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Key points 

• We found the defective ALDH2 variant is associated with accelerated progression of 

bone marrow failure in Japanese Fanconi anemia patients. 

• The data support the view that aldehydes are an important source of genotoxicity in 

the human hematopoietic system. 
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Abstract 
 
Fanconi anemia (FA) is a severe hereditary disorder with defective DNA damage response 

and repair. It is characterized by phenotypes including progressive bone marrow failure 

(BMF), developmental abnormalities, and increased occurrence of leukemia and cancer. 

Recent studies in mice have suggested that the FA proteins might counteract aldehyde-

induced genotoxicity in hematopoietic stem cells. Nearly half of the Japanese population 

carries a dominant negative allele (rs671) of the aldehyde-catalyzing enzyme ALDH2 

(acetaldehyde dehydrogenase 2), providing an opportunity to test this hypothesis in humans. 

We examined 64 Japanese FA patients, and found that the ALDH2 variant is associated with 

accelerated progression of BMF, while birth weight or the number of physical abnormalities 

was not affected. Moreover, malformations at some specific anatomic locations were 

observed more frequently in ALDH2-deficient patients. Our current data indicate that the 

level of ALDH2 activity impacts pathogenesis in FA, suggesting the possibility of a novel 

therapeutic approach. 
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Introduction 

Fanconi anemia (FA) is a genomic instability disorder with phenotypes including progressive 

bone marrow failure (BMF), developmental abnormalities, and increased occurrence of 

leukemia and cancer1. To date 16 genes have been implicated in FA, and their products form 

a common DNA repair network (“FA pathway”)2,3. Since FA cells are hypersensitive to DNA 

interstrand cross-links (ICLs), the FA pathway has been considered to be involved in the 

repair of ICLs2,3. However, it remains unclear what type of endogenous DNA damage is 

repaired through the FA pathway. Recent studies have suggested that FA cells are also 

sensitive to aldehydes4, which may create DNA adducts including ICLs or DNA-protein 

crosslinks. Furthermore, double knockout mice deficient in Fancd2 and Aldh2, but neither of 

the single mutant mice, display an accelerated development of leukemia and BMF5,6. On the 

other hand, Fanc-deficient mice in general do not fully recapitulate the human FA phenotype, 

including overt BMF7. Thus, the role of aldehydes in the pathogenesis of human FA is still 

uncertain. 

ALDH2 deficiency resulting from a Glu504Lys substitution (rs671, hereinafter 

referred to as the A allele) is highly prevalent in East Asian populations. The A allele 

(Lys504) acts as a dominant negative, since the variant form can suppress the activity of the 

Glu504 form (G allele) in GA heterozygotes by the formation of heterotetramers8. Individuals 

with the A variant experience flushing when drinking alcohol, and have an elevated risk of 

esophageal cancer with habitual drinking9. Because the frequency of the A allele is close to 

50% in the Japanese population at large, some Japanese FA patients are expected to be 

deficient in ALDH2. We thus set out to determine the ALDH2 status in a collection of 

Japanese FA patients. 

Methods 
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The onset of BMF was defined according to the criteria used in the International Fanconi 

Anemia Registry (IFAR) study10. Criteria for diagnosis of aplastic anemia and other 

conditions are described in Supplemental Methods. We observed physical abnormalities 

characteristic of FA, including skin abnormalities (hyperpigmentation and café au lait spots), 

low birth weight, growth defects, and malformations affecting skeletal systems and deep 

organs. Extensive malformation was defined as the involvement of at least three sites 

including at least one deep organ11. Mutation analysis of FANCA/FANCC/FANCG genes12, 

ALDH2 genotyping13, Multiplex Ligation-mediated Probe Amplification (MLPA) test for 

FANCA (Falco), and whole exome sequencing (WES)14 were done as previously described. 

Details are provided as supplemental methods. Development of BMF or acute myeloid 

leukemia (AML)/myelodysplasia (MDS) was analyzed by the Kaplan-Meier method or the 

cumulative incidence method15,16, respectively, since competing events (e.g., death and stem 

cell transplantation (SCT)) existed in AML/MDS but not in BMF. This study was approved 

by the Research Ethics Committee of the Tokai University Hospital and Kyoto University. 

We obtained family informed consent from all subjects involved in this work. 

Results and Discussion 

All of the patients in this study (n=64, supplemental Table 1) were referred to the Tokai 

University Hospital because of pancytopenia, in some cases with MDS or leukemia. The 

clinical diagnosis of FA was made based on clinical presentation and Diepoxybutane (DEB)-

induced chromosome fragility tests in peripheral blood lymphocytes17,  except for three cases 

in which the DEB test was negative due to FANCA reversion mosaicism (supplemental Table 

1 and 2). Most of the patients underwent allogeneic SCT, indicating that our patients 

probably represent a FA population with relatively severe hematological symptoms. 

To determine which FA gene was mutated in each of these patients, we applied 

combinations of PCR-based methods (n=26), the MLPA test for FANCA mutations (n=44), 
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and WES (n=29). In our WES analysis, more than 90% of the 50 Mb target sequences were 

analyzed by greater than ten independent reads (data not shown). 59 patients were found to 

have a mutation in FA genes in at least one allele, but 5 of them were mutation-free in the 

known 16 FA genes, even after WES  (Table 1 and supplemental Table 1). These unclassified 

cases might be caused by large deletions or intronic mutations that are difficult to detect with 

these methods18, or possibly mutations in a novel FA gene. 

We determined the ALDH2 genotype in our series of 64 patients (Table 1 and 

supplemental Table 1). The distribution of the ALDH2 variant alleles appeared not 

significantly different from the reported allele frequencies in the healthy Japanese 

population13. The occurrence of leukemia and/or MDS was also not significantly different 

between patients with GA and GG genotypes.  Strikingly, however, we found that progression 

of BMF was accelerated in heterozygous carriers of the variant A allele compared to 

homozygous GG patients (Figure 1A and B).  Moreover, the three individuals carrying AA 

alleles developed MDS with BMF at a very young age (Figure 1A and B). None of these 

three patients belonged to FA-D1 or FA-N, the FA subgroups with severe symptoms19,20. 

Patient number 3 had biallelic frameshift mutations (S115AfsX11) in FANCP/SLX4.  By 

contrast, of the FA-P patients that have previously been reported, none have displayed 

particularly severe symptoms21-23.  

 FA is a heterogeneous disorder, and our cohort of patients is quite heterogeneous in 

terms of complementation groups and types of mutations (Table 1). In order to reduce some 

of the variability, we selected only the FANCA patients having nonsense, frameshift, or large 

deletion mutations identified at both alleles, (n=12, supplemental Table 1), and repeated the 

analysis. A patient with probable FANCA reversion (patient number 55) was excluded. In this 

subset of patients, a highly significant statistical difference was reproduced in BMF 

progression (Figure 1C) but not in AML/MDS development (data not shown). 
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We could not detect any significant difference in terms of % birth weight (Figure 1D) 

or number of physical abnormalities (Figure 1E) that correlated with the ALDH2 genotypes. 

However, a significant difference was observed in the incidence of each class of 

malformations in the case of radial, cardiovascular, skeletal, or kidney anomalies, and in the 

incidence of extensive malformation (Figure 1F). 

In conclusion, our current data indicate that endogenous aldehydes are an important 

source of genotoxicity in the human hematopoietic system, and the FA pathway counteracts 

them. If the FA pathway is compromised, hematopoietic stem cells (HSCs) likely accumulate 

aldehyde-induced DNA damage, resulting in BMF due to p53/p21-mediated cell death or 

senescence6,24. Consistent with this model, a recent study showed that the HSCs in 

aldh2/fancd2 double knockout mice accumulate more DNA damage than HSCs in either of 

the single knockout mice6. Since some ALDH2-proficient FA patients developed BMF early, 

other modifier genes or environmental factors might affect levels of aldehydes or other 

genotoxic substances. Interestingly, our data predict that Japanese FA patients in general 

develop BMF at an earlier age compared to patients of other ethnic origins. We need to 

establish a Japanese FA registry similar to IFAR to test whether this is true or not. Finally, it 

seems worth considering ALDH2 agonists such as Alda-1 as protective drugs against BMF in 

FA patients. Alda-1 can stimulate the enzymatic activity of both the normal and variant 

ALDH225, suggesting that Alda-1 or a similar drug could be beneficial even for ALDH2-

proficient FA cases. 
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Table 1. Summary of genotypes and clinical characteristics of the patients studied. 
 
 

  ALDH2 genotype 
 Total GG GA AA 
Number of cases 64 36 25 3 
Mutated FA geneA     

FANCA 39 26B 11 2 
FANCG 15 7 8 - 
FANCI 2 - 2 - 

FANCM 1 - 1 - 
FANCP 2 - 1 1 

Unknown 5 3 2 - 
Disease     

AA 2 2 - - 
SAA 40 21 19 - 

MDS/AML 22 13 6 3 C 

Tongue cancer 2 1 1 - 
     
Median months of onset 
(range) 

    

BMF 52 (0-297) 72 (27-297) 28 (7-87) 0 (0-7) 
MDS/AML 118 (4-384) 156 (61-384) 85 (41-192) 4 (4-12) 

     
Number of cases with 
SCT (%) 

58(91) 33(92) 23(92) 2(67) 

Median months at SCT 
(range) 

118 (12-
448) 

130 (52-448) 86 (28-248) 25 (13-
36) 

 
MDS, myelodysplastic syndrome; AML, acute myeloid leukemia; AA, aplastic anemia; SAA, 
severe aplastic anemia; SCT, stem cell transplantation. 
 
A Mutations found in the patients were listed in supplemental Table 1. Some of them were 

presumptive, since their functional significance has not been determined. 

B Somatic mosaicism due to reversion was confirmed in two cases and suspected in one case. 

C In these cases, onset of SAA and MDS was essentially simultaneous. 
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Figure 1. Effects of the ALDH2 deficiency on Japanese FA patients. (A and B) 
Cumulative incidence of BMF (A) or MDS/AML (B) were analyzed in 64 FA subjects. 
Numbers of AA, GA, and GG patients were 3, 25, and 36, respectively. (C) Cumulative 
incidence of BMF was analyzed in patients with confirmed biallelic FANCA mutations 
having protein truncations and/or large deletions (n=12). Numbers of AA, GA, and GG 
patients were 1, 5, and 6, respectively. P-values shown were calculated by Gray’s test. In (A), 
p-values between genotypes were 8.625 x 10-7 (GG vs. GA), 2.107 x 10-10 (GG vs. AA), 
1.259 x 10-6 (GA vs. AA), respectively. In (B), the difference between GG and GA subjects 
was not significant (p=0.4564479), whereas other statistical comparisons were highly 
significant (GG vs. AA, 2.911 x 10-10; GA vs. AA, 8.813 x 10-8). In (C), the p-values between 
GG and GA, GG and AA, or GA and AA were calculated as 0.001228433, 0.01430588, 
0.02534732, respectively. (D) % birth weight or (E) total number of physical abnormalities 
(shown in Supplemental Table 1) in 64 FA patients with three ALDH2 genotypes. Birth 
weight was normalized to mean weight at gestational age in Japan. Mean and SEM are 
indicated. Birth weight records were missing for three patients (supplemental Table 1). There 
was no significant difference between the ALDH2 genotypes (Kruskal-Wallis test). (F) 
Frequency (%) of cardiovascular, radial, thumb, skeletal, kidney, and extensive 
malformations in each ALDH2 genotype. P-values were calculated by the Cochran-Armitage 
test for trend, which detects statistical significance of effects across the genotypes. The error 
bars represent 95% confidence intervals. 
 
 



A B

C

D E

F

p=3.330x10-16

p=1.259x10-6

p=7.089x10-16

Radial Cardiovascular Thumb

     Skeletal     Kidney Extensive

p=0.011 p=0.010 p=0.232

p=0.002 p=0.044 p=0.047

n.s.n.s.
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Supplemental Methods 

 
Patients. Diagnosis of myelodysplastic syndrome (MDS) and acute myeloid leukemia 

(AML) is based on morphological criteria described by the FAB committee. Aplastic 

anemia (AA) is defined as hypoplastic marrow with two of the following: neutrophil 

count <1.5 x 109/l, platelet count <100 x 109/l, and hemoglobin level <10g/dl. Severe 

AA (SAA) is defined as hypoplastic marrow with two of the following: neutrophil 

count <0.5 x 109/l, platelet count <20 x 109/l, and reticulocyte count <20 x 109/l. The 

onset of BMF was defined as the time when one of the following laboratory parameter 

values used in the International Fanconi Anemia Registry study1 was observed: a 

platelet count <100 X 109/L, a hemoglobin level < 10 g/dl, or an absolute neutrophil 

count <1 X 109/L1. 

PCR, sequencing, and Taqman PCR. Genomic DNA or total RNA was isolated from 

either PHA-stimulated lymphocytes or cultured fibroblasts using Puregene (Qiagen) or 

RNAeasy (Qiagen) kits, respectively. cDNA was synthesized with a Primescript II 

cDNA synthesis kit (Life Technologies). Mutation analyses of cDNA and genomic 

DNA samples regarding FANCA, FANCC, or FANCG were carried out by PCR and 

direct sequencing as previously described2. In addition, 45 patients were examined by 

the Multiplex Ligation-mediated Probe Amplification (MLPA) test for FANCA (Falco 

Biosystems). Additional patients (n=29) were screened by whole exome sequencing for 

mutations in the known 16 FA genes as described below. The ALDH2 genotype was 

determined by a previously established Taqman-PCR assay3. 

Whole exome sequencing. For exome sequencing, genomic DNA from each patient was 

enriched for protein-coding sequences with a SureSelect Human All Exon V4 or V5 kit 
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(Agilent Technologies, Santa Clara, CA, USA). This was followed by massively 

parallel sequencing with the HiSeq 2000 platform with 100 bp paired-end reads 

(Illumina, San Diego, CA, USA). Candidate germline variants were detected through 

our in-house pipeline for exome-sequencing analysis with minor modifications for the 

detection of germline variants4. The obtained sequences were aligned to the human 

reference genome (hg19) with the Burrows-Wheeler Aligner (BWA). After removal of 

duplicate artifacts caused by PCR, the single nucleotide variants with an allele 

frequency > 0.25 and insertion-deletions with an allele frequency > 0.1 were called. All 

of the identified variants in the FA genes were verified by PCR and Sanger sequencing. 
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Legend for Supplemental Table 1. Clinical characteristics of the patients studied. 

 

MDS, myelodysplastic syndrome; AML, acute myeloid leukemia; SAA, severe aplastic 

anemia; AA, non-severe aplastic anemia; SCT, hematopoietic stem cell transplantation; 

NI, not identified; WES, whole exome sequencing; MLPA, Multiplex 

Ligation-mediated Probe Amplification method.  

 
A These mutations underwent reversion to wild type in lymphocytes. 
B These mutations were presumptive, since their functional significance has not been 

determined. 
C FA-A cases in which nonsense mutations, frame-shifts, or large deletions have been 

identified in both alleles. Progression of BMF in these cases was analyzed and 

presented in Figure 1C. 
D This synonymous mutation is predicted to likely disturb normal splicing by Mutation 

Taster (http://www.mutationtaster.org). 
E Physical abnormalities included skin abnormalities (hyperpigmentation and café au 

lait spots), low birth weight, growth defects (short stature), and malformations 

(affecting thumb, radius, skeleton, head/face, eyes, ears, kidneys, gastrointestinal tract, 

urogenital tract and cardiovascular system). The sum of the number of physical 

abnormalities and the number of anatomical sites involved in malformations is 

presented. 
F Extensive malformation was defined as the involvement of at least three sites 

including at least one deep organ. 
G Genomic PCR and sequencing confirmed that the exon27 deletion detected by MLPA 

was caused by the mutation c.2546delC. This mutation probably abolishes the exon 27 

signal because one of the MLPA probes set on exon 27 overlaps with FANCA C2546. 

In cases #43 and #59, we have not yet determined whether the Exon 27 deletion is 

associated with a c.2546delC mutation or not. 

 

                                                                                                      



Patient No. ALDH2 allele Disease Defective FA
genes Allele1 Allele2 DNA origin WES FANCA-MLPA Onset of

BMF(months)
MDS or AML

(months)
SCT

(months)
The last

observation
(months)

Number of
physical

abnormalitiesE

Extensive
malformationF % birth weight

1 AA MDS AC c.2546delC
(p.S849FfsX40)

c.3781_3785delT
TCTT

(p.P1261LfsX15)
Blood 7 7 36 3 78.9

2 AA MDS A c.2546delC
(p.S849FfsX40) NI Blood 0 12 13 5 Yes 79.2

3 AA MDS P c.343delA
(p.S115AfsX11)

c.343delA
(p.S115AfsX11) Blood Yes Normal 0 4 6 6 Yes 73.8

4 GA SAA A c.2546delC
(p.S849FfsX40) NI Blood 24 58 5 85.2

5 GA SAA AC c.2546delC
(p.S849FfsX40)

c.3931-
3932delAG
(p.S1311X)

Skin-fibroblast ex27G/- 21 69 6 Yes 61.2

6 GA SAA A
c.1023G>C
(p.Q341H)B

c.1639G>T
(p.A547S) B Skin-fibroblast Normal 24 249 3 91.2

7 GA MDS A c.4168-2A>G c.2546delC
(p.S849FfsX40) Skin-fibroblast ex27G/- 28 168 171 2 69.8

8 GA SAA/tongue cancer AC c.2593delA
(p.I879LfsX24) ex18-21 del Blood ex18-21/- 53 469 0 71.8

9 GA SAA G c.307+1G>C c.307+1G>C Blood 38 56 3 66.5

10 GA SAA AC c.2546delC
(p.S849FfsX40) ex3 del Blood ex27G/ex1-3 22 122 5 Yes 76.4

11 GA SAA G c.307+1G>C c.307+1G>C Blood 36 90 2 76.1

12 GA SAA AC c.2546delC
(p.S849FfsX40) ex30 del Blood ex27G/ex30 37 74 1 97.4

13 GA SAA AC c.2546delC
(p.S849FfsX40)

c.2546delC
(p.S849FfsX40) BM-fibroblast ex27G/ex27G 38 80 5 78.9

14 GA MDS P
c.2629G>A
(p.A877T) B NI Blood Yes Normal 12 108 135 2 98.2

15 GA MDS G c.1066C>T
(p.Q356X) c.307+1G>C Blood Yes 12 61 62 5 Yes 82.9

16 GA SAA I c.158-2A>G
c.288G>A
(p.E96E)D Blood Yes Normal 7 45 11 Yes 52.4

17 GA SAA A c.1303C>T
(p.R435C) c.4168-1G>C Blood Yes 26 168 2 53.5

18 GA MDS M
c.2330A>G
(p.Y777C) B NI Blood Yes Normal 24 51 51 12 Yes 66.2

19 GA SAA G c.307+1G>C c.307+1G>C Blood Yes Normal 48 88 7 Yes 90.6

20 GA SAA G c.307+1G>C c.307+1G>C Blood Yes 39 84 5 100.6

21 GA SAA I c.3346_3347insT
(p.S1116FfsX16) c.2826+3 A>GB Blood Yes Normal 15 28 9 Yes 78.6

22 GA SAA A c.2602-2A>T c.4198C>T
(p.R1400C) Blood Yes Normal 48 154 3 94.9

23 GA SAA G c.907_908delCT
(p.L303GfsX5) c.307+1G>C Blood Yes 21 78 1 66.9

24 GA SAA G c.307+1G>C c.307+1G>C Blood Yes 69 135 4 Yes 74
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25 GA SAA G c.307+1G>C c.307+1G>C Blood Yes Normal 18 72 2 85.8

26 GA MDS A ex 30 del NI Blood ex30/- 60 192 199 4 Yes 102.1

27 GG SAA A c.2602-2A>T c.2527T>G(p.Y8
43D) Skin-fibroblast Normal 78 228 3 83

28 GG SAA AC c.2546delC
(p.S849FfsX40)

c.2546delC
(p.S849FfsX40) Blood 114 128 3 87.7

29 GG AML A c.2602-2A>T c.2602-2A>T Blood Normal 62 311 316 3 81.5

30 GG AML A c.4124_4125delCA
(p.T1375SfsX49)

c.2290C>T
(p.R764W) Blood Normal 156 156 162 3 90.1

31 GG SAA G c.307+1G>C c.1066C>T
(p.Q356X) Blood 50 52 4 66.2

32 GG MDS
A reversion(loss

of allele2
mutation)

c.2546delC
(p.S849FfsX40)

c.3295C>TA

(p.Q1099X)
BM-fibroblast ex27G/ex33 49 189 192 6 Yes 72.4

33 GG MDS/tongue cancer
A reversion(loss

of allele1
mutation)

c.44_69delA
(p.P15RfsX13)

c.2170A>C
(p.T724P) BM-fibroblast Normal 108 348 384 2 62.4

34 GG AML A c.2602-1G>A NI Blood 108 384 448 3 82.2

35 GG SAA AC c.2546delC
(p.S849FfsX40) ex38 del Blood 72 122 1 92.3

36 GG SAA A ex24-28 skipping NI Blood 60 144 4 74.8

37 GG AML A c.1470+?_1626+?d
el NI Blood ex16-17/- 61 61 66 1 70.6

38 GG SAA A c.2546delC
(p.S849FfsX40) c.4168-2A>G Blood ex27G/- 106 184 2 70.4

39 GG SAA AC c.2546delC
(p.S849FfsX40)

c.2546delC
(p.S849FfsX40) Blood ex27G/ex27G 70 153 5 Yes 76.6

40 GG SAA G c.307+1G>C c.307+1G>C Blood 28 67 0 84.9

41 GG MDS A c.2546delC
(p.S849FfsX40) c.1567-1G>A Blood ex27G/ex32 82 82 108 3 67.9

42 GG SAA AC c.2546delC
(p.S849FfsX40)

c.3720_3724del
(p.E1240DfsX36) Blood ex27G/ex37 88 185 2 98.7

43 GG MDS AC ex27 del ex1-28 del Blood Yes ex27/ex1-28 72 72 78 1 84

44 GG SAA A ex30 del NI Blood ex30/- 45 130 4 84

45 GG SAA A ex11-15 duplication NI Blood ex11-15/- 297 318 2 Unknown

46 GG SAA A ex30 del NI BM-fibroblast ex30/- 96 182 2 97

47 GG MDS A c.2870G>A
(p.W957X)

c.2723_2725TCT
>GCC

(p.LS908_909RP
Blood Yes 121 335 343 3 Unknown

48 GG MDS G c.1386delC
(p.A463GfsX55) c.1637-15 G>AB Blood Yes Normal 69 120 133 2 88.1

49 GG SAA G c.1066C>T
(p.Q356X)

c.1066C>T
(p.Q356X) Blood Yes Normal 66 77 4 70.5

50 GG SAA G c.1066C>T
(p.Q356X)

c.1066C>T
(p.Q356X) Blood Yes Normal 72 79 1 68.6

51 GG SAA G c.91C>T
(p.Q31RfsX5) c.307+1G>C Blood Yes 27 109 4 77



52 GG SAA G c.91C>T
(p.Q31RfsX5) c.307+1G>C Blood Yes 60 113 4 66.7

53 GG AML A c.4240_4241delAG
(p.S1414LfsX10) c.2602-1G>A Blood Yes Normal 41 115 128 6 Yes 67

54 GG SAA A c.2602-2A>T c.4198C>T
(p.R1400C) Blood Yes Normal 120 190 3 86.4

55 GG MDS AC  (reversion
suspected)

c.2546delC
(p.S849FfsX40)

c.3919_3920insT
(p.Q1307LfsX6) Blood Yes ex27G/- 144 145 208 2 89.4

56 GG AA A c.2602-2A>T c.2602-1G>A Blood Yes Normal 134 147 2 67.4

57 GG AA A ex30 del NI Blood ex30/- 51 65 3 89.5

58 GG SAA A ex30 del NI Blood ex30/- 92 104 3 81.2

59 GG AML AC ex27 del ex37 skipping Blood ex27/- 136 176 179 2 Unknown

60 GA SAA Not detected NI NI Blood Yes 87 162 3 67.7

61 GA AML Not detected NI NI Blood Yes Normal 41 41 99 3 84

62 GG SAA Not detected NI NI Blood Yes Normal 58 72 10 Yes 57.4

63 GG SAA Not detected NI NI Blood Yes Normal 40 61 6 Yes 75.7

64 GG SAA Not detected NI NI Blood Yes Normal 96 106 2 73.1
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Legend for Supplemental Table 2. DEB test results of the patients and control subjects. 

 

Achromatic areas less than a chromatid in width were scored as gaps. Exchange 

configurations, and dicentric and ring chromosomes were scored as rearrangements. 

Gaps were excluded from the calculation of chromosome aberrations per cell, and 

rearrangements were scored as 2 breaks. 



Spontaneous Spontaneous DEB-induced DEB-induced
breakage rate breakage rate breakage rate breakage rate
(breaks/cell) (% aberrant cells) (breaks/cell) (% aberrant cells)

Patient     1 0.08 10 6.45 95
2 0.08 6 0.44 37
3 0.02 3 0.91 38
4 0.02 2 1.21 48
5 0.04 10 1.3 59
6 0.06 8 8.32 100
7 0 4 0.36 39
8 0.04 6 2.28 38
9 0.02 2 0.79 46

10 0.02 14 0.82 59
11 0.09 9 3.16 72
12 0.02 2 2.66 83
13 0.02 4 0.64 30
14 0.05 11.5 0.3 22.9
15 0.12 16 8.54 100
16 0 0 0.52 17
17 0.06 8 0.56 38
18 0.06 6 4.2 92
19 0.07 10 3.49 92
20 0 2 2.36 68
21 0.04 7 0.96 52.4
22 0.01 4 4.07 99
23 0.08 14 6.45 100
24 0.01 1 6.14 99
25 0 2 2.68 73

Patient and
control
number

Supplemental Table 2. DEB test results of the patients and control subjects.



26 0 3 1.17 67
27 0.06 16 0.45 43
28 0.08 12 1.96 60
29 0 0 4.97 84
30 0.02 4 5.16 95
31 0.02 2 4.77 97
32 0 0 0.12 9
33 0 0 0.03 2
34 0.04 4 5.92 97.9
35 0 0 6.15 81
36 0.1 8 9 100
37 0.04 4 7.67 99
38 0.02 6 1.59 72
39 0.05 6 2.06 76
40 0.06 9 1.93 73
41 0 0 1.92 70
42 0.02 2 5.39 97
43 0.04 6 6.38 97
44 0 2 1.72 68
45 0.1 10 6.12 97.3
46 0.02 6 4.92 96
47 0.1 3 4.39 90
48 0.01 5 2.56 82
49 0 6 3.1 91
50 0.04 4 2.54 80
51 0.06 6 0.92 54.4
52 0.04 6 0.93 49.5
53 0.02 3.2 6.3 97.3
54 0.01 2 3.58 92
55 0.01 1 0.01 2
56 0.01 2 1.4 57



57 0 0 4.85 93
58 0.01 4 0.59 46
59 0.02 8 0.67 36.9
60 0 0 0.48 28
61 0.01 2 0.89 35
62 0.49 52 3.8 95.7
63 0 0 7.8 100
64 0.09 9 2.38 54

Control     1 0 0 0.02 2
2 0 0 0.01 1
3 0 0 0.01 1
4 0.01 1 0.05 5
5 0.01 1 0.05 5
6 0 1 0.01 1
7 0 2 0.04 4
8 0 1 0.04 4
9 0 0 0.02 2

10 0 0 0.03 3
11 0 0 0.02 3
12 0 1 0 2
13 0 2 0.02 4
14 0 0 0.02 2
15 0 1 0 1
16 0 0 0 1
17 0 0 0.04 4



18 0 0 0 2
19 0 1 0.05 5
20 0 0 0 0
21 0 2 0.04 6
22 0.02 2 0.04 4
23 0 0 0 1
24 0 0 0.04 5
25 0 0 0 4
26 0 0 0.02 3
27 0.02 2 0 1
28 0 0 0.02 4
29 0 0 0 0
30 0 0 0.03 2
31 0 0 0.07 10
32 0.02 3 0.04 5
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