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RIMS Kôkyûroku Bessatsu
B21 (2010), 129–147

Mathematical analysis to coupled oscillators

system with a conservation law

By

Tomoyuki Miyaji∗, Isamu Ohnishi∗, Ryo Kobayashi∗,
and Atsuko Takamatsu∗∗

§ 1. Introduction

We are interested in bifurcation structure of stationary solution for a 3-component
reaction-diffusion system with a conservation law in the following:

(1.1)



∂u

∂t
= ∇ · (Du∇u) + f(u, v) + δw,

∂v

∂t
= ∇ · (Dv∇v) + g(u, v),

∂w

∂t
= ∆(Dww) − f(u, v) − δw,

where the functions f(u, v) and g(u, v) are chosen in such forms that the local oscillator

(1.2)
du

dt
= f(u, v),

dv

dt
= g(u, v)

can undergo the supercritical Hopf bifurcation. Obviously, the total amount of u + w is
conserved under homogeneous Neumann (no-flux) boundary condition and some natural
and appropriate conditions.

In [10], they have proposed this system to understand one of the periodic oscilla-
tions of the body of the plasmodium of the true slime mold: Physarum polycephalum.
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The plasmodium of P.P. is an amoeboid multinucleated unicellular organism, which
shows various kinds of oscillatory phenomena, for example, thickness of plasmodium,
and protoplasmic streaming. Ref.[10] has focused on the oscillation of thickness of the
plasmodium. These oscillatory phenomena are supposed to be caused by complicated
mechanochemical reactions although the detailed mechanism has not been revealed.

The system (1.1) describes the time-evolution of (u, v, w), which may obtain some
spatio-temporal oscillation solutions. We explain the mechanism heuristically in the
following: We note that if w does not exist, then the system is a coupled oscillators
system with diffusion coupling. The system has temporally oscillation solutions, but
we can not observe stable spatially non-uniform oscillation which bifurcates from the
homogeneous steady state. It is sure that this system is not appropriate for the model
system just as it is.

The plasmodium forms tubular structure which consists of ectoplasm gel outside
and endoplasm sol inside. The endoplasm sol streams inside the ectoplasm gel, which
is known as protoplasmic streaming. The state variable u and v are defined in the
ectoplasm as protoplasm materials included in the ectoplasm gel and biomolecules con-
centration, respectively. The variable w is defined in the endoplasm as amount of proto-
plasm which is actively transported by rhythmic contraction of the ectoplasm gel. Note
that u + w is a conserved quantity because the total mass of protoplasm is conserved
over the time scale considered here. The constant δ is the transportation rate from
ectoplasm gel to endoplasm sol, which can also be considered as the stiffness of tubular
structure of plasmodium. The variables u and v form a chemical oscillator while w is
activated by the chemical oscillator and makes an active flow of endoplasm sol, which
is much faster than simple diffusion of chemical materials. Therefore, in this model,
Dw ≫ Du, Dv should be assumed.

In biological experiment, for example, if you watch a circular plasmodium prop-
agating on a flat ager surface, you can observe an anti-phase oscillation between the
peripheral region and the rear of the plasmodium. Such an oscillation pattern is called
peripheral phase inversion. In [10], they impose the assumption that Du and δ depend
on the space variable and reproduce the peripheral phase inversion by numerical sim-
ulation. This is very interesting for us too, and we have noticed that the original system
with constant coefficients is also a mathematically attractive object. This is because
this system has the mass conservation law, so that a kind of “degree of freedom” of solu-
tions may be less than the usual 3-component system, in which wave instability occurs.
We say that the wave instability occurs when a homogeneous state becomes unstable
by a pair of nonzero purely imaginary eigenvalues with spatially non-uniform eigenfunc-
tions even though it is stable for spatially uniform perturbation. The wave instability
breaks both spatial and temporal symmetries of a homogeneous state, while the (uni-
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form) Hopf bifurcation loses only temporal symmetry [6, 11]. Thus it may be possible
to explain the peripheral phase inversion without assuming dependency of coefficients
on the space variable. Although the linear instability does not imply the existence of
stable pattern, in this study, we prove the occurrence of the wave instability under the
assumption that all the coefficients are constant.

We consider the system on an interval Ω = [0, 1] with homogeneous Neumann
boundary condition and suppose that Du = Dv = ε,Dw = 1. We adopt the λ-ω system
as a simple local oscillator. In this paper, we use the character “θ” in place of “ω” to
avoid confusing w and ω. Therefore we study the following equations:

(1.3)



∂u

∂t
= ε

∂2u

∂x2
+ λu − θv + δw − u(u2 + v2),

∂v

∂t
= ε

∂2v

∂x2
+ θu + λv − v(u2 + v2),

∂w

∂t
=

∂2w

∂x2
− λu + θv − δw + u(u2 + v2).

We can prove mathematically rigorously that the wave instability can occur under
natural and appropriate conditions for this system. We will state the main statement of
our theorem in the next section. Moreover, in §3, we will show some graphs and figures
obtained by numerical simulation in which we observe the Hopf critical points’ behavior
for each Fourier mode and observe the behavior of solutions near the bifurcation points
at which two Fourier modes are made unstable at the same time. We especially notice
that this system has a preferable cluster size of synchronization of oscillations, which
tends to smaller and smaller as ε goes to 0. It may be interesting that, if the effect by
which the synchronized oscillation occurs is too much, then the synchronized cluster is
vanishing and a kind of homogenization happens.

We are also interested in spontaneous switching behavior in coupled oscillator sys-
tems constructed with P.polycephalum[7, 8]. In this biological system, an oscillatory
element corresponds to each partial body in the plasmodium. In [8], they reported that
a ring of three oscillators showed spontaneous switching among three typical oscillatory
states, rotating(R), partial in-phase(PI) and partial anti-phase(PA). PI is an oscillation
such that two of three oscillators are in-phase. PA is an oscillation such that two of three
oscillators are anti-phase. The existence of these three oscillatory patterns is guaranteed
by the symmetric Hopf bifurcation theory[4]. However, to understand the spontaneous
switching behavior among them, it is necessary to study the further bifurcation struc-
ture of them. Recently, Ito and Nishiura studied the bifurcation scenario leading to
intermittent switching for three repulsively coupled Stuart-Landau equations[5]. Al-
though the number of the dimensions for their model is 6, it can be reduced to 5. It
could be one of the simplest models which shows switching behavior among three or
more oscillatory states. We want to consider a more appropriate model for a model of
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the plasmodium. Then we study the coupled oscillator system with a conservation law
as a toy model. We will show a partial result of this attempt in the section 5.

§ 2. The linearized eigenvalue problem

The equations (1.3) can be written in matrix form as follows:

(2.1)
∂U

∂t
=

(
D

∂2

∂x2
+ Λ

)
U + F (U),

where U = (u, v, w),

(2.2) D =

ε 0 0
0 ε 0
0 0 1

 ,Λ =

 λ −θ δ

θ λ 0
−λ θ −δ

 , F (U) =

−u(u2 + v2)
−v(u2 + v2)
u(u2 + v2)

 .

Remark. It is not necessary for the results in this section that Ω is an interval.
Ω is allowed to be N -dimensional bounded domain for N ≥ 1.

We study the linearized system:

(2.3)


∂U

∂t
= D∆U + ΛU in Ω,

∂U

∂ν
= 0 on ∂Ω,

where U = (u, v, w) and ν is the outward unit normal vector on ∂Ω. Now we recall the
eigenvalue problem of Laplacian with homogeneous Neumann boundary condition on Ω
[1]:

(2.4)

∆ψn = −k2
nψn,

∂ψn

∂ν
= 0 on ∂Ω,

where ν is outward unit normal vector, −k2
n is an eigenvalue of the Laplacian with

Neumann boundary condition, and ψn is an eigenvector associated with −k2
n. It holds

that 0 = k2
0 < k2

1 ≤ k2
2 . . . . If Ω = [0, 1], then we obtain kn = nπ.

For any integer n, the equations (2.3) admits solutions of the form Un(x, t) =
Vneµntψn(x), where Vn ∈ R3. Substituting the ansatz into (2.3), we have the eigenvalue
problem

(2.5) LnVn = µnVn,

where the matrix Ln = Λ − k2
nD is given by

(2.6) Ln =

λ − εk2
n −θ δ

θ λ − εk2
n 0

−λ θ −δ − k2
n

 .
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It is obvious that the eigenvalues of L0 = Λ are identical to that of the local oscillator:

µ0 = 0,
1
2

(
2λ − δ ±

√
δ2 − 4θ2

)
.

Next, we consider the case of n ̸= 0. The characteristic polynomial φn of Ln is
cubic:

φn(µ) = µ3 − trLnµ2 + cnµ − detLn,

where

trLn = 2λ − δ − (1 + 2ε)k2
n,

cn = (ε2 + 2ε)k4
n + 2(δε − ελ − λ)k2

n + λ2 + θ2 − δλ,

det Ln = −k2
n{ε2k4

n + (δε2 − 2ελ)k2
n + λ2 + θ2 − δελ}.

It is not impossible to express the solutions of φn(µ) = 0 explicitly, but it is not
suitable for bifurcation analysis. So we take a qualitative approach. We give a sufficient
condition for the existence of a pair of complex conjugate eigenvalues of Ln and its real
part becomes positive for some n.

We use Gershgorin’s theorem[2]:

Theorem 2.1. Every eigenvalues of an n × n matrix A = (aij) is contained in
at least one of the Gershgorin circles

(2.7) Ci =

z ∈ C; |z − aii| ≤
n∑

j ̸=i

|aij |

 (i = 1, . . . , n).

Theorem 2.2. Let D1, D2, . . . , Dk be the disjoint components of the Gershgorin
circles. Let Di be the union of ni of the circles (so that

∑
ni = n). Then Di contains

exactly ni eigenvalues of A.

The Gershgorin circles for Ln are

Cn
1 =

{
z ∈ C; |z − (λ − εk2

n)| ≤ θ + δ
}

,

Cn
2 =

{
z ∈ C; |z − (λ − εk2

n)| ≤ θ
}

,

Cn
3 =

{
z ∈ C; |z − (−δ − k2

n)| ≤ λ + θ
}

.

Since we assume that λ, θ and δ are nonnegative, we can omit the absolute value signs.

Lemma 2.3. If Cn
3 ⊂ {z ∈ C; Rez < 0} and Cn

1 ∩ Cn
3 = ∅, then Ln has at least

one negative real eigenvalue.
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Proof. Obviously, Cn
2 ⊂ Cn

1 holds. If Cn
1 ∩ Cn

3 = ∅, then the disjoint components
of the union of the Gershgorin circles of Ln consist of two circles. One contains two
circles and the other contains only Cn

3 . As we assume Cn
3 ⊂ {z ∈ C; Rez < 0}, the

eigenvalue contained in Cn
3 must be negative real value.

Lemma 2.4. Cn
3 ⊂ {z ∈ C; Rez < 0} and Cn

1 ∩ Cn
3 = ∅ if and only if

λ + θ < δ + k2
n(2.8)

2θ < (1 − ε)k2
n(2.9)

Proof. The proof is straightforward. Cn
3 ⊂ {z ∈ C; Rez < 0} if and only if

−δ − k2
n + λ + θ < 0.

Hence we obtain λ + θ < δ + k2
n.

Cn
1 ∩ Cn

3 = ∅ if and only if

−δ − k2
n + λ + θ < λ − εk2

n − θ − δ.

This is equivalent to 2θ < (1 − ε)k2
n.

If (2.8) and (2.9) are satisfied, then Ln has at least one negative eigenvalue in Cn
3

and the other eigenvalues are in Cn
1 .

Next, we consider the extremal values of φn(µ). If the minimal value is positive,
then φn(µ) = 0 has a pair of complex conjugate roots.

dφn

dµ
= 3µ2 − 2(trLn)µ + cn

= 3µ2 + 2(δ − 2λ + (1 + 2ε)k2
n)µ

+ (ε2 + 2ε)k4
n + 2(δε − ελ − λ)k2

n + λ2 + θ2 − δλ.

The discriminant of dφn/dµ, ∆1, is given by

∆1 = (1 − ε)2k4
n + 2(1 − ε)(δ + λ)k2

n + δ2 + λ2 − δλ − 3θ2.

The condition (2.9) gives

∆1 > 4θ2 + 2(1 − ε)(δ + λ)k2
n + δ2 + λ2 − 2δλ + δλ − 3θ2

= θ2 + 2(1 − ε)(δ + λ)k2
n + (δ − λ)2 + δλ > 0.

Hence dφn/dµ = 0 has two distinct real roots µ±:

µ± =
1
3

(
trLn ± ∆

1
2
1

)
.
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In other words, φn(µ) has the maximal and minimal values. Here remark that

(2.10) ∆1 <
{
(1 − ε)k2

n + δ + λ
}2

.

The minimal value φn(µ+) is given by

φn(µ+) = −det Ln +
cn

3
trLn − 2

27
(trLn)3 − 2

27
∆

3
2
1 .

The inequality (2.10) gives

φn(µ+) > −det Ln +
cn

3
trLn − 2

27
(trLn)3 − 2

27
{
(1 − ε)k2

n + δ + λ
}3

=
1
3

{
(1 − ε)(2θ2 − δλ)k2

n − δλ2 − δ2λ + (2λ − δ)θ2
}

=
1
3

[{
2λ − δ + 2(1 − ε)k2

n

}
θ2 − δλ

{
δ + λ + (1 − ε)k2

n

}]
.

Regard the right-hand side as a quadratic function of θ. Assume

(2.11) 2λ − δ + 2(1 − ε)k2
n > 0.

Let

θ̃0 =

√
δλ {δ + λ + (1 − ε)k2

n}
2λ − δ + 2(1 − ε)k2

n

.

If θ > θ̃0, then φn(µ+) > 0. φn(µ) = 0 has a pair of complex conjugate roots. Especially,
θ̃0 is a monotonically decreasing function with respect to kn. If the inequality holds for
n = 1, then φn(µ) = 0 has a pair of complex conjugate roots for any n ≥ 1.

Let µ1,n, µ2,n and µ3,n be three eigenvalues of Ln. Suppose µ1,n < 0 and µ2,n =
¯µ3,n. The coefficient cn in φn(µ) satisfies

cn = µ1,nµ2,n + µ2,nµ3,n + µ3,nµ1,n

= 2µ1,n(Reµ2,n) + |µ2,n|2.

Since we have µ1,n < 0, cn < 0 implies Reµ2,n > 0. We give a sufficient condition for
cn < 0. Regard cn as a quadratic function of k2

n and consider its discriminant ∆2.

∆2 = (δε − ελ − λ)2 − (ε2 + 2ε)(λ2 + θ2 − δλ)

= −(ε2 + 2ε)θ2 + δ2ε2 + λ2 − δλε2.

Let

θ2
1 =

ε2(δ2 − δλ) + λ2

ε2 + 2ε
.

If ε > 0 is sufficiently small, we can choose θ2 < θ2
1. Then we obtain ∆2 > 0 and the

quadratic equation

cn(ξ) ≡ (ε2 + 2ε)ξ2 + 2(δε − ελ − λ)ξ + λ2 + θ2 − δλ = 0
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has two distinct real roots:

ξ± =
1

ε2 + 2ε

(
−δε + ελ + λ ± ∆

1
2
2

)
.

If ξ− < k2
n < ξ+ for n ∈ N, then cn < 0. Hence we get Reµ2,n > 0 under the assumption.

It is easy to check that ξ+ − ξ− is monotonically decreasing with respect to small ε and
ξ+ − ξ− → ∞ as ε → 0. In addition,

ξ− =
λ2 + θ2 − δλ

−(δϵ − ϵλ − λ) + ∆
1
2
2

→ λ2 + θ2 − δλ

2λ
as ε → 0.

Furthermore, we can get ξ+ → ∞ as ϵ → 0. Therefore ξ− < k2
n < ξ+ can be realized

for sufficiently small ε.
Therefore we get the following theorem:

Theorem 2.5. Let λ, θ, δ > 0 and 0 < ε < 1. If the following four inequalities
hold for an integer n, then Ln has a negative eigenvalue and a pair of complex conjugate
eigenvalues:

λ + θ < δ + k2
n(2.12)

2θ < (1 − ε)k2
n(2.13)

2λ − δ + 2(1 − ε)k2
n > 0(2.14) √

δλ {δ + λ + (1 − ε)k2
n}

2λ − δ + 2(1 − ε)k2
n

< θ(2.15)

Furthermore, under the above assumptions, if ε is sufficiently small, then Ln has a pair
of complex conjugate eigenvalues with positive real part.

Remark. If the inequalities hold for n = 1, then Ln has a negative eigenvalue
and a pair of complex conjugate eigenvalues for n ≥ 1. Especially, it should be noted
that even if the real part of 0-mode eigenvalue is negative (2λ < δ), then that of n-mode
can be positive for some n ≥ 1. This implies that the wave instability occurs.

Remark. The conditions (2.12)-(2.15) can be understood as follows. (2.12) means
that the transportation rate between sol and gel is needed to be sufficiently large, and
higher modes helps it. (2.14) means that if flow in the tube and effects of higher modes
are sufficiently large, then it is possible to destabilize the homogeneous steady state.
(2.13) and (2.15) implies that the frequency of local oscillators should be contained in
some appropriate range determined by the effects of transportation, flow and higher
modes.



Mathematical analysis to coupled oscillators system with a conservation law 137

Remark. If Du = Dv = Dw = d > 0, the problem is very easy. The eigenvalues
of Ln are given by

µn = −dk2
n,

1
2

(
2λ − δ − 2dk2

n ±
√

δ2 − 4θ2
)

.

According to the monotonicity of the eigenvalues of Laplacian, 0-mode is the most
unstable. Therefore, in this case, wave instability does not occur as the first bifurcation.

Remark. The same result holds when we impose the periodic boundary condi-
tions. Let Ω be the set

∏n
j=1(0, Lj) ⊂ Rn, Lj > 0. We denote by Γj , Γj+n the following

faces of Γ = ∂Ω:

Γj = Γ ∩ {xj = 0} , Γj+n = Γ ∩ {xj = Lj} , j = 1, 2, . . . , n.

Consider the eigenvalue problem

(2.16)


∆ψ = λψ, in Ω,

ψ|Γj = ψ|Γj+n , j = 1, 2, . . . , n

∂ψ

∂xj

∣∣∣
Γj

=
∂ψ

∂xj

∣∣∣
Γj+n

.

The eigenvalues and eigenfunctions are well known in this case[9]:

(2.17)



λ0 = 0, ψ0 =
1√
|Ω|

, |Ω| = L1 · · ·Ln,

λk = −4π2

(
k2
1

L2
1

+ · · · k2
n

L2
n

)
,

ψk =

√
2
|Ω|

cos 2π
kx

L
, ψ̃k =

√
2
|Ω|

sin 2π
kx

L
,

where k ∈ Nn and kx/L = k1x1/L1 + · · · + knxn/Ln. Therefore we obtain a monoton-
ically decreasing sequence of eigenvalues from zero to −∞ as in the case of Neumann
boundary conditions.

§ 3. Numerical simulations

In this section, we briefly show the results obtained by numerical simulation. The
system (1.3) with zero-flux boundary condition was solved numerically in one spatial
dimension using a explicit finite difference method. To calculate the eigenvalues of each
matrix Ln, we employed the QR method.



138 T.Miyaji, I.Ohnishi, R.Kobayashi and A.Takamatsu

We have already known that the eigenvalues of Ln are one negative and a pair of
complex conjugate. Therefore we focus on the real parts of the complex eigenvalues µn

to study the bifurcation structure.
The constant θ is supposed to be θ = 1.
Figure 1 shows each Hopf bifurcation curve(Reµn = 0) for corresponding Fourier

mode in the parameter space (δ, λ) for some fixed ε. Here ε is the diffusion coefficient
of u and v. Small ε leads to spatially non-uniform Hopf bifurcation, that is, wave
instability. If ε is chosen smaller, then the higher Fourier mode becomes unstable as the
first bifurcation. Hence it can be said that fast diffusion of w plays an important role
for the emergence of the wave instability in (1.3). As shown in Figure 1, each of Hopf
bifurcation curves can intersect. These intersections imply wave-wave interactions.

Figure 2 shows each Hopf bifurcation curve(Reµn = 0) for corresponding Fourier
mode in the parameter space (δ, ϵ) for some fixed λ. Reµ0 is positive in the left region
of the vertical line and negative in the right. Reµn is positive in the lower region of each
slope and negative in the upper region. This figure also suggests that fast diffusion of
w (small ϵ) and effective transportation between gel and sol (large δ) are crucial for the
wave instability.

Figure 3 shows the behavior of the most unstable mode number as ε → 0. The
parameters are chosen so that Reµ0 = 0. At ε = 1, 0-mode eigenvalue is the most un-
stable. However, the most unstable mode number changes successively as ε approaches
to zero.

Figure 4 shows stable standing wave solutions. The 2-mode standing wave solu-
tion is very similar to peripheral phase inversion behavior of plasmodium. Of course,
standing waves with different wave-length can be observed for corresponding param-
eters. Furthermore, spatio-temporal patterns arising from the interaction between
wave instabilities of different modes can be observed (See Figure 5). It will take the
form Re (z1 exp(iω1t) cos(πx)ϕ1 + z2 exp(iω2t) cos(2πx)ϕ2) at the linear approximation,
where iω1 and iω2 are critical eigenvalues corresponding to 1-mode and 2-mode eigen-
functions cos(πx)ϕ1, cos(2πx)ϕ2, respectively. Remark that we do not only need linear
stability analysis, but also nonlinear analysis such as center manifold reduction in order
to understand bifurcation structure.

§ 4. Discussion, Conclusion, and Future works

In the system (1.3), the wave instability plays a central and crucial role for pattern
formation. It turned out the pattern like peripheral phase inversion to be naturally
included in the system. In addition, the system can exhibit many other spatio-temporal
structures. Therefore, from the viewpoint of our study, we can interpret the work in
[10] as follows: To understand the behavior of the plasmodium system mathematically,
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Figure 1. Hopf bifurcation curves in (δ, λ)-plane. Parameter: ε = 0.01(left),ε =
0.0001(right).

Figure 2. Hopf bifurcation curves in (δ, ϵ)-plane. Parameter: λ = 0.25(left),λ =
0.005(right). The curves corresponding to Reµn = 0 for n = 0, 1, 2, 3 are drawn. The
vertical line is 0-mode curve. Horizontal lines are 1-mode, 2-mode, and 3-mode from
upper to lower, respectively, which incline toward lower right.

they crushed the structures in which the solution did not behave like the plasmodium
system of Physarum polycephalum by considering spatially dependence of coefficients
naturally. As a result, they succeeded to construct the mathematical model which was
better to reproduce behavior of the plasmodium system cleverly.

In this study, Du = Dv is assumed. If Du ̸= Dv, the Turing instability might be
caused. In [11], they study the pattern formation arising from the interaction between
Turing and wave instability in 3-component oscillatory reaction diffusion system. Their
system does not satisfy any conservation law. In the future, we would like to consider
that how different the structure of bifurcations is ? On the other hand, the homogeniza-
tion of the synchronized oscillation cluster size, which has been already mentioned in §1,
is another mathematically interesting problem. We try to make this be a mathematical
result.
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Figure 4. Stable standing wave solutions. The left is 2-mode oscillation for
(λ, θ, δ, ε) = (0.005, 1, 1, 0.001). The right is 3-mode oscillation for (λ, θ, δ, ε) =
(0.0004, 1, 1, 0.000003)

§ 5. Three oscillators system with D3 symmetry

Equations. In this section we study a coupled oscillator system with three oscillators
in ring, as in Figure 6. We consider the following system:

(5.1)



dui

dt
= λui − θvi + δwi − (ui − αvi)(u2

i + v2
i ) + ε(ui+1 + ui−1 − 2ui),

dvi

dt
= θui + λvi − (αui + vi)(u2

i + v2
i ) + ε(vi+1 + vi−1 − 2vi),

dwi

dt
= −λui + θvi − δwi + (ui − αvi)(u2

i + v2
i ) + Dw(wi+1 + wi−1 − 2wi),

where i = 0, 1, 2 and the indices are taken mod 3. The coupling strengths ε and D

are non-negative. Let the ratio between two coupling strengths be r = ε/Dw. Assume
Dw = 1 throughout this paper. The parameter α is an amplitude dependency on phase
velocity. We will consider the two-parameter bifurcation in (r, α). If r is near 1, as
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Figure 5. Mode interaction between 1-mode and 2-mode.

we shall see later, the system shows in-phase oscillation(U0 = U1 = U2). However, if r

becomes sufficiently small, nonuniform oscillation occurs. Then local oscillators (ui, vi)
are coupled very weakly or are not coupled directly, and the fast diffusive variables wi

mediate the coupling between local oscillators. It corresponds to the situation in which
each cell of plasmodium is coupled by the tube.

The individual oscillators are denoted by column vector Ui = (ui, vi, wi)t. Then
the system (5.1) is written in matrix form as follows:

(5.2)
d

dt
Ui = ΛUi + F (Ui) + K (Ui+1 + Ui−1 − 2Ui) ,

where the matrix Λ and the function F are given by (2.2) and K = diag(ε, ε,Dw) is a
diagonal matrix.

Obviously, the sum
∑

(ui + wi) is conserved throughout the time-evolution. We
assume

∑
(ui + wi) = 0. Then (5.1) has a trivial equilibrium point U0 = U1 = U2 = 0.

Figure 6. A ring of three oscillators.

Hopf bifurcation of trivial equilibrium point. First, we consider the Hopf bi-
furcation of trivial equilibrium point. We are assuming that the coupling of oscillators
is symmetric, that is, invariant under interchanging the oscillators. Therefore the entire
system has D3 symmetry.
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Consider the discrete Fourier transform

Ûk =
1
3

2∑
k=0

UjW̄
jk, k ∈ Z,

where W = e
2πi
3 and hence W̄ = e−

2πi
3 . Ûk is the oscillatory component of Uj with

wave number k. Û0 is a spatially uniform component, and Û1, Û2 correspond to spa-
tial patterns. The linearized equation of (5.1) about the trivial equilibrium point is
decomposed into that of each oscillatory component,

dÛ0

dt
= ΛÛ0,

dÛ1

dt
= (Λ − 3K)Û1,

dÛ2

dt
= (Λ − 3K)Û2.

Theorem 4.1 from Chap.XVIII in [4] provides a list of possible oscillatory patterns.
When (5.1) undergoes the Hopf bifurcation, either of the following two cases occurs:

1. The Hopf critical eigenvalues arise from the matrix Λ, and in-phase oscillation
occurs.

2. The Hopf critical eigenvalues arise from the matrix Λ − 3K, and it gives rise to
three branches of symmetry-breaking oscillations:

• rotating(R): the solution’s trajectory is invariant under rotation,

• partial in-phase(PI): two of three oscillators are synchronized with same phase,

• partial anti-phase(PA): two of three oscillators are synchronized with anti-
phase.

Because the matrices Λ and Λ − 3K correspond to L0 and L1 defined by (2.6) with
k2
1 = 3, we can apply Theorem 3 in §2. Therefore, if ε is sufficiently small, the second

case does occur. In this case, each oscillator is inactive, that is, each oscillator does not
have limit cycle when there is no coupling.

Inactive case. Next, we consider the inactive case (2λ < δ). The parameters are set
as

λ = 0.01, θ = 1.0, δ = 0.025.

We follow the branches of periodic solutions by using of AUTO. Figure 7 is a two-
parameter bifurcation diagram. In region E, trivial equilibrium point is stable. It
undergoes the Hopf bifurcation at r ≈ 0.00291 and three branches of solutions occur. R
is stable while PI and PA are unstable. This Hopf bifurcation points are irrelevant to α.
On the curve shown in figure, rotating solutions undergo torus bifurcation. In region N,
the system shows non-periodic oscillations. Note that this diagram is incomplete. Figure
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Figure 7. A two-parameter bifurcation diagram for (λ, θ, δ) = (0.01, 1.0, 0.025). In
region E, trivial equilibrium point is stable. The vertical line near r = 0.00291 is the
Hopf bifurcation points. In most part of region R, the rotating solutions are stable. On
the curve shown in figure, it undergoes torus bifurcation. In region N, the system shows
non-periodic oscillations.

7 shows only bifurcations of rotating solution. However, as shown in [5], secondary Hopf
bifurcation of partial anti-phase could be important. In fact, it is possible to observe the
coexistence of periodic and non-periodic oscillation in region R near the torus bifurcation
curve. It might be caused by secondary Hopf bifurcation of PA or PI. Figure 8 shows a
time series of rotating solution for α = 0.0 and Figure 9 is that of unstable PA and PI.
Figure 10 shows a non-periodic orbit for α = 2.0.

Active(self-oscillating) case. Next, we consider the active case(2λ > δ), that is,
each element has a limit cycle even if there is no coupling. The parameters are set as

λ = 0.04, θ = 1.0, δ = 0.025.

In this case, if r is large, each oscillator tends to in-phase synchronization. For example,
if we fix r = 1 and increase λ from 0, the first case of D3 symmetric Hopf bifurcation
occurs at λ = δ/2. Or, as shown in [3], if the coupling matrix K is proportional to
the identity matrix and the local oscillator gives periodic solution, then the uniform
oscillation is stable. As r decreases, the synchronous state loses its stability. Figure 11
shows some orbits observed in active case. If α = 0, the stable in-phase synchronized
state loses its stability at r ≈ 0.0036. This critical value decreases as the parameter α

increases. Figure 12 shows the bifurcation points of synchronized state. It is obtained
by following the synchronized solution for each fixed value of α by AUTO.

Conclusion We have presented a partial result of the bifurcation structure of three-
oscillator system with conservation law. In inactive case, three non-uniform oscillatory
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Figure 8. Time series of a stable rotating solution for (λ, θ, δ, α) = (0.01, 1.0, 0.025, 0.0).
The values of u0, u1 and u2 are indicated. The period of each oscillator is T ≈ 6.3 and
the phase difference is about 2.1.
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Figure 9. Time series of unstable solutions for (λ, θ, δ, α) = (0.01, 1.0, 0.025, 0.0). The
values of u0, u1 and u2 are indicated. Left:partial-anti-phase. u0 and u1 are anti-phase
and u2 is in death-mode (u2 = 0). Right:partial in-phase. In this figure, u1 and u2 are
in-phase.
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Figure 10. Time series of a non-periodic orbit for (λ, θ, δ, α) = (0.01, 1.0, 0.025, 2.0).
The standard Euclidean norms of vectors U0, U1 and U2 are indicated.
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Figure 12. The bifurcation points of synchronized state in (r, α)-plane. “STABLE” and
“UNSTABLE” means the stability of synchronized states.

patterns bifurcate at the Hopf bifurcation point. It is derived from the group theoretical
bifurcation theory as shown in [4] and is also understood as an analogy of the symmetry-
breaking induced by wave instability in our reaction-diffusion system with conservation
law. Further bifurcations of these patterns lead to non-periodic oscillation.

It is expected that the result similar to the case of three repulsively coupled Stuart-
Landau equations studied in [5] is obtained. The switching behavior is understood as
a chaotic itinerancy which shows chaotic transitions among low dimensional ordered
states. In that paper, they have clarified a bifurcation scenario which generates inter-
mittent switching behavior. In inactive case, they have observed the following route
to chaos: trivial equilibrium → partial anti-phase → S2 torus → S3 chaos, where S2

torus is an attractor corresponding to quasi-periodic motion and it is invariant under
permutation by S2 group action. S3 chaos is a chaotic attractor invariant under per-
mutation by the action of S3. In active case, the route consists of two parts: the first
part is the creation of chaotic attractor through the period-doubling cascade:S2 torus
→ S1 torus S1 chaotic attractor. The second part is two successive attractor-merging
crises: S1 chaotic attractor → S2 chaotic attractor → S3 chaos. However, our result for
three-oscillator system is incomplete. We have observed the occurrence of symmetry-
breaking oscillation by equivariant Hopf bifurcation, and non-periodic orbit after the
destabilization of rotating wave. Although these solutions may be the first part of route
to S3 chaos, we need a more detailed analysis from both mathematical and numerical
viewpoints.

To understand the switching behavior in the biological coupled oscillator system, we
might have to propose a more appropriate mathematical model. In (5.1), each oscillator
consists of three variables and the coupling with other oscillator is mediated by wj ,
which has large coupling constant and it corresponds to tube structure of Physarum.
This third variable enables the occurrence of spatially non-uniform oscillation although
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each oscillator is diffusively coupled. Since each oscillator is diffusively coupled, it seems
attractive coupling. However, the fast component w makes the system behave like a
repulsively coupled Stuart-landau equations. It results in spatially non-uniform stable
oscillations. The character that the variable with fast diffusion mediates the coupling
is essential.
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