, 6, 7, 8, and 9 are shown. Discriminant performance was
compared between the permanent method (solid line) and the LR
method (dashed line). AUC (95% confidence interval (CI)) and P values of
the DeLong test are shown. Family types are defined in Table 1.

Additional file 3: Supplementary tables (Table S1 – S6). Table S1.
Results of the ROC analysis for each dataset for the uniform-pedigree
analysis. Table S2. Counts of family types that were randomly sampled
for the mixed-pedigree analysis. Table S3. Results of the ROC analysis for
each dataset for the mixed-pedigree analysis. Table S4. Counts of family
types in the complete part and additional parts that were randomly
sampled for the analysis of the incomplete datasets. Table S5. Results of
the ROC analysis for each dataset for the analysis of the incomplete
datasets. Table S6. Acceptance numbers corresponding to values of δ
and ε.

Additional file 4: Conditional probabilities obtained with
permanent method for assumed exact results and worst-scenario
results. Conditional probabilities obtained from worst-effect
approximation errors are plotted against those obtained from assumed
exact computation of permanent for mixed datasets (shown in a log10
scale).
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