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1 Wavelets

In this article we investigate a generalization of the Sobolev-Lieb-Thirring in-
equality or Lieb’s inequality for Bessel potentials. First we recall the definition of
Meyer’s wavelet basis. Let @ be a function which satisfies the following conditions.

(i) @ is a real valued and even function in C§°(R).
(i) 0 < (¢) <1 and suppd C [—4n/3,4n/3] .
(iii) O(&) =1 for all € € [—2n/3,27/3] .
(iv) 0(¢)2+0(2r — £)? =1 for all £ € [0,27] .

We define a function ¥ € S(R) by

B = [ ba)em d = {0(e/2 ~ 0()} e

For integers j, k we set ; x(z) = 2//2¢)(27z — k). Then it turns out that {¥jx}irez
is an orthonormal basis of L%(R) which we call Meyer’s wavelet basis([8]).
We define n-dimensional Meyer’s wavelet basis as follows. Let ¢ be a function in

S(R) such that p(€) = 6(¢). Set E = {0, 1}"\{0}, 4°(x) = p(a), and ! (z) = ().
For e = {(e1,...,en) € E and z = (z1,...,%,) € R® we define

P(x) = (1) - P ().
Let A={(e,4,k) 1ec B, j€Z, k€Z"}. For A= (e,j,k) € A,z € R™, set
Ya(x) = 29242 (292 — k).

Then {®¥)}rca is an orthonormal basis of L?(R™) which we call n-dimensional
Meyer’s wavelet basis([8]).

We can construct another orthonormal basis by ¢ and . Let

Ao={(e,5,k) 1 ecE, j€Z >0 keZ"},
B(z) = @p(z1) - p(zs), and Pi(z) = (z —k) (keZ").
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Then we can prove that
{ @,y : AEAo, KEZ™}

is an orthonormal basis of L2(R™)([8]). The function & is called a scaling function.

2 Weighted spaces

We recall the definition of A,-weights. By a cube in R™ we mean a cube which
sides are parallel to coordinate axes. A locally integrable function w > 0 a.e. on R™

is an A,-weight for some p € (1,00) if there exists a positive constant C such that

I‘Clg—‘/Qw(x) dx (ﬁ/@w(m)‘”“"”dm)p_l <C

for all cubes Q C R™, where |Q| is the volume of Q.
We say that w is an A;-weight if there exists a positive constant C such that

I_ClgT/ w(y) dy < Cw(z) ae z€Q
Q

for all cubes Q C R™.

We write A, for the class of A,-weights. An example of Ap-weight for 1 <p < oo
is given by w(z) = |z|* € A, where z € R and —n < < p(n — 1). The inclusion
Ap C Ag holds for p < g.

For w € A, we set

P7(w) = (f + measuwrable, |l = { [ aput i) <co)
For A = (&, 5, k) € A set
Q) ={(z1,...,2) : ki <2z <ki+1,i=1,...,n}
and

(@) = 10 g0 (@),

where x () () is the characteristic function of Q(A). The cube as above is called a
dyadic cube.

Now we give the definition of an unconditional basis in a Banach space B over C.
Let {e;}%°, be a family of elements in B. We say {e;}32; is a Schauder basis of B
if every f € B can be written

f=aier +agea + -+ ager - (1)
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where the o, a9, ..., ag, ... are uniquely determined coefficients in C and the con-
vergence in (1) is defined by

lim |f —cie1 —agey — -+ — ayey|z = 0.
N—co

A Schauder basis {e;}$2; in B is an unconditional basis if the following property

oo
is satisfied: forall f € B f = Zaa(i) es(;) in B for any permutation o of N, where
=1
a; are coefficients given by (1).
The following theorem is a simple modification of results by Lemarié and Meyer([4],[5],[8])
where we use the notation

3

(19)= [ f@ada.

Theorem 2.1. Let
l1<p<oco and weA4,.

Then {Ya}ren is an unconditional basis of LP(w). Furthermore for f € LP(w) we
have

f= Z(f, Ay in LP(w) and

AEA

1/2
1 £l o w) = (Z(|(f,¢A)f>2A)2)

AEA LP(w)

Moreover
{@k, vy 1 AE Ag, kGZn}

is an unconditional basis of LP(w). For f € LP(w) we have

=3 (f2)%+ > (f, 9%

kezr AEAg
in LP(w) and
1/p 1/2
11l e ) & <Z I(f, ‘I’k)IPW(Qk)) FU D0 U )R =) ;
ke A€hg
Lr(w)
where
Qk = {(Zl,,..,ﬁf}n) : ki Sxi < kz+1.1 = 1,...,’[’&},
and

w(Qx) = /Q s

We will use this result in the proofs of Theorem 3.2 in Section 3 and Theorem 6.2
in Section 6.

e
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3 The Sobolev-Lieb-Thirring inequality
In 1976 Lieb and Thirring proved the following inequality([7]).

Theorem 3.1 (The Sobolev-Lieb-Thirring inequality). Suppose that n € N, f; €
HYR™) (i =1,...,N), and that {f;})Y, s an orthonormal famaly in L*(R™). Then

we have .
[ prras<e > [ 19sras,
i=1

where

N
plz) = Ifil=)
=1

In the statement of the Sobolev-Lieb-Thirring inequality H'(R™) denotes the
Sobolev space of order one. The Sobolev-Lieb-Thirring inequality has important
applications such as the stability of matter or the estimates of the dimension of
attractors of nonlinear equations([7]).

In this section we give a weighted version of the Sobolev-Lieb-Thirring inequality.
Let w € Ay and H!(w) be the completion of C§°(R™) with respect to the norm

1/2
e = | [ [ s@Puterd + 12}
where || - | denotes the norm in L?(R™). We have the following generalization of the
Sobolev-Lieb-Thirring inequality for n > 3(c.f.[9]).

Theorem 3.2. Letn € N, n > 3, w € Ay and w2 ¢ Ansa- Suppose that
fie HY(w) (i=1,...,N), and {f;}}\, is orthonormal in L%*(R™). Then we have

; N ,
z) T (z) do E V fi(x)|*w(z)dz,
/R"p( ) (z)d Sci:]_./R"[ fi(z)] (z)d

where
N
2
p(z) =Y _1fi(=)]
=1
and ¢ is a positive constant depending only on n and w.

An example of w which satisfies the conditions in Theorem 3.2 is given by w(z) =
|z|* for —n+2 < a <2

We explain about the outline of a proof of Theorem 3.2 in the next section. We
use the estimates of some weighted integrals by means of wavelets. These estimates

enable us to prove a weighted version of the Sobolev-Lieb-Thirring inequality.
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4 Proof of Theorem 3.2
For f € L}, .(R™), we define the Hardy-Littlewood maximal operator as
M(f)@) =swp = [ 7w,
=<0 Q] Jo
where the supremum is taken over all cubes Q C R™ such that z € Q.
The proof of the following proposition is in [3].
Proposition 4.1. (1) Let1 <p < co andw € A,. Then M is bounded on LP(w).
() LetO <7 <1, f €Ll (R"), and M(f)(z) < co a.e.. Then (M(f)(z)" € A;.
(43) Let 1 <p < oo and wy,wy € A1, Then wlwé_p € Ay

We may assume f; € CG°(R™) for i = 1,...,N. Let V(z) = p(z)*™w(z)

where ¢ is a positive constant. Then we get VT2 2 dy < 00 and w2 €
Rn
Atins2)/n = Anga for £ =1+ 2/n. Set v(x) = M(V*)(z)'/*. Then (i) of Proposi-

tion 4.1 leads to

/ DI 20,2 g :/ MVR) A/ s=n/2 gy < cl/ VIR/2mn/2 g o oo
n Rn

n

Furthermore we have v € Ay and V < v a.e..
The following lemma is essentially proved by Frazier and Jawerth (c.f.[9]).

Lemma 4.1. Let w € Ay. Then there exists a o > 0 such that

a —2/n 2 1 wdx gw -
SIS, )] ’—zczmi/qw o< [ (Vi

AEA
Jor all f e CP(R™).
The next lemma is a corollary of Theorem 2.1.

Lemma 4.2. Let v € As. Then there exists a 8 > 0 such that

2'[) X 2"1— vax
Jo it < 831G gy [ e

AEA

Jor all f e C§P(R™).

By Lemmas 4.1 and 4.2 we have for f e C5°(R™)

2
/]Rn IV £l wdm—/I;n Vi da
a ~2/n 2 1 wdz — 21 vaz
> 3 Q190 wi S PBIAZY |Q</\>1/Q<A> "

AEA A€A
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Let
T={reA: 5/ vdz > a§Q(A)r2/"/ wdz}
QM) QM)

and {px }1<k be the non-decreasing rearrangement of

a —2/n-1 wdx — -1 vdzx .
{ () /Q @ IR0 /Q I }AGI

o = Q)| /Q Pl B /Q v

we define ¥y = ). Then we get

N N
'211) X — 7;?' X
;/Rn!m d ;/an;fi d
a 2 2/
; a7 wdz — -t vdz
>35S 1(fawa)l { [s]ey] /Qm dz — B1Q()| /Q(A) d}

When

i=1 A€A

N N
>SSl TR =D e 1 TR

=1 k k i=1

>—cy |ml
k

Now we use the following lemma in [9].

Lemma 4.3. There exists a positive constant ¢ such that

Z]/’Lk‘ < C/ vl+n/2w—n/2 dCL‘,
k R

where ¢ depends only on n and w.

Hence by Lemma 4.3 we have

N N
S [ vitea=3 [ vigpd
=1 /R" =1 Y R"
> —C/ V1+n/2w——n/2 dz = __051-1-11/2/ pHZ/"wda:.

Therefore

N
Z/ IV fiffwdz > 5/ Pl+2/”wd$~c51+”/2/ A2y dz
i—1 YR Rr R®
=1{é _agl+n/2}/ Py e,
]Rn

If we take & small enough, then we get the inequality in Theorem 3.2.
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5 [P Sobolev-Lieb-Thirring inequality
By Theorem 3.2 we are able to prove the following LP version of the Sobolev-
Lieb-Thirring inequality.

Theorem 5.1 ([10]). Let n € N, n > 3 and 2n/(n + 2) < p < n. Then there
exists a positive constant ¢ such that for every family {f;}¥, in L2(R™) which is
orthonormal and |V fi(z)| € LP(R™), (i=1,...,N), we have

N p/2
/ p(z) TP/ gy < C/ (Z [Vfi(x)|2) iz,
R? R \i=1

where

N

plz) = Ifo)P

=1

and ¢ depends only on n and p.

Proof
Our proof is very similar to that of the extrapolation theorem in harmonic
analysis(c.f.[2, Theorem 7.8]). Let 2 < p < n and 2/p+ 1/g = 1. Let w € L9,
v > 0 and |ullze = 1. We take a 7 such that n/(n —2) < v < ¢. Then we
have u < M(u?)Y/7 a.e and M(u?)'/7 € A;. Furthermore let a = 2z Then
0<a<1and
M) = (M) P € Ay,

where we used M (u?)® € A; and (iii) of Proposition 4.1. Therefore we have

N
/p1+2/nudx < /pl+2/nM(u7)1/7 dz < c/ (Z [Vfijz) M) de

=1

2/p

<c / (glvfiP)p/gdx < / M(u7)‘7/7d:c>l/q

N p/2 2/p
<el [ (Z Wfilz) a|
i=1

where we used Theorem 3.2 and the inequality

/M(u7)""/7 dzx < c/uqd:z: =c

If we take the supremum for all w € L9, u > 0 and |lu||s = 1, then we get

2/p N p/2 4
( / plit2imie/2 dx) <c / (Z IVfiP) dz
i=1

67
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Next we consider the case 2n/(n +2) < p < 2. Let

N 1/2
f= <Z v mz) :
=1

We can'take « such that (2 — p)n/2 <y < p. Then we have
M(f’*)_@‘p)/"’ € Ay

because
MNP ¢ 4

by (ii) of Proposition 4.1. Furthermore we have
{M(FY)~@RUry=n2 = pp(py@-Pn @D e Ay C Ay,
Therefore

/p(1+2/n)P/2 dz — /p(1+2/n)P/2M(f7)~(Q—P)p/(%)]W(fv)(%p)p/(%) dz

/2 i— /2
< ( / p”z/"M(ﬁ)‘(g_p)hdm)p U M 7)p/7dz> p

/2 1-p/2
<ec (/ f2M(f7)—(2#p)/7 dm)p </fpd:c)

/2 1-p/2
<ec (/M(f"r)Z/vM(fv)—(2~p)/7 dm>p (/fpda:> !

/2 1-p/2
Sc(/M(f7)p/7dI)p (/fpd:c> ’ gc/fpda:,

where we used Theorem 3.2 in the second inequality.

6 Lieb’s inequality for Bessel potentials
Lieb proved the following inequality in [6].
Theorem 6.1. Letn e N, s> 0, n> 2s andm > 0. Let fi1,..., fn be orthonormal
in L2(R™) and
u; = (—A+ mz)_s/zfi.

Then
N

n/(n—2s)
u;(x 2 dz < C, sN.
/. (Zr ()!) <Cn,

=1
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Battle and Federbush([1]) proved this inequality for n = 3 and s = 1 in 1982.
They applied it to the quantum field theory. Lieb proved the case n > 4 and s > 0.
We can prove the following generalization of Lieb’s inequality by means of Theo-

rem 2.1.

Theorem 6.2 (Tachizawa, 2007). Letn € N, s > 0, n > 2s and m > 0. Let
w e An/(n—Qs) N Ay and w/(29) ¢ An/(Zs)' Let f1,..., fn be orthonormal in
LYR™), fi € L*(w), and

u; = (—A+m?)"2f;
Then
n/(n—2s) N
M@@gc}:/]ﬁ@Ww@Mm

i=1/R"

L. @ |ui<z)12>

where the constant C depends only on n, s, and w.

The proof of Theorem 6.2 is given by a similar argument to that of Theorem 3.2.
We use the characterization of weighted spaces by means of wavelets and scaling

function. The detail will appear elsewhere.
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