
Title Constructing two-dimensional integrable mappings that possess
invariants of high degree (Expansion of Integrable Systems)

Author(s) TANAKA, Hironori; MATSUKIDAIRA, Junta; NOBE,
Atsushi; TSUDA, Teruhisa

Citation 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessatsu
(2009), B13: 75-84

Issue Date 2009-10

URL http://hdl.handle.net/2433/176807

Right

Type Departmental Bulletin Paper

Textversion publisher

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39302613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


RIMS Kôkyûroku Bessatsu
B13 (2009), 75–84

Constructing two-dimensional integrable mappings
that possess invariants of high degree

By

Hironori Tanaka∗, Junta Matsukidaira∗∗, Atsushi Nobe∗∗∗

and Teruhisa Tsuda†

Abstract

We propose a method for constructing two-dimensional integrable mappings that possess
invariants with degree higher than two. Such integrable mappings are obtained by making a
composition of a QRT mapping and a mapping that preserves the invariant curve of the QRT
mapping except for changing the integration constant involved. We show several concrete
examples whose integration constants change with period 2 and 3.

§ 1. Introduction

Integrable mappings have attracted much attention, and many studies have exam-
ined them from various viewpoints, such as integrability criteria (singularity confine-
ment property [1], algebraic entropy [2]) and geometric or algebraic description of the
equations [3–8].

In particular, second-order integrable mappings have been extensively studied, and
a number of significant properties have been obtained.

The QRT mapping introduced by Quispel, Roberts and Thompson in 1989 [9, 10]
is the 12-parameter family of second-order integrable mappings and is given by

(1.1) xn+1 =
f1(xn) − xn−1f2(xn)
f2(xn) − xn−1f3(xn)

,
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where fj(x) is defined by

(1.2)




f1(x)
f2(x)
f3(x)



 = A0




x2

x

1



 × A1




x2

x

1





with arbitrary symmetric 3×3 matrices

Ai =




αi βi γi

βi εi ζi

γi ζi µi



 , i = 0, 1.(1.3)

Mapping (1.1) possesses an invariant K = K(xn−1, xn) satisfying K(xn−1, xn) = K(xn, xn+1),
where K is a ratio of biquadratic polynomials of the form

K(x, y) =
α0x2y2 + β0xy(x + y) + γ0(x2 + y2) + ε0xy + ζ0(x + y) + µ0

α1x2y2 + β1xy(x + y) + γ1(x2 + y2) + ε1xy + ζ1(x + y) + µ1
.(1.4)

A generalization of mapping (1.1) has been proposed by Quispel, Roberts and
Thompson under the name “asymmetric.” It is an 18-parameter family of two-dimensional
mappings of the forms

(1.5) xn+1 =
f1(yn) − xnf2(yn)
f2(yn) − xnf3(yn)

, yn+1 =
g1(xn+1) − yng2(xn+1)
g2(xn+1) − yng3(xn+1)

,

where fj(x), gj(x) are defined by




f1(x)
f2(x)
f3(x)



 = A




x2

x

1



 × B




x2

x

1



 ,(1.6)




g1(x)
g2(x)
g3(x)



 = tA




x2

x

1



 × tB




x2

x

1



 ,(1.7)

with arbitrary 3×3 matrices A and B. Mapping (1.5) possesses an invariant K =
K(xn−1, yn−1) satisfying K(xn−1, yn−1) = K(xn, yn−1) = K(xn, yn), where K is a
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ratio of biquadratic polynomials of the form

K(x, y) =

(
x2 x 1

)
A




y2

y

1





(
x2 x 1

)
B




y2

y

1





(1.8)

=
a00x2y2 + a01x2y + a02x2 + a10xy2 + a11xy + a12x + a20y2 + a21y + a22

b00x2y2 + b01x2y + b02x2 + b10xy2 + b11xy + b12x + b20y2 + b21y + b22
.(1.9)

Since both symmetric and asymmetric QRT mappings constitute a multi-parameter
family of integrable systems and meet the criteria for integrability, such as singularity
confinement and nonzero algebraic entropy, they are the prototypical second-order inte-
grable mappings. However, whether the QRT mapping is the most general second-order
integrable mapping has not yet been clarified.

In [11], Hirota et al. investigated the integrability of third-order mappings and
proposed nine integrable cases. In a recent work [12], most of them turned out to be
compositions of two particular QRT mappings.

While investigating third-order mappings in [11], Hirota et al. have found a new
second-order integrable mapping [13]

(1.10) (xnxn+1 − 1)(xnxn−1 − 1) =
(xn − a)(xn − 1/a)(x2

n − 1)
p2x2

n − 1
,

which possesses a biquartic invariant
(1.11)

K(xn−1, xn) =
((xn − xn−1)2 − p2(xnxn−1 − 1)2)((xn + xn−1 − a − 1/a)2 − p2(xnxn−1 − 1)2)

(xnxn−1 − 1)2
.

As the invariant is not biquadratic but biquartic, this is not a QRT-type mapping. After
this discovery, Joshi et al. derived this type of mapping as reductions from integrable
lattice equations called ABS lattices and revealed that biquadratic invariants of QRT
type are in fact building blocks of the biquartic invariants [14]. Integrable mappings
that possess invariants of much higher degree have also been obtained [15].

§ 2. A discrete system that possesses a biquartic invariant

In this section, we start with the following second-order mapping:

(2.1) xn+1 =
1 − x2

n

xn−1
.
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Figure 1. A trajectory of a solution of Eq. (2.1) for x0 = 1.2, x1 = 1.2

Fig. 1 shows a solution of (2.1) in the phase plane. From this figure, we expect that
mapping (2.1) possesses an invariant that is the product of two invariants of certain
mappings. In fact, this is true. The invariant of (2.1) is given by

(2.2) L(xn−1, xn) =
(

x2
n−1 + x2

n − 1
xn−1xn

)2

,

which is biquartic and is also the square of a biquadratic,

(2.3) K(xn−1, xn) =
x2

n−1 + x2
n − 1

xn−1xn
.

Two closed smooth curves in the phase plane are given by K(xn−1, xn) = κ and
K(xn−1, xn) = −κ, where κ is a constant determined by an initial condition of (2.1).
From the conservation of K(xn−1, xn) = K(xn, xn+1), we find the QRT mapping

(2.4) xn+1 =
−1 + x2

n

xn−1
.

Also, from K(xn−1, xn) = −K(xn, xn+1), we find (2.1). This kind of conservation
has been studied by Joshi et al. in [14]. They have found that integrable mappings
possessing invariants of high degree are derived from QRT invariants using this kind
of conservation, although explicit direct relations between the newly derived mappings
and the QRT mappings were not given.

Comparing (2.1) with (2.4), we notice a similarity between the two systems, which
reflects a symmetry of K(xn−1, xn).
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Let us consider the involution σ : (x, y) #→ (−x, y) and the QRT mapping ϕ :

(x, y) #→
(

y,
−1 + y2

x

)
. From the composition of σ and ϕ, we obtain

(2.5) ϕ ◦ σ : (x, y) #→
(

y,
1 − y2

x

)
,

which is identical to (2.1). By the involution σ, K(x, y) is transformed as follows.

(2.6) K(σ(x, y)) = −K(x, y),

which shows the symmetry of the invariant of L(x, y). From the fact above, we obtain

(2.7) K(xn, xn+1) = K(ϕ ◦ σ(xn−1, xn)) = K(σ(xn−1, xn)) = −K(xn−1, xn),

which is the conservation of (2.1) where we use the conservation of the QRT mapping
K(ϕ(x, y)) = K(x, y).

To summarize, the mapping (2.1) is a composition of the QRT mapping (2.4) and
the involution σ, which transforms the invariant of the QRT mapping to itself, changing
the integration constant.

On the basis of what we explained above, we propose a method for constructing
two-dimensional integrable mappings that possess invariants with degree higher than
two in the next section.

§ 3. Constructing two-dimensional integrable mappings that possess
invariants of high degree

Let us start with invariant curves of QRT mappings

(3.1)
tx(A + κB)y = (a00 + κb00)x2y2 + (a01 + κb01)x2y + (a02 + κb02)x2 + (a10 + κb10)xy2

+ (a11 + κb11)xy + (a12 + κb12)x + (a20 + κb20)y2 + (a21 + κb21)y + (a22 + κb22) = 0,

where x =




x2

x

1



 , y =




y2

y

1



 and κ is an integration constant. We define the

mapping ϕ, ψ by

ϕ : (x, y) #→
(

f1(y) − xf2(y)
f2(y) − xf3(y)

, y

)
,(3.2)

ψ : (x, y) #→
(

x,
g1(x) − yg2(x)
g2(x) − yg3(x)

)
,(3.3)
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where fj(x), gj(x) are given by (1.6) and (1.7).
Next we introduce a mapping σ : (x, y) #→ (u(x, y), v(x, y)) and require that rela-

tions

σ(tx(A + κB)y) = σ(tx)(A + κB)σ(y) = α(x, y, κ)tx(A + β(κ)B)y,(3.4)

βn(κ) = β ◦ · · · ◦ β︸ ︷︷ ︸
n

(κ) = κ,(3.5)

hold with certain matrices A and B, a factor α(x, y, κ), and an n-unipotent function
β(κ). The mapping σ transforms the invariant curve (3.1) into itself, changing the
integration constant κ into β(κ).

By constructing the compositions of mappings ϕ, ψ, and σ, we obtain a new map-
ping

ψ ◦ ϕ ◦ σ : (x, y) #→ (x̄, ȳ),(3.6)

x̄ =
σ(f1(y)) − σ(xf2(y))
σ(f2(y)) − σ(xf3(y))

,(3.7)

ȳ =
g1(x̄) − σ(y)g2(x̄)
g2(x̄) − σ(y)g3(x̄)

,(3.8)

which possesses the invariant curve given by

(3.9) (tx(A + κB)y)(tx(A + β(κ)B)y) · · · (tx(A + βn−1(κ)B)y) = 0.

In the next section, we show some examples of such mappings using the procedure
we have described above.

§ 4. examples

Example 4.1.
Let us take a mapping σ and matrices A,B as follows.

σ : (x, y) #→ (−x, y),(4.1)

A =




a00 a01 a02

0 0 0
a20 a21 a22



 , B =




0 0 0

b10 b11 b12

0 0 0



 .(4.2)

The invariant curve of the QRT mapping is given by

(4.3) a00x
2y2 + a01x

2y + a02x
2 + a20y

2 + a21y + a22 + κ(x(b10y
2 + b11y + b12)) = 0.
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It is easy to see that β(κ) = −κ and β2(κ) = κ. The form of the composed mapping
ψ ◦ ϕ ◦ σ is given by

ψ ◦ ϕ ◦ σ : (x, y) #→ (x̄, ȳ),

(4.4)

x̄ = − a20y2 + a21y + a22

x(a00y2 + a01y + a02)
,

(4.5)

ȳ =
b12(a01x̄2 + a21) − b11(a02x̄2 + a22) − y(b10(a02x̄2 + a22) − b12(a00x̄2 + a20))
b10(a02x̄2 + a22) − b12(a00x̄2 + a20) − y(b11(a00x̄2 + a20) − b10(a01x̄2 + a21))

.

(4.6)

Fig. 2 shows a solution of (4.5) and (4.6) in the phase plane, where

(4.7) A =




−1 1−1
0 0 0
−1 1 1



 , B =




0 0 0
0 1 0
0 0 0



 , (x0, y0) = (1.4, 1.4).

!2 !1 1 2 x

!0.5

0.5

1.0

1.5

y

Figure 2.
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Example 4.2.
Let us take a mapping σ and matrices A,B as follows.

σ : (x, y) #→
(
−1 + x

x
,−1 + y

y

)
,

(4.8)

A =




−b10 + 1

2b11 + b20 − b21,−b10 − 1
2b11 + b12 + 2b20 − 2b22, −1

2b11 + b21 − b22

−b10 + b12 − 2b22, −2b11 + 2b12 + 2b21 − 4b22, b10 − b11 − 2b20 + 2b21 − 2b22

−1
2b11 + b12 − b22, b10 − 3

2b11 + b12 + b21 − 2b22, b10 − 1
2b11 − b20 + b21 − b22



 ,

(4.9)

B =




b10 − 1

2b11 − b20 + b21 − b22, b10 + 1
2b11 − b12 − 2b20 + b21,

1
2b11 − b20

b10 b11 b12

b20 b21 b22



 .

(4.10)

A calculation shows that β(κ) =
1

1 − κ
and β3(κ) = κ.

In the case of

(4.11) A =




−2 0 1
0 4 3
1 3 2



 , B =




2 1 0
1 0 1
0 1 0



 ,

the mapping ψ ◦ ϕ ◦ σ is given by

x̄ =
y4 + 6y3 + 8y2 + y − 2 − x

(
y3 − 4y2 − 2y + 1

)

y4 + 3y3 − y2 + 2 + xy (2y3 + 9y2 + 7y + 1)
,(4.12)

ȳ =
−2x̄4 − 9x̄3 − 7x̄2 − x̄ − y

(
x̄4 + 6x̄3 + 8x̄2 + x̄ − 2

)

2x̄4 + 8x̄3 + 11x̄2 + 3x̄ − 1 − y (x̄3 − 4x̄2 − 2x̄ + 1)
,(4.13)

and a solution for (x0, y0) = (−0.2611,−0.2611) is shown in Fig. 3.
The invariant curve is given by the union of three QRT invariant curves,

(4.14)
(

tx(A + κB)y
)(

tx

(
A +

1
1 − κ

B

)
y

)(
tx

(
A +

−1 + κ

κ
B

)
y

)
= 0,

which is illustrated in Fig. 3.
A composition ψ ◦ ϕ gives the QRT mapping

x̄ =
−y4 − 3y3 + y2 − 2 − x

(
2y3 + 9y2 + 7y + 1

)

y (2y3 + 9y2 + 7y + 1) + x (2y4 + 8y3 + 11y2 + 3y − 1)
,(4.15)

ȳ =
−x̄4 − 3x̄3 + x̄2 − 2 − y

(
2x̄3 + 9x̄2 + 7x̄ + 1

)

x̄ (2x̄3 + 9x̄2 + 7x̄ + 1) + y (2x̄4 + 8x̄3 + 11x̄2 + 3x̄ − 1)
,(4.16)
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and its trajectory with initial values (x0, y0) = (−0.2611,−0.2611) is illustrated in
Fig. 4, which is identical to the invariant curve (3.1).

§ 5. conclusion

In this paper, we have proposed a method for constructing two-dimensional inte-
grable mappings that possess invariants with degree higher than two. By constructing
the composition of the QRT mapping and the mapping that transforms the invariant of
the QRT mapping to itself, changing an integration constant, we can obtain integrable
mappings with invariants of higher degree. We have shown several concrete examples
of cases in which integration constants changed by mappings with period 2 and 3.

Once we have a mapping σ and QRT matrices A,B that satisfy relation (3.4),
we can construct a mapping with invariants of higher degree in general. However, we
haven’t investigated all possible cases. Since the form of σ reflects the symmetries of
the QRT invariants, we may need some algebraic theories to classify them. We hope to
return to this problem in near future.
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