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EXTENSIONS IN SPACES WITH VARIABLE
EXPONENTS — THE HALF SPACE

L. DIENING, S. FRÖSCHL

Abstract. In this article we study the Hardy–Littlewood max-
imal operator in variable exponent spaces. For a given variable
exponent p on a domain Ω for which the maximal operator is con-
tinuous on Lp(·)(Ω) we construct an extension of p to Rn such that
the maximal operator is continuous on Rn. The variable exponent
will be constructed by means of a Whitney type extension. In this
paper we restrict ourselves to the case where Ω is the half space.
But the technique applies to less regular domains. The application
to ε-δ-domains (Jones domains) is the subject of a forthcoming
article.

1. Introduction

Spaces of variable integrability have been the subject of quite a lot
of interest recently, as surveyed in [DHN04, Sam05]. The spaces can be
traced back to W. Orlicz [Orl31], but the modern development started
with the paper [KR91] of Kováčik and Rákosńık. Apart from interest-
ing theoretical considerations, the motivation to study such function
spaces comes from applications to fluid dynamics [Růž00], image pro-
cessing [CLS03], PDE, and the calculus of variation [Zhi86, AM01].

A crucial step in the development of the theory was establishing
the boundedness of the Hardy–Littlewood maximal operator on Lp(·).
Many important properties, like density of smooth functions, continu-
ity of singular integrals, Sobolev embeddings, can be deduced solely
from the boundedness of the maximal operator, see [Die04b, DR03,
CUFMP06]. Of particular interest in this context is the article of
Cruz-Uribe, Fiorenza, Martell, and Pérez [CUFMP06]. In that paper
the authors showed that it is possible to transfer many results known
for weighted Lebesgue spaces by the extrapolation technique of Rubio
de Francia to the spaces of variable exponent. The only requirements
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needed are some assumptions on the boundedness of the maximal op-
erator. This includes the boundedness of the maximal operator on the
dual space together with some left-openness result. In particular it is
needed that the maximal operator is bounded on L(p(·)/s)′(Rn) for some
s > 1.

The boundedness of the maximal operator on Lp(·)(Rn) was origi-
nally proved by Diening [Die04a] assuming that the variable exponent
is locally log-Hölder continuous, constant outside a compact set, and
bounded away from 1 and∞. Pick and Růžička [PR01] complemented
this result by showing that the local log-Hölder continuity is the optimal
continuity modulus for this assertion. The assumption that p be con-
stant outside a compact set was replaced by Cruz-Uribe, Fiorenza, and
Neugebauer [CUFN03] by a decay condition at infinity. The local con-
tinuity condition and the decay condition are summarized in the term
globally log-Hölder continuity of p. These authors also showed that
their decay condition is the optimal decay condition for the bounded-
ness of the maximal operator. Nekvinda [Nek04] independently proved
the same result under a slightly weaker decay assumption at infinity,
replacing the continuity modulus by an integral condition. While the
condition p− > 1 is necessary for the continuity of the maximal opera-
tor [CUFN04, Die07] the condition p+ <∞ was only needed for techni-
cal reason, which is reflected in the fact that M : L∞(Rn)→ L∞(Rn)
is obviously true. The case including p+ =∞ was proved by Diening,
Harjulehto, Hästö, Mizuta, and Shimomura [DHHMS09], see Proposi-
tion 2.2 below.

Although the global log-Hölder continuity of the variable exponent p
with p− > 1 is sufficient for the boundedness of the maximal operator,
it is not necessary. Lerner [Ler05] constructed examples of variable
exponents which are not continuous at zero and infinity but for which
the maximal operator is nevertheless bounded. At the same time Dien-
ing [Die05] gave a full charaterization of the boundedness of the maxi-
mal operator for variable eponents p ∈ P(Rn) with 1 < p− 6 p+ <∞.
This characterization is closely connected to the Muckenhoupt condi-
tion for weighted Lebesgue spaces and is stated in terms of averaging
operators over families of disjoint cubes. Based on this characteriza-
tion Diening also showed that the maximal operator M is bounded on
Lp(·)(Rn) if and only if it is bounded on Lp′(·)(Rn) and L(p(·)/s)′(Rn) for
some s > 1. This ensures that the application of the extrapolation
results of Cruz-Uribe, Fiorenza, and Neugebauer [CUFN03] requires
only the boundedness of the maximal operator on Lp(·)(Rn). Note that
the additional boundedness of the maximal operator on Lp′(·)(Rn) and
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L(p(·)/s)′(Rn) for some s > 1 is immediate for globally log-Hölder con-
tinuous variable exponents with 1 < p− 6 p+ < ∞ but for general
variable exponents this is obvious by no means.

Many results for bounded domains Ω can be deduced from the re-
sult for the whole space Rn in combination with an extension result.
Assume for example that Ω and q ∈ (1, n) are such that there ex-
ists a continuous extension operator E : W 1,q(Ω) → W 1,q(Rn). Then
the Sobolev embedding W 1,q(Ω) → Lq∗(Ω) with 1

q∗
= 1

q
− 1

n
follows

immediately from the estimate ‖f‖Lq∗ (Rn) 6 ‖∇f‖Lq(Rn). This raises
the question under which conditions on Ω and the variable exponent p
there exists an extension operator E : W 1,p(·)(Ω)→ W 1,p(·)(Rn).

We have to distinguish two cases. In the first case the variable expo-
nent p is given a priori for the whole space Rn and the question is only
to find a proper Sobolev extension operator E . If we have proper control
of the maximal operator, then this can be achieved by extrapolation
and the corresponding results for weighted Lebesgue spaces [Chu06].
The reduction to the boundedness of the maximal operator was used
in [DH07] for the Sobolev extensions from the half space to Rn and
in [CUFMP06] for Sobolev extentions for domains satisfying the uni-
form, interior cone condition.

In the second case the variable exponent p is only given on Ω and
has to be extended as well. This should be done in such a way that the
maximal operator will be bounded on Lp(·)(Rn). If p is globally log-
Hölder continuous on Ω, then it is not difficult to extend p such that p is
globally log-Hölder continuous on Rn. This can for example be achieved
with the help of the extension theorem of McShane [McS34] to Rn, see
[Die04a], [CUFMP06], and [DHHMS09] for corresponding extension
results. In [CUFMP06] this was used to get a suitable extension of
the variable exponent to Rn before the Sobolev extension result was
considered. The situation is much more difficult for measurable p.
This problem of a suitable extension of the variable exponent p was the
only restriction in [CUFMP06] that circumvented a Sobolev extension
theorem for measurable p. Due to this reason Cruz-Uribe, Fiorenza,
Martell, and Pérez stated the following question:

(EP) Extension-Problem [CUFMP06, Remark 4.4]:

It would be interesting to determine if every exponent
p ∈ B(Ω) can be extended to an exponent function in
B(Rn) .

Hereby, B(Ω) denotes the set of variable exponents p ∈ P(Ω) such that
M is bounded on Lp(·)(Ω).
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It is the purpose of this paper to provide a positive (partial) an-
swer to this question. Our final goal is to solve (EP) for ε-δ-domain.
These domains were introduced by Jones [Jon81] and are therefore also
called Jones domains. They are the natural domains for the extension
of Sobolev functions and it is therefore our aim to solve (EP) for the
same type of domains. Once this problem is solved, the extension re-
sult for variable exponent Sobolev spaces will follow immediately from
extrapolation and the result of Chua [Chu06].

The extensions of Sobolev functions for ε-δ-domains and constant ex-
ponent are constructed by the use of the Whitney extension, see [Jon81,
Chu06]. Therefore, it is natural to use a Whitney type extension to
extend the variable exponent p. (Note that other methods like the
method of reflection require higher regularity of the boundary of Ω.)
However, instead of working with ε-δ-domains we will restrict ourselves
in this article to the case where Ω is the half space. We are aware of
the fact that in the case of the half space (EP) can be solved far easier
by reflection of the exponent. However, the use of a Whitney type
extension shows the strong potential of the method in the sense that it
can also be applied in the context of ε-δ-domains. The solution of (EP)
for ε-δ-domains will be the subject of a forthcoming paper. Therefore,
we will keep the level of details low and concentrate on presenting the
essential ideas of the method. Detailed calculations for the case of the
half space can be found in [Frö08] and in the forthcoming article [DF08].

2. Notation and Basic Properties

By c we denote a generic constant, i.e. its value may change from
line to line. We write f ∼ g if there exist constants c1, c2 > 0 so
that c1f 6 g 6 c2g. For a measurable subset Ω ⊂ Rn with posi-
tive (Lebesgue) measure we denote by L0(Ω) the space of real-valued,
measurable functions on Ω and by L1

loc(Rn) the space of real-valued,
locally integrable functions on Rn. We use χΩ for the characteristic
function of Ω. By Lp(Ω) with p ∈ [1,∞] we denote the usual Lebesgue
spaces. We use |Ω| for the n-dimensional Lebesgue measure of Ω. For
f ∈ L1(Ω) we write

fΩ = −
∫
Ω

f(y) dy := |Ω|−1

∫
Ω

f(y) dy.
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By M we denote the (uncentered) Hardy–Littlewood maximal opera-
tor, i.e for f ∈ L1

loc(Rn) and x ∈ Rn let

Mf(x) := sup
Q3x
−
∫
Q

|f(y)| dy,

where the supremum is taken over all cubes which contain x. Through-
out the paper all cubes will have sides parallel to the axes. If f ∈ L1(Ω)
with measurable Ω ⊂ Rn, then we often implicitly extend f outside of Ω
by zero, so that f ∈ L1

loc(Rn). This is in particular used in the defini-
tion of Mf for f ∈ L1(Ω). For a cube W ⊂ Rn and λ > 0 we denote by
λW the cube with the same center and λ-times the diameter. Analo-
gously, for a familyW of cubes and λ > 0 we denote by λW the familiy
{λW : W ∈ W}.

A measurable function p : Ω→ [1,∞] will be called a variable expo-
nent on Ω. We write P(Ω) for the set of all variable exponents on Ω.
For p ∈ P(Ω) we define p+

Ω = esssupx∈Ω p(x) and p−Ω = essinfx∈Ω p(x),
and abbreviate p+ = p+

Rn and p− = p−Rn . For p ∈ P(Ω) we define the
dual exponent p′ ∈ P(Ω) pointwise by 1

p′(x)
+ 1

p(x)
= 1. Hereby and in

the following we use the convention 1
∞ = 0. For q ∈ [1,∞] and t > 0

we define ϕq : [0,∞)→ [0,∞] by

ϕq(t) :=


tq for 1 6 q <∞,
0 for q =∞, t ∈ (0, 1],

∞ for q =∞, t ∈ (1,∞).

The reason to define ρ∞(1) = 0 is to get a left-continuous function, as
in the general theory of Orlicz–Musielak spaces. Note that ρ∞(t) 6
limq→∞ ρq(t) 6 ρ∞(2t) for all t > 0. Let q, r, s ∈ [1,∞] with 1

q
= 1

r
+ 1

s
.

Then Young’s inequality reads

ϕq(ab) 6 ϕr(a) + ϕs(b)

for all a, b > 0.
The variable exponent modular is defined for measurable functions

by

%p(·)(f) =

∫
Ω

ϕp(x)(|f(x)|) dx.

The variable exponent Lebesgue space Lp(·)(Ω) consists of measurable
functions f : Ω→ R with %p(·)(λf) <∞ for some λ > 0. We define the
Luxemburg norm on this space by the formula

‖f‖Lp(·)(Ω) = inf
{
λ > 0: %p(·)(f/λ) 6 1

}
.
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The abbreviation ‖f‖p(·) is used for the norm ‖f‖Lp(·)(Ω) over all of Ω.

We use ϕp(·) for the function (x, t) 7→ ϕp(x)(t).
The following results are standard in the context of Orlicz spaces, see

e.g. [RR91], [Mus83], [Die07, Section 1.1]. A convex, left-continuous
function ρ : [0,∞) → [0,∞] with ρ(0) = 0, limt→∞ ρ(t) = ∞, and
limt↘0 ρ(t) = 0 is called a ϕ-function. The complementary function ρ∗

is defined by ρ∗(u) := supt>u(tu − ρ(t)). Then (ρ∗)∗ = ρ. Note that
ϕ∗q(t) ∼ ϕq′(t) for 1 6 q 6 ∞ and all t > 0. We define ϕ∗p(·) pointwise
with respect to x.

The following has emerged as a central condition in the theory of
variable exponent spaces.

Definition 2.1. Let α ∈ C(Ω). We say that α is locally log-Hölder
continuous if there exists clog > 0 so that

|α(x)− α(y)| 6 clog

ln(e+ 1/|x− y|)
(2.1)

for all x, y ∈ Ω.
We say that α is ( globally) log-Hölder continuous if it is locally log-

Hölder continuous and there exists α∞ ∈ R so that the decay condition

|α(x)− α∞| 6
clog

ln(e+ |x|)
(2.2)

holds for all x ∈ Ω. The smallest constant clog that satisfies (2.1)
and (2.2) is called the log-Hölder constant of α.

The notation P ln(Ω) is used for the set of variable exponents p ∈
P(Ω) for which 1/p is globally log-Hölder continuous. Then p ∈ P ln(Ω)
if and only if p′ ∈ P ln(Ω). If Ω ⊂ Rn is an unbounded, open set and
p ∈ P ln(Ω), then we define p∞ to be the limit lim|x|→∞ p(x), which
is well defined, since 1

p
is globally log-Hölder continuous. We have

(p∞)′ = (p′)∞.
The importance of P ln(Rn) becomes clear by the following result.

Proposition 2.2 (Theorem 3.6, [DHHMS09]). Let p ∈ P ln(Rn) with
1 < p− 6 p+ 6∞. Then M is bounded on Lp(·)(Rn), i.e. to

‖Mf‖p(·) 6 K ‖f‖p(·).

Here K > 0 depends only on the dimension n, the constant of log-
Hölder continuity of 1

p
, and p−.
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3. The extension of the variable exponents

In this section we will construct the extension of the variable expo-
nent. By H we denote the (positive) half space of Rn, i.e.

H := {(x1, . . . , xn) ∈ Rn : x1 > 0}.

By −H we denote the (negative) half space, i.e. −H = {−x : x ∈ H}.
We make in the following assumption on our variable exponent p for
the rest of the paper.

Assumption 3.1. Let p ∈ P(H) with 1 < p− 6 p+ < ∞ be such that
the maximal operator M is bounded on Lp(·)(H), i.e. for some K > 0
holds

‖Mf‖Lp(·)(H) 6 K ‖f‖Lp(·)(H).(3.1)

for all f ∈ Lp(·)(H), where f is extended by zero outside of H.

Note that (3.1) is equivalent to

‖χHM(fχH)‖p(·) 6 K ‖fχH‖p(·)(3.2)

for all f ∈ Lp(·)(Rn).

3.1. The extension. We want to extend p outside of H by means
of a Whitney type extension. Herefore, we take a suitable Whitney
decompositions W1 and W2 of H and −H, respectively. In particular,
W1 and W2 are families of open cubes from Rn that satisfy:

(W1)
⋃

W∈W1
125W ⊂ H ⊂

⋃
W∈W1

16
17
W .

(W2)
⋃

W∈W2
125W ⊂ −H ⊂

⋃
W∈W2

16
17
W .

(W3) 1
2
W ∩ 1

2
Z = ∅ for all W,Z ∈ Wj (j = 1, 2) with W 6= Z.

(W4) The family 125Wj (j = 1, 2) can be written as the finite union
of pairwise disjoint families of cubes. The number of families
only depends on the dimension n.

(W5)
∑

W∈Wj
χ125W 6 c for j = 1, 2.

(W6) For all W,Z ∈ Wj (j = 1, 2) with W ∩ Z 6= ∅ holds Z ⊂ 5W .
(W7) There exist c1, c2 > 0 such that

c1 diam(W ) 6 dist(x, ∂H) 6 c2 diam(W )

for all W ∈ W1 (j = 1, 2) and all x ∈ W .

A construction of the families W1 and W2 can be found in the ap-
pendix. For W ∈ W2 we denote by W ∗ the reflected cube W ∗ :=
{(x1, . . . , xn−1,−xn) : x ∈ W}. We assume that the families W1 and
W2 are chosen such that W ∗ ∈ W1 for every W ∈ W2 (for example use
W1 := {W ∗ : W ∈ W2}).
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To the familyW2 we find a subordinate partition of unity {ηW}W∈W2

with ηW ∈ C∞0 (33
34
W ), 0 6 ηW 6 1, ‖∇ηW‖∞ 6 c diam(W )−

1
n for

all W ∈ W2 and
∑

W∈W2
ηW = χ−H. Property (W3) implies that

ηW (x) = 1 for all x ∈ 1
2
W with W ∈ W2.

For a subset U ⊂ Rn with positive measure and p ∈ P(U) we define
pU ∈ [1,∞] by

1

pU
:= −
∫
U

1

p(y)
dy.(3.3)

We are now able to define the extension of p to the complement of H.
For x ∈ −H we extend p by

1

p(x)
:=

∑
H∈W2

ηH(x)
1

p5W ∗
.(3.4)

Recall that 5W ∗ is the cube with the same center as W ∗ but five times
the diameter. Since Rn \ (H ∪ (−H)) is a null set, this defines an
extension p ∈ P(Rn). We use the same symbol p for p ∈ P(H) and its
extension p ∈ P(Rn).

Remark 3.2. The extension of p can be interpreted as a Whitney ex-
tension of 1

p
. One can ask the question: “Why do we extend 1

p
rather

than p?” The reason is that 1
p

behaves much better than p, especially

with respect to duality. For example if we extend the dual exponent p′

by means of (3.4), then we will get the same result as if we take the dual
exponent of the extended variable exponent. So our extension operator
for p commutes with duality.

We can now state our main result:

Theorem 3.3. Let p ∈ P(H) with 1 < p− 6 p+ < ∞ be as in As-
sumption 3.1, i.e. the maximal operator M is bounded on Lp(·)(H).
Then (3.4) defines an extension of p to Rn such that M is bounded on
Lp(·)(Rn).

This theorem provides a positive answer to (EP) for Ω = H. The
proof of our main result is based on a fundamental characterization of
those variable exponents p ∈ P(Rn) for which the maximal operator is
bounded. To explain this we need a few more notations.

Definition 3.4. Let

Yn := {W : W is a family of pairwise disjoint cubes from Rn}.



EXTENSIONS IN SPACES WITH VARIABLE EXPONENTS 9

Then for Q ∈ Yn we define TQ : L1
loc(Rn)→ L1

loc(Rn) by

TQf :=
∑
Q∈Q

χQMQf,

where MQf := −
∫

Q
|f(x)| dx.

Let U ⊂ Rn be an open set. We say that ϕp(·) ∈ A(U) if there
exists K > 0 such that ‖χUTQ(fχU)‖Lp(·)(U) 6 K ‖fχU‖Lp(·)(U) for all

Q ∈ Yn and all f ∈ Lp(·)(Rn). The smallest constant K is called the
A(U)-constant of ϕp(·).

Note that Assumption 3.1 implies that ϕp(·) ∈ A(H). The condi-
tion ϕp(·) ∈ A(Rn) is closely related to the Muckenhoupt classes for
weighted Lebesgue space, see the remarks after Definition 3.1 in [Die05].
The following characterization is due to Diening.

Theorem 3.5 (Theorem 8.1, [Die05]). Let p ∈ P(Rn) with 1 < p− 6
p+ <∞. The following are equivalent

(a) ϕp(·) ∈ A(Rn).

(b) M is bounded on Lp(·)(Rn).

(c) M is continuous on L
p(·)
q (Rn) for some q > 1 (“left–openness”).

(d) ϕp′(·) ∈ A(Rn).

(e) M is bounded on Lp′(·)(R).

So instead of proving the boundedness of M on Lp(·)(Rn) for our
extended variable exponent p, it suffices to prove the simpler condi-
tion ϕp(·) ∈ A(Rn). The assumptions in Theorem 3.5 are the reason
that we exclude the case p+ =∞ in Theorem 3.3. On the other hand
we get additionally the boundedness of M on Lp′(·)(Rn) and for this
p+ <∞ is necessary.

Remark 3.6. If p ∈ P(Rn) is constant outside a large ball, then it has
been shown by Kopaliani [Kop07] that the condition ϕp(·) ∈ A(Rn) can
be simplified. Instead of the boundedness of the TQ for all Q ∈ Yn it is
enough to verify the boundedness of the T{Q}, where the {Q} are just
the families consisting of one single cube.

3.2. Boundedness of TW2. In order to apply Theorem 3.5 we have
to show that ϕp(·) ∈ A(Rn). In particular, we have to show that the

averaging operators TQ are bounded on Lp(·)(Rn) uniformly in Q ∈ Yd.
As a crucial step we begin with the boundedness of TW2 . It will be an
important tool for the general case.

The idea is the following. First, we take the average on the left
side −H but evaluate them on the right side H. Second, we show how
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to tranfer these averages back to the left side −H. In particular, our
proof for the boundedness of TW1 will look as follows∥∥∥∥ ∑

W∈W1

χWMWf

∥∥∥∥
p(·)

6 c

∥∥∥∥ ∑
W∈W1

χW ∗MWf

∥∥∥∥
p(·)

6 c ‖f‖p(·).(3.5)

We explain both step in (3.5) separately. Let us begin with the second
part of (3.5). We will need the following assertion from [DHHMS09,
Lemma 6.1].

Lemma 3.7. For a cube Q ⊂ Rn and p ∈ P(Q) holds(
t

2

)pQ

6 −
∫
Q

tp(y) dy(3.6)

for all t > 0.

For p ∈ P(Rn) and a cube Q ⊂ Rn we define

MQϕp(·)(t) := −
∫
Q

ϕp(x)(t) dx = −
∫
Q

tp(x) dx.

for t > 0. Analgously, we define MQϕ
∗
p(·)(t) = −

∫
Q
ϕ∗p(x)(t) dx. Then

t 7→MQϕ
∗
p(·)(t) is a ϕ-function. We denote its complementary function

by (MQϕ
∗
p(·))

∗. It was proved in [Kop07] and [Die07, Lemma 4.6] that

(MQϕ
∗
p(·))

∗(t) = inf
f :MQf=t

−
∫
Q

|f(x)|p(x) dx(3.7)

and

(MQϕ
∗
p(·))

∗
(
t

2

)
6 tpQ 6MQϕp(·)(2 t)(3.8)

for all t > 0.
Let us get back to the proof of the second part of (3.5). Let f ∈

Lp(·)(−H) with ‖f‖p(·) 6 1, so
∫
|f(x)|p(x) dx 6 1. First, we decompose

f into functions fW ∈ Lp(·)(W ) such that f =
∑

W∈W2
fW and∑

W∈W2

∫
W

|fW (x)|p5W∗ dx 6 c.

This is possible, since the extension of p ensures

min
W∈W2 :x∈W

|f(x)|p5W∗ 6 |f(x)|p(x)(3.9)
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Then (3.8) and Jensen’s inequality imply∑
W∈W2

|5W |(M5W ∗ϕ
∗
p(·))

∗(1
2
M5WfW

)
6 c

∑
W∈W2

|5W |
(
M5WfW

)p5W∗ 6 c.

Now, ϕp(·) ∈ A(H) (by Assumption 3.1) together with the characteri-
zation (3.7) imply that∑

W∈W2

|5W |(M5W ∗ϕp(·))
(

1
2
M5WfW

)
6 c.

This step is in detail explained in [Die05, Theorem 4.2]. Therefore,∫
Rn

( ∑
W∈W2

χ5W ∗M5WfW

)p(x)

dx 6 c.

The construction of the fW finally ensures that∫
Rn

( ∑
W∈W2

χW ∗MWf

)p(x)

dx 6 c.

This proves the second part of (3.5). Let us summarize that the main
ingredient in the proof was (3.8). It is important for (3.8) that p5W ∗ is
defined via the reciprocal mean value of p, see (3.3).

The proof of the first part of (3.5) relies on the following important
fact: The mapping 1

q
7→ qtq is convex for any t > 0. This and the

definition of p immediately imply that

1

p(x)
tp(x) 6

∑
W∈W2

ηW (x)
1

p5W ∗
tp5W∗ .

The left hand side of this estimate corresponds to
∑

W∈W2
χW (x)tp(x)

and the right hand side to
∑

W∈W2
χ 1

2
W ∗(x)tp(x). The rest of the proof

of (3.5) is straightforward.

3.3. Proof of Class A. Let us now explain how to prove the bound-
edness of TQ for general Q ∈ Yn. First of all, it is important to realize
that we have to distinguish two cases of cubes. Such cubes with are
small compared to the cubes of our Whitney decompositions W1 and
W2 and the other cubes which are called big cubes.
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Definition 3.8. Let Q ∈ Yn.

(a) A cube Q ∈ Q is called small, if there exists W ∈ W1∪W2 such
that Q ⊂ W . We define

Q1,small := {Q ∈ Q : ∃W ∈ W1 with Q ⊂ W},
Q2,small := {Q ∈ Q : ∃W ∈ W2 with Q ⊂ W},
Qsmall := Q1,small ∪Q2,small.

(b) A cube Q ∈ Q is called big, if it is not small.

Qbig := Q \ Qsmall.

We will see later that big cubes are automatically close to ∂H with
respect to their size. But let us concentrate in the first step on small
cubes. The family Q1,small is no problem, since these cubes are com-
pletely inside H and therefore the continuity of TQ1,small

is guaranteed
by Assumption 3.1.

3.4. Small cubes. So let Q ∈ Q2,small. Then Q is contained in some
WQ ∈ W2. If Q ⊂ 1

2
WQ, then p is constant on Q (namely p = p5W ∗Q

)

and we are in the case of a constant exponent which is quite simple.
But if Q lies more at the boundary of WQ, then p is variable. For
example if Z ∈ W2 is another cube with Q ⊂ Z, then p varies on Q
between p5W ∗Q

and p5Z∗ . However, the regularity of p depends mostly

on the local regularity of the partition of unity ηW . So the bigger WQ is,
the more regular p is on WQ and Q. Certainly, the regularity of p on Q
also depends on | 1

p5W∗
Q

− 1
p5Z∗
|, but we will see that this difference is

rather nice. Indeed, the following Proposition 3.9 shows that oscillation
of 1

p
has a similar behaviour than log-Hölder continuous functions if

averaging operators over single cubes are bounded.

Proposition 3.9. Let s ∈ P(Rn), K > 0, and let Q ⊂ Rn be an
arbitrary cube such that ‖χQMQf‖s(·) 6 K ‖f‖s(·) for all f ∈ Ls(·)(Rn).

Then

−
∫
Q

−
∫
Q

∣∣∣∣ 1

s(y)
− 1

s(z)

∣∣∣∣ dy dz 6 ln(40K2)

ln(e+ |Q|+ 1
|Q|)

.(3.10)
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Proof. Note that T{Q}f := χQMQf . So by assumption ‖T{Q}f‖p(·) 6

K ‖f‖p(·) for all f ∈ Lp(·)(Rn). Therefore, we get

‖T{Q}g‖p′(·) 6 2 sup
‖h‖p(·)61

∫
Q

T{Q}g|h| dx

= 2 sup
‖h‖p(·)61

∫
Q

|g|T{Q}h dx

6 2K‖g‖p′(·),

for all g ∈ Lp′(·)(Q), where we have used in the first step the character-
ization of the dual space of Lp(·), see Lemma 2.9 [Die07].

Define f := χQ |Q|−1/p and u := χQ |Q|−1/p′ . Then %p(·)(f) 6 1
and %p′(·)(u) 6 1, which implies ‖f‖p(·) 6 1 and ‖u‖p′(·) 6 1. So with
Hölder’s inequality and the continuity of TQ, we get

|Q|MQfMQg =

∫
Rn

χQMQfMQg dx

6 2 ‖T{Q}f‖p(·)‖T{Q}u‖p′(·)
6 4K2‖f‖p(·)‖u‖p′(·)
6 4K2.

By definition of f and u this implies

−
∫
Q

−
∫
Q

|Q|−
1

p(y)
+ 1

p(z) dy dz 6 4K2.

By symmetry in y and z we get

−
∫
Q

−
∫
Q

max

{
|Q|
∣∣ 1
p(y)
− 1

p(z)

∣∣
, |Q|−

∣∣ 1
p(y)
− 1

p(z)

∣∣}
dy dz 6 8K2.

Since max {t, 1/t} > c(e+ t+ 1/t) for all t > 0, we get

−
∫
Q

−
∫
Q

(
e+ |Q|+ 1

|Q|

)| 1
p(y)
− 1

p(z)
|

dy dz 6 40K2.

The mapping s 7→ (e+|Q|+1/|Q|)s is convex, so by Jensen’s inequality
we get (

e+ |Q|+ 1

|Q|

)−∫
Q
−
∫
Q |

1
p(y)
− 1

p(z)
| dy dz

6 40K2.
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Taking the logarithm proves the claim. �

Remark 3.10. As we have mentioned above (see [Ler05] and [Die05]),
log-Hölder continuity of 1

p
is not necessary for the boundedness of the

maximal operator M . However, Propositon 3.9 shows that the bound-
edness of M implies that the oscillations of 1

p
satisfy the same esti-

mates as a log-Hölder continuous function. Since
∫ 1

0
1

t ln(e+t)
dt = ∞,

it follows from [Spa65] that the estimates for the oscillations do not
imply the corresponding Hölder estimates. Note that the construction
by Lerner [Ler05] of a discontinuous, variable exponent p such that the
maximal operator M is bounded on Lp(·)(Rn) is based on oscillation
estimates similar to (3.10).

Propositon 3.9 and the properties of the decomposition of unity can
be used to deduce the following interesting result.

Lemma 3.11. Let W ∈ W2. Then there exists q ∈ P ln(Rn) with p = q
on W , q = p5W ∗ on Rn \ (5W ) such that the log-Hölder constant of q
only depends on the A(H)-constant of p.

So for our small cube Q ∈ Q1,small we can use the known results for
log-Hölder continuous exponents. In particular, we can use Proposi-
tion 2.2 and related results. As a minor modification of Lemma 3.3
of [DHHMS09] we get the following result.

Lemma 3.12. Let q ∈ P ln(Rn) with 1 < q− 6 q+ < ∞. Then there
exist constants β,K > 0 (only depending on q−, q+, and the log-Hölder
constant of 1

q
) such that for all f ∈ Lp(·)(Rn) with ‖f‖p(·) 6 1, all cubes

Z ⊂ Rn with MZf > 1 holds∫
Z

(MZf)q(x) dx 6 K

∫
Z

|f(x)|q(x) dx.(3.11)

Note that Lemma 3.3 of [DHHMS09] has an additional +1 on the
right hand side of (3.11) but does not require the assumption MQf > 1.

The idea is that if MQf > 1, then
∫
Z
|f(x)|q(x) dx > c, so we can omit

the +1 on the right hand side of (3.11).
Based on (3.7) it has been shown in [Die05, Theorem 4.2] and [Die07,

Theorem 4.17] that ϕp(·) ∈ A(Rn) if and only if for all families Z ∈ Yn

of disjoint cubes∑
Z∈Z

|Z|(MZϕ
∗
p(·))

∗(tZ) 6 1
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implies∑
Z∈Z

|Z|(MZϕp(·))(c tZ) 6 1

for all families tZ > 0. Due to (W4) the cubes Z ∈ Z in the formulas
above can be replaced by 25Z. Based on these estimate it follows
exactly as in [Die05, (8.24)] and [Die07, Theorem 4.54] that there exists
a constant K > 0 and a family bW > 0 for W ∈ W1 with∑

W∈W1

|W |bW 6 c(3.12)

such that for all t > 0 with |W | (M125Wϕ
∗
p(·))

∗(t) 6 1 or(!) t 6 1 holds

(M125Wϕp(·))(t) 6 K (M125Wϕ
∗
p)
∗(t) + bW .(3.13)

If |W | (M25Wϕ
∗
p(·))

∗(t) 6 1 and t > 1, then additionally

(M125Wϕp(·))(t) 6 K (M125Wϕ
∗
p)
∗(t).(3.14)

Note that b and K also depends only p− and p+ and the A(H)-constant
of ϕp(·) (which depends on (3.1)) . Based on (3.13) and (3.14) we are
able to show the boundedness of TQ2,small

.

Lemma 3.13. There holds∥∥TQ2,small
f
∥∥
p(·) 6 c ‖f‖p(·).

The idea hereby is the following. First, we use Lemma 3.12 for
Q ∈ Q2,small with MQf > 1. So the additional regularity of p on −H
is quite crucial for our proof. Second, we use (3.13) for Q ∈ Q2,small

with MQf < 1 and(
M125Z∗ϕ

∗
p(·)
)∗

(t) 6 c inf
x∈W

tp(x)

for all t > 0 and all Z,W ∈ Z with Z ∩W 6= ∅.
Together with the boundedness of TQ1,small

we get the boundedness

of TQsmall
on Lp(·)(Rn).

Corollary 3.14. There holds∥∥TQsmall
f
∥∥
p(·) 6 c ‖f‖p(·).
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3.5. Big cubes. Let us now turn to the boundedness of TQbig
. Since

the Q ∈ Qbig are covered by the familiy {16
17
W}

W∈W1∪W2
but are con-

tained in none of the W ∈ W1 ∪W2, it follows easily that

dist(x, ∂H) 6 c diam(Q),(3.15)

for all Q ∈ Qbig and x ∈ Q. Moreover, if Q ∈ Qbig and W ∈ W1 ∪W2

with 16
17
W ∩ Q 6= ∅, then W ⊂ γQ for some γ > 0 (independent of W

and Q).
For Q ∈ Qbig we define

Q] :=
⋃

W∈W2 : 16
17

W∩Q 6=∅

W ∗.

Note that Q] ⊂ H, since W ∗ ⊂ H for W ∈ W2. Moreover, if Q ∈ Qbig,
then Q] ⊂ γ2Q for some γ2 > 0 (independent of Q). So the sets Q and
Q] have a similar size and are both close to the boundary with respect
to the size of Q. Hence, Q] can be interpreted as a reflection of Q,
although it is not a cube itself.

We want to show the following result

Lemma 3.15. There holds∥∥TQbig
(fχH)

∥∥
p(·) 6 c ‖fχH‖p(·)

for all f ∈ Lp(·)(Rn).

The proof of this result is split into several parts.∥∥χHTQbig
(fχH)

∥∥
p(·) 6 c ‖f‖p(·),(3.16) ∥∥χHTQbig

(fχ−H)
∥∥
p(·) 6 c ‖f‖p(·),(3.17) ∥∥χ−HTQbig

(fχH)
∥∥
p(·) 6 c ‖f‖p(·),(3.18) ∥∥χ−HTQbig

(fχ−H)
∥∥
p(·) 6 c ‖f‖p(·).(3.19)

The validity of (3.16) follows immediately from Assumption 3.1 but the
other estimate require some work. Let us explain the proof for (3.19),
since the others work similarily. The idea is to shift the averages MQf
from −H to H by means of the following estimate∥∥∥∥∥χ−H ∑

Q∈Qbig

χQMQ(fχ−H)

∥∥∥∥∥
p(·)

6 c

∥∥∥∥∥χH
∑

Q∈Qbig

χQ]MQ(fχ−H)

∥∥∥∥∥
p(·)

.

Now, that we are on H we can use the pointwise estimate

χQ]MQ

(
fχ−H

)
6 c χHM

( ∑
W∈W2

χW ∗MW

(
f χ−H

))
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and our Assumption 3.1 to get the estimate∥∥∥∥∥χ−H ∑
Q∈Qbig

χQMQ(fχ−H)

∥∥∥∥∥
p(·)

6 c

∥∥∥∥ ∑
W∈W2

χW ∗MW

(
f χ−H

)∥∥∥∥
p(·)

.

The boundedness of TW1 finally implies (3.19).
Overall, we have shown the following result.

Theorem 3.16. Let Q ∈ Yn. Then∥∥TQf∥∥p(·) 6 c ‖f‖p(·)

for all f ∈ Lp(·)(Rn), where c only depends on p−, p+, and the constant
in (3.1). In particular, ϕp(·) ∈ A(Rn).

Now, our main result follows easily.

Proof of Theorem 3.3. Due to Theorem 3.16 we know that our ex-
tended variable exponent satisfies ϕp(·) ∈ A(Rn). So the boundedness

of M on Lp(·)(Rn) follows by the characterization in Theorem 3.5. �

Appendix

In this appendix we construct a Whitney decomposition as needed
in Section 3.1 to ensure the properties see (W1)–(W7).

For a given cube Q in Rn we denote by `(Q) its length. We say that
Q is dyadic, if it is of the form 2−km + [0, 2−k]n for some k ∈ Z and
m ∈ Zn. In particular, our dyadic cubes are closed.

The following proposition is a slight modification of the proposition
in Appendix J of [Gra04]. Since our constants are slightly sharper, we
include a proof.

Proposition 3.17. Let Ω be an open nonempty proper subset of Rn.
Then there exists a countable family F of closed, dyadic cubes such that

(A1)
⋃

Q∈F Q = Ω and the Q ∈ F have disjoint interiors.

(A2)
√
n`(Q) < dist(Q,Ω{) 6 4

√
n`(Q) for all Q ∈ F .

(A3) If Q,Q′ ∈ F intersect, then

1

2
6
`(Q)

`(Q′)
6 2.

(A4) For given Q ∈ F , there exists at most 4n − 2n cubes Q′ ∈ F
touching Q (boundaries intersect but not the interiors).
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Proof. Let Dm denote the collection of all dyadic cubes of length 2−m.
Each cube in Dm gives rise to 2n cubes in Dm+1 by bisecting each side.
Decompose Ω into the sets

Ωm := {x ∈ Ω : 2
√
n2−m < dist(x,Ω{) 6 4

√
n2−m}

for m ∈ Z. Let Fm := {Q ∈ Dm : Q ∩ Ωm 6= ∅} for m ∈ Z and F ′ :=⋃
m∈ZFm. Let Q ∈ Fm and x ∈ Q ∩ Ωm. Then

√
n2−m < dist(x,Ω{)−

√
n2−m 6 dist(Q,Ω{)

6 dist(x,Ω{) 6 4
√
n2−m.

This proves (A2) for every Q ∈ F ′.
Next we observe that

⋃
Q∈F ′ Q = Ω. Indeed, every Q ∈ F ′ is con-

tained in Ω and every x ∈ Ω is contained in some Ωm and in some
dyadic cube Q ∈ Dm.

Unfortunately, the cubes in the collection F ′ may not be disjoint and
we need to eliminate the cubes that are contained in some other cubes
of the collection. Observe that two dyadic cubes have either disjoint
interiors or one contains the other. On the other hand if Q ∈ F ′, then
by condition (A2) the cubes of F containing Q cannot be arbitrary
large. Therefore, we can define for each Q ∈ F ′ a unique maximal
dyadic cube Qmax ∈ F ′ that is contained in no other cube of F and
that contains Q. Now set F := {Qmax : Q ∈ F ′}. By maximality two
different cubes of F have disjoint interiors. We still have

⋃
Q∈F Q = Ω.

This proves (A1) for the familiy F .
Let us now prove (A3). If Q,Q′ ∈ F with Q∩Q′ 6= ∅, then using (A2)

we estimate
√
n`(Q) < dist(Q,Ω{) 6 dist(Q,Q′) + dist(Q′,Ω{)

6 0 + 4
√
n`(Q′).

Thus, `(Q) < 4`(Q′). Since `(Q) and `(Q′) are of the special form
2−m1 and 2−m2 , respectively, for some m1,m2 ∈ Z, we get the stricter
estimate `(Q) 6 2 `(Q′). This proves (A3).

Let Q ∈ F . Then Q ∈ Dm for some m ∈ Z. Due to (A3) every cube
from F touching Q contains at least one cube from Dm+1 touching Q.
Since there are exactly 4n− 2n cubes from Dm+1 touching Q, there are
also at most 4n − 2n cubes from F touching Q. �

Corollary 3.18. Let Ω be an open nonempty proper subset of Rn.
Then there exists a family W of open cubes such that

(B1)
⋃

W∈W
16
17
W =

⋃
W∈W 125W = Ω.

(B2) 1
2
W ∩ 1

2
Z = ∅ for all W,Z ∈ W with W 6= Z.
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(B3) If W,W ′ ∈ W intersect, then W ⊂ 5W ′ and W ′ ⊂ 5W .
(B4) The family 125W can be written as the finite union of at most

256n pairwise disjoint families of cubes.
(B5)

∑
W∈W χ125W 6 256n.

(B6) There holds(
256− 1

8

)
diam(W ) < dist(W,∂Ω) 6 1024 diam(W )

for every W ∈ W.

Proof. Let F denote the family of closed dyadic cubes of Proposi-
tion 3.17. Let F# denote the family of closed dyadic cubes that we get
if we slit every cube of F by repeated bisection into 256n closed dyadic
cubes of length 1

256
`(Qj). The new family still satisfies (A1), (A3), and

(A4) of Proposition 3.17, but (A2) has to be replaced by

256
√
n`(Q) < dist(Q,Ω{) 6 1024

√
n`(Q)(A2b)

for all Q ∈ F#. For Q ∈ F# define WQ := 9
8
int(Q), where int(Q)

denotes the interior of Q. Let W := {WQ : Q ∈ F#}. Then it follows
easily from (A1) and (A2b) that W satisfies (B1), (B2), and (B6).

We claim that(
WQ ∩WP 6= ∅ and P 6= Q

)
⇒ Q and P touch(3.20)

for all Q,P ∈ F#. Due to (A3) Q is completely surrounded by a belt
of cubes of length at least 1

2
`(Q). So 9

8
Q can only penetrate the first

quarter of this belt. This together with the same consideration for 9
8
P

implies that 9
8
Q and 9

8
P can only intersect if P is one of the cubes in

the belt around Q. In particular, Q and P touch, which proves (3.20).
Let us prove (B3). Let Q,P ∈ F# with WQ ∩ WP 6= ∅. Then

by (3.20) Q and P touch. Now it follows with `(P ) 6 2`(Q) that
P ⊂ 5Q and WP ⊂ 5WQ. This proves (B3).

It remains to prove (B4) and (B5). In the construction of F# have
split every cube Q into 256n closed dyadic cubes of length 1

256
`(Q).

We can sort these cubes lexicographically by the coordinates of its
center. Now, let us place each subcube according to its position in the
sorted list into the families F1, . . . ,F256n . In particular, we use up to
translation and scaling for every splitting the same order of numbering,
e.g. the “top-left-most” subcube has always the same index from the
sorting. We claim that(

Pj, Qj ∈ Fj and Pj 6= Qj

)
⇒ WPj

∩WQj
= ∅(3.21)

for j ∈ {1, . . . , 256n}. Indeed, let P,Q ∈ F and let Pj, Qj ∈ Fj be
the subcubes of P,Q with the same number. Since Pj 6= Qj, we have
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P 6= Q by construction ot the Fj. It is easy to see that (3.21) holds
if P and Q do not touch, so let us concentrate on the case, where P
and Q touch. Without loss of generality `(Q) > `(P ) and therefore
with (A3) `(Pj) 6 `(Qj) 6 2 `(Pj). By construction of the Fj we have
d∞(Pj, Qj) > (256− 1)`(Pj), where d∞ is the l∞-metric and therefore

d∞(125WPj
, 125WQj

) = d∞
(

125·9
8
Pj,

125·9
8
Qj

)
> d∞(Pj, Qj)−

(
125·9

8
− 1
)`(Pj)

2
−
(

125·9
8
− 1
)`(Qj)

2

>
(

255−
(

125·9
8
− 1
)

1
2
−
(

125·9
8
− 1
))
`(Pj) = 729

16
`(Pj) > 0.

This proves (3.21). Thus 125WPj
∩125WQj

= ∅. Therefore each family
125Fj consists of pairwise disjoint cubes, which implies (B4). Now,
(B5) is an immediate consequence of (B4) �
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[Orl31] W. Orlicz, Über konjugierte Exponentenfolgen., Stud. Math. 3 (1931),
200–211 (German).
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