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lVVEL:L~JPOSEDI'JESS FOR QUADRATIC l\JONLINEAR 
SCI-][RCJ;DING-ER EQUATIONS 

1. INTRODUCTION 

This is a short review of the result obtained in the paper [6], which is 
vvith Nobu Kishimoto. 

Vve consider the 

1) 

of 

= N(u), (t, 

::c E R 
E [0, >< JR., 

work 

where unknuwn function u is valued and 
to prove the tirne local of 1) with low 

or uu. Our aim is 
initial data. 

V/e first assume that u0 E JP and recall the known results. [2] intro-
duced the Fourier restriction norm defined belmv to 
and the nonlinear 

llullxs,b = II 
\rvhere ( ·) = l + I - I and u is the Fourier transform of tl with to t and .T. 

Pcmce 1u1d [4] this method and obtained the time local well-
r-'u-oc'-n"'='"·" of 

IIIV(tt) / 'r-(11''11 2 :::=::: \J UJ ~ys,b· 

N Takaoka and Tsutsumi [7] 
with JV(u) = and uu for s:::; -3/4, s:::; 
means that we can not Ponce and 
Fourier restriction norm_ method. 
[1] introduced a modified Fourier 
of solutions of (Ll), the of u is in { 

and tl satisfies (1.1), to obtain the time local 
for s 2': -1. "Vilhen N (u) = , the 

n ...... -w-..ar+u does not hold. Kishimoto 
1--''~•ocouLL'G•""' of (L 1) vv-ith N ( u) for s 2': -1 a modified Fourier 

restriction norm vv-ith functions. The case N (u) = uu is 
different from the cases For the data-to-solution map 

overcome this 
Uo E Hs,a_ 

and JV(u) = uu. This 
to low To 
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Put 

where 

:KoTARO TSUGAVl_A_ 

E 

denotes the dual space of 

E 

11\f 
iEiatliP, 

< 

= 0 for every multi-index 

the standard Fourier restriction norm method to time local we1l-
~-'""'"''~""'J"" of ( 1.1) with = 'UU in Frs,a, vve need the bilinear estimate 
with b 2: 

< (-,11"11 2 _::::: \._./ u xs,a,b 

where 

(1.3) II II II 'C\s-a 
U _ys,a,b == \~/ 

Put 
l ,, -1 

C' - ) ~, 
,c,} -l 0, 

I~- JVI < 1 and IT- I < 1, 

and let N E N be we have 

where yJ A denotes the characteristic function of the set A and 
dimensions j\f ;< N- 1 centered at the vv-ith side 
direction. It follows that 

R.J-I.S. (1.2) s: 

> L.J-LS'. r 
J 

(T,o 
1/2 

(1 fails for any and b 2: 
To overcome this cw_uc.u"" function dei1necl in 1) instead of 

and introduce modified Fourier restriction norms zs,a and 
ys,a (see, Section 2) and prove nevv bilinear estimates 3. l) to obtain 
the time local result. 

Theore1n > a > (1.1 i with 
JV(u) = uu is time 

Remark 1.2. Since I:r" C J-p,a when a 2: 0, vve hgve the existence of the solution for 
·u0 E I-fS with s > -1/2 Theorem Ll. However, the solution is not in FJB 
for any t > 0 'Nhen -1/4 > s > -1/2. 

In Section 2, v;e some notations and lenunas. In Section 3, 
we prove the main estimates. The of Theorem Ll follovvs frmn a standard 

and these estimates (see, e.g. [51). we omit the 
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2. NGTATIOI'TS AND PRELIIvHNARY LEM1vfAS 

this paper C > 0 denotes various constants. The notation P < Q 
denote the estimate P .S 

Put 
Vve uss _p ~~ Q to denote P .:S Q ;S P. 

={ 

= {(T,~) E 

and 

1) I~) 

IIT
IIT-el 

< m-;,d 1~1 2 

> 1<;1/4 OT ~~~ < ll, 

I 
'j ( T ~-·) r:= P . 'c; ~ "2· 
' 

l';fote that 

'~iVe define function spaces zs,a and ys,a 

'07here 

Put 

zs,a == E 

ys,a = { lL E 

llulfzs,a = 

{ I ,., .- 11112 II = \T, <:;) t: Jl\\. T -i 
( 
j 

'~) == l 

llullzsa = 

> 

llllLIIzs,a < 

lllullys,a < 

/4 or 

, -0 and llullzs,o llullzs,a. 

!y- P) I ., 

< 1}, 

lemrm:B are basic tools of the Fourier restriction norm method. 

Lerr1111.a 2.1 ~ Let 0 :::; p s; 
all a, bE[~; 

a) 

p + q > . Then the estimate 

-b) -q dT ;S - b)-T 

whe-re T = p- [1-
if)\< 

Tecall that [).]+ = ), if)., > 0, = c > 0 if A = 0 and= 0 

For the of this see Lemma 4.2 in [3]. 
For a subset n c , we define the characteristic function Xn as 

c r 1, for 
' ' 71' E n 

, ~1 T1, { 

for tJ_ n l 0 J Tl, ' 

165 
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and put 

Lenr1ma 2. 2. If 

OT 

hold 

OT 

hold 

meu.sumble 

sup 
~1 

measumble 

For the 

Let PJ = Jl 
a variant of the 

KOTARO TSUGAWA 

v) := 

w1, w 2 and w3 on , then we have 

?J) II < 

(T 
. ' 

08C'G10l1 d lll j . n " 0 · ['"] 

and (-, ·) L2 be the inner in L 2 The 

Lemma 2.<L (i) Let b1 + b2 + b3 > 
we have 

(2.2) 

on b2 and b3 . 

;Sl 

(ii) Let s1 + s2 + s3 > s1 + 82 2 0, .s2 + 3s 2 0 and 83 + s1 2: 0. 

(2.6) ((Pd) 

wheTe the constants 

on s1 , s2 and s3. 
we have 

< 1 11f.la ·"-' I " 

~ lll~la II[L~ 1\ 

~II .fllnll 
' 

on a. 

llhiiL2, 
I; 

~~~~~~afii[L~' 

len1n1a is 

we have 
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Proof. By the Plancherel theorem, the Holder inequality and the Young inequality, 
we have 

(fg, h) £2 "' \f * 9, hh2 ;S llfiiLvlii9IILv2llhiiLv3 
X " " " " 

:S II(~- a) -h IILql II(~- !3) -b211Lq211 (~- ry) -b3ll£q3 
" " " x II(~ - a) b1J1IL2II (~ - (3) b29iiL2 (~ - "!) b3hiiL2, 
" " " 

for any 1 :::; Pj :::; 2 and 2 :::; qj :::; oo satisfying 1/Pl + 1/pz + 1/P3 = 2 and 
1/% + 1/2 = 1/Pj· Since b1 + bz + b3 > 1/2 and 1/ql + 1/qz + 1/q3 = 1/2, we can 
take qj such that % > 1/bj for bj > 0 and qj = oo for bj = 0. Thus, we obtain (2.2). 

For the proof of (2.3), we can assume s1 ~ s2 ~ s3 without loss of generality. 
Since the case s3 ~ 0 follows from (2.2), we only need to show the case s2 ~ 0 > s3 . 

By using the triangle inequality (~) :::; (6) + (~- 6) and the Plancherel theorem, 
we have 

(fg, h)L~ rv\ J !(~- 6)9(6) d6, h(~))Lt 

:S\ J !(~- 6)(6)-839(6) d6, (~) 83h(~))Lt 

+ \ J (~- 6)-83 !(~- 6)9(6) d6, (~) 83h(~))Lt" 
Therefore, this case also follows from (2.2). 

167 

By the Plancherel theorem, the Holder inequality and the Young inequality, we 
have 

Since IINIIL~:::; 111~1-aiiLt(-l,l)lll~lafiiL~ ;S lll~lafiiLt' we obtain (2.4). 
For the proof of (2.5), we can assume a~ 0 without loss of generality. From (2.4), 

we have 

((Pzf)(Pzg), hh~ ;S Ill~ Ia l11L~ ll_p;giiLt llhiiL~· 

Since 11P;g11L~:::; lll~l-a911Lt' we obtain (2.5). 
For the proof of (2.6), we can assume a~ 0 without loss of generality. From the 

Plancherel theorem, we have 

((Pzf)(Pzg), Pzh) L~ "-' \ J PzJ(~- 6)P;g(6) d6, M(O) Lt" 

Since max{!~- 6la, l61a} ~ l~la, (2.6) follows from (2.4). D 

From this lemma, we obtain the following space time estimates. 

Proposition 2.5. Let b1 + b2 + b3 > 1/2, b1 ~ 0, b2 ~ 0, b3 ~ 0 and i, j, k = 1 or -1. 
(i) Moreover, we assume that s1 + s2 + s3 > 1/2, s1 + Sz ~ 0, Sz + s3 ~ 0 and 
s3 + s1 ~ 0. Then, we have 

(fg, h)L2 
t,x 

::s 11 \~) 81 \T-ie) h 111£2 11 \~) 82 \T- je) b2:YIIL2 11 \~) 83 \T- ke) b3hiiL2 • 
r,t; r,!; r,t; 

(2.7) 



168 KOT ARO TSUGA W A 

(ii) Moreover, we assume -1/2 <a< 1/2. Then, we have 

\(Pzf)g, hh2 
t,x 

:s lll~la\T-ie)b1 1IIL2 II\T-je)b2:9IIL2 11\T-ke)bahll£2, r,e r,e r,e 
(2.8) 

(2.9) 
\(Pzf)(Pzg), hh2 

t,x 

:S lll~la\T- ie)b1 111£2 111~1-a\T- je)b2:911£2 11\T- ke)bahll£2 , 
r,~ r,~ -r,,; 

\ (Pzf)(Pzg), Pzh) £2 
t,x 

:S lll~la\T- ie) bl 111£2 lll~la\T- je) b2:9IIL2 111~1-a\T- ke) bahll£2 . r,e r,e r,e 
(2.10) 

Proof. Fix~' 6 E JR. Then, from (2.2), we have 

J J(T1,6)g(T- T1,~- 6)h(T,~) dT1dT 

:SII \· - i~?) bl J(., 6) liP II\- - j(~- 6)2 ) b2 :9(-, ~- 6) liP II\· - ke) bah(-, 011£2 
where implicit constant does not depend on ~' 6. Therefore, the left-hand side of 
(2.7) is bounded by 

j II\· - i~i) bl J(., 6) 11£211 \· - j(~- 6?) b2 :9(·, ~- 6) liP II\· - ke) bah(-,~) 11£2 d6d~, 
which is bounded by the right-hand side of (2.7) by (2.3). In the same manner, 
(2.8)-(2.10) follow from (2.2), (2.4)-(2.6). 0 

3. BILINEAR ESTIMATES 

Proposition 3.1. Let 0 > s ~ -(2a + 1)/4 and 1/2 > a > -1/2. Then the 
following estimates hold; 

(3.1) IIF-1 \T- e) -1uvllzs,a ;S llullzs,a llvllzs,a, 
(3.2) IIF-1 \T- e)-1uvllys,a ;S llullz•,allvllzs,a. 
Moreover, the same estimates hold with uv replaced by uv or uv. 

We prove only the case uu because the case uv and uv are easier. 

Proof. We first consider (3.1), which is equivalent to 

IIF-1 \T- e) -1uvllzs,a ;S llullzs,a llvllzs,a. 
Put 

for i, j, k = 1 or 2. Then, we have 

Brrt4(u, v) = L Bni,j,k(u, v). 
i,j,k 

Therefore, we only need to show 

(3.3) 
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withD = Di,j,dor i,j, k = 1 or 2. Put Mr = max{IT-el, IT-Tr-(~-6)21, ITr+~il}. 
Then, we have the following algebraic property; 

which plays an important role in our proof. 
(a-1) We prove that Dr,l,l is empty. If Mr = IT- el and (T,~) E Pr, then 

21~61/3::; Mr ::; 1~1/4. Therefore, we have 161 ::; 3/8, which contradicts (Tr, 6) E 

Qr. If Mr = ITr + ~il and (Tr, 6) E Qr, then 21~61/3 ::; Mr ::; 161/4. Therefore, 
we have 1~1::; 3/8, which contradicts (T,~) E Pr. If Mr =IT- Tr + (~- ~1)21 and 
(T-Tr,~ -6) E Pr, then 21~61/3::; Mr::; I~ -61/4::; max{l~l, 161}/2. Therefore, 
we have 1~1 ::; 3/4 or 161 ::; 3/4, which contradicts (T, ~) E Pr and (Tr, 6) E Qr. 
Thus, we obtain (3.3) with D = D1,1,1. 

(a-2) (3.3) with D = D2,1,1 is equivalent to 

IW/ 112-al~la(T- e; -l/2+8 BnJu, v)ll£2 
' ' T,i; 

:S 11(08(T-e)uiiL2 ll(~)s(T+e)vll£2 . r,E r,E 

(3.4) 

We devide D2,1,1 into two parts; 

Ar = {(T,~,Tr,6) E D2,1,rll~l < 1}, 

A2 = {(T,~,T1,6) E D2,1,111~12 1}. 

From Lemma 2.2, (3.4) with D2,1,1 replaced by A1 can be reduced to 

J XA1 (6) -2sl~l 2a(~- 6) - 2s d d~ < 1 
~~b (TI + ~i)2(T- ~2)1-2s(T- TI- (~- 6)2)2 T "' . 

Since (M1) "' (~6) and (6) "' (~- 6) "' 161, from Lemma 2.1, the left hand side 
is bounded by 

J ~~~2al61-4s d < J ~~6~-4s-1 d < J IPI-4s-1 d < 1 
(M1)1-2s ~ "-' (~6 ~1-2s 161 ~ "' (p)l-2s P"' · 

Here, we put p = ~6 and used 2a 2 -4s- 1 and 1- 2s > -4s. 
From Lemma 2.2, (3.4) with D2,1,1 replaced by A2 can be reduced to 

J XA21~1(6J-28 (~- 6)-28 d de < 1 
sup 1-2s 2 2 2 Tr <,1 "' . 
T,~ (T- ~2 ) h + ~1 ) (T- T1- (~- 6)2) 

In the same manner as (a-1), it follows that M1 = (T- e)"' (~6) from (T- Tr, ~-
6) E Pr, (Tr,6) E Q1 and 1~1 2 1. Therefore, from Lemma 2.1, the left hand side is 
bounded by 

J (6)-2s(~- 6)-2s d < J (p)-4s d < 1 
(~6)1-2s(T-~2+ 2~6~2~~~ 6,.__, (p)l-2s(T-~2+ 2p)2 p,.__, · 

Here, we put p = ~6 and used 1- 2s 2 -4s. 
(a-3) (3.3) with D = D1,2,1 is equivalent to 

(3.5) ll(~)sBnJ.,v)ll£2 :S 11(~) 112-al~la(T-e) 1/2+s:UII£2 ll(~)s(T+e)vll£2. 
' ' T,i; T,i; T,i; 
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W/e devide into two 

E 11~-61<1}, 

E rh,2,1ll~ - E,1 

Since (E,) "' 
reduced to 

We devide 

and 

:S II 

(/:::-\ .. _, 

E 

E 

E 

E 

Since (~) rv (6) r~ (~ - 6) rv 1 m 
reduced to 

which follows from the 
Since 

reduced to 
'" 1 and 

1/2+s 

which follows from (2.8) in lJnYP()Sl"Glon 2.5. 
Since IT - 1 0-..' lfl 1 > ' (c - c \ 

':: r.._; ..L, \~ ~.L/ 

can be reduced to 

2.5. 

with 

1 I ~ r I -, < , ~- <;;1 2 

2: 1,1~-61 < 1}, 

with 

1 in (3.6) vvith 

I!(T + 

CBXl be 

Since - 1 1 - ( ~ - > 

can be 

can be 

Since and (1 - T1 - ( ~ - > ((- ll1 

ll(()suvll 

which follows from in 
We can prove (3.3) with 0 = 
We can prove (3.3) with 0 = 

2.5. 
in the same manner as 
in the same manner as 
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(a-7) Since (~) 8 :::; (T- e)s in n1,2,2, (3.3) with n = n1,2,2 can be reduced to 

II (T- e) 8 En-::;;;,, v) 11£2 
'' r,t; 

:s II(~) 112-al~la (T - e) 1/2+sull£2 II(~) 112-al~la (T +e) 112+sviiL2 . 
r,.; r,.; 

(3.7) 

We devide Q1,2,2 into three parts; 

A1 = {(T,~,T1,6) E n1,2,2ll~- 61 < 1/2,161;:::: 1/2}, 

A2 = {(T,~,T1,6) E n1,2,2ll~- 61;:::: 1/2, 1~1 < 1/2}, 

A3 = {(T,~,T1,6) E n1,2,2ll~- 61;:::: 1/2, 1~1;:::: 1/2}. 

(3. 7) with Q1,2,2 replaced by A1 or A2 follow from (2.8) in Proposition 2.5 and (3. 7) 
with Q1,2,2 replaced by A3 follows from (2.7) in Proposition 2.5. 

(a-8) (3.3) with n = n2,2,2 is equivalent to 

II(~) 112-al~la (T - e) - 1/2+s En-::;;;,, v) 11£2 
, ' r,t; 

:S 11(~) 1/2-al~la(T- e)1/2+sull£2 11(~) 1 /2-al~la(T + e)1/2+sviiL2 · 
r,.; r,.; 

(3.8) 

We devide Q2,2,2 into seven parts; 

A1 = {(T, ~, T1, 6) E n2,2,2ll~l < 1, 1~- 61 < 1/2, 161 < 1/2}, 

A2 = {(T,~, T1,6) E n2,2,2ll~l < 1, 1~- 61;:::: 1/2,161 < 1/2}, 

A3 = {(T, ~, T1, 6) E n2,2,2ll~l < 1, 1~- 61 < 1/2, 161 ;:::: 1/2}, 

A4 = {(T,~,T1,6) E n2,2,2ll~l < 1, 1~- 61;:::: 1/2,161;:::: 1/2}, 

A5 = {(T,~,T1,6) E n2,2,2ll~l;:::: 1, 1~- 61;:::: 1/2,161 < 1/2}, 

A6 = {(T,~,T1,6) E n2,2,2ll~l;:::: 1, 1~- 61 < 1/2,161;:::: 1/2}, 

A1 = {(T, ~, T1, 6) E n2,2,2ll~l ;:::: 1, 1~- 61 ;:::: 1/2,161 ;:::: 1/2}. 

(3.8) with Q2,2,2 replaced by A1 follows from (2.10) in Proposition 2.5, (3.8) with 
Q2,2,2 replaced by A2 or A3 follow from (2.9) in Proposition 2.5 and (3.8) with 
Q2,2,2 replaced by A4 or A5 or A6 follow from (2.8) in Proposition 2.5. Since 

(~) 1 /2-al~la(T- e) - 1/2+8 :::; (T- e)s in A7, (3.8) with n2,2,2 replaced by A7 can 
be reduced to 

II(T- e/uvll£2 :s 11(~) 112 (T- e)1/2+sull£2 11(~) 112 (T + e)1/2+svll£2 ) 
r,.; r,t; r,.; 

which follows from (2.7) in Proposition 2.5. 
We next consider (3.2), which is equivalent to 

IIF-1 (T- e) - 1uvllys,a :s llullzs,a llvllzs,a 

Because 

for n = n1,j,k with j, k = 1 or 2, we only need to show 

(3.9) 

for n = n2,j,k with j, k = 1 or 2. 
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Vve devide 

n· t'Jince 
reduced to 

sup 

Since 

we 
From Lemma 

Since 

sup 
~1 

< 

which follows from 
side is bounded 

for any E > 0. 
Forst= 

(b-4) For n = 

KOTAF.O TSUGAWA 

into two 

I(~ c T 
.l 1 '(,' 1 l 

{ 

E 

E 

I > 1. . f L 
,.0 ll1 Ar, TOl11 -emrna 

< 1}, 

with st = 

, from Lermr1~-' 2.1, the left hand side is bounded 

(T 

ltc.l-4s-l 1 
·~~_!_ < 

161 
--4s -- 1 and 2 > --4s. 

can be reduced to 

;:5 1. 

, from Lemma 2.1, the left hand side is bounded 

-1-

to 

-l/2+E 

we can prove the estir:.rmte in the same manner as 
need to show 

-1 v) 

< II(~) 112-a 11(0 -1-

can be 

which follmvs from !rOlJ,os.n;Jon 2.5 in the same manner 
side is bounded 

because the left-hand 

v) II 
for any c > 0. 

D 
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