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RIMS Kôkyûroku Bessatsu
B13 (2009), 85–93

On oscillatory solutions in ultradiscrete system

By

Shin Isojima∗, Tomoyuki Konno∗ and Junkichi Satsuma∗

Abstract

We discuss oscillatory solutions in ultradiscrete systems of linear and nonlinear equations.
Firstly, existence of oscillatory solutions is shown in the ultradiscrete system corresponding
to the second-order linear difference equation. For the ultradiscrete Sine–Gordon equation,
we construct oscillatory solutions which are considered to be a counterpart of the breather
solutions.

§ 1. Introduction

Ultradiscretization is a limiting procedure constructing a cellular automaton from
a given difference equation. To apply this procedure, we first transform a dependent
variable in a given equation xn to a new variable Xn by

xn = eXn/ε,(1.1)

where ε > 0 is a parameter. Then we take the limit ε → +0. As a result, multiplication,
division and addition for the original variables are replaced by addition, subtraction and
max-function for the new ones, respectively. However, it is not known how to cover vari-
ables with nondefinite sign. Hence, a serious difficulty arises in ultradiscretization of the
trigonometric functions, which are often employed for describing oscillatory phenomena.
In this paper, we report one method to capture oscillatory phenomena in ultradiscrete
systems [1, 2]. We first discuss an ultradiscretization of a second-order linear difference
equation and its solution in section 2. It is shown that behaviour of solutions in the
ultradiscrete system is classified by system parameters, as is in continuous systems.
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Moreover, we present an oscillatory solution whose origin is not the trigonometric func-
tions. In section 3, we apply this result to a nonlinear system, the Sine–Gordon (SG)
equation. We construct oscillatory solutions of the ultradiscrete SG equation. These
solutions are considered to be a counterpart of the breather solutions.

§ 2. Linear System

As is well known, the general solution of the second-order linear differential equation

d2x

dt2
− (λ + µ)

dx

dt
+ λµx = 0(2.1)

is classified by constants λ and µ:

x(t) = c1e
λt + c2e

µt (λ, µ ∈ R, λ $= µ),(2.2)

x(t) = eαt(c1 cos(βt) + c2 sin(βt)) (λ = µ∗ = α + iβ ∈ C).(2.3)

We remark that (2.2) includes the case of λ = µ ∈ R as its limit. Similarly, the general
solution of the second-order linear difference equation

xn+1 − (λ + µ)xn + λµxn−1 = 0(2.4)

is classified as

xn = c1λ
n + c2µ

n (λ, µ ∈ R, λ $= µ),(2.5)

xn = c1(α + iβ)n + c2(α− iβ)n (λ = µ∗ = α + iβ ∈ C).(2.6)

In both systems, essential behaviour of solutions is determined only by the values of
system parameters: exponentially growth (or decay) or oscillation.

Let us construct an ultradiscrete analogue of the difference equation

xn+1 + bxn + cxn−1 = 0 (n ≥ 0),(2.7)

where b and c are constants [1]. We assume xn ≥ 0 for ∀n. We first consider the case
of b, c < 0. Setting

b = −eB/ε, c = −eC/ε, xn = eXn/ε,(2.8)

transposing the negative terms and taking the limit ε → +0, we have the ultradiscrete
system

Xn+1 = max(Xn + B, Xn−1 + C).(2.9)
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Solving (2.9) for given initial values X0 and X1, we obtain solutions

if 2B ≥ C, Xn = max(X1 + B, X0 + C) + (n − 2)B,(2.10)

if 2B < C, Xn =





max(X1 + B, X0 + C) + (k − 1)C (n = 2k),

max(X1, X0 + B) + kC (n = 2k + 1).
(2.11)

We have two types of solutions, a linear growth type (2.10) and an oscillating type
(2.11). Essential behaviour of solutions is again determined only by the values of system
parameters B and C. Typical behaviour of these solutions is shown in Figure 1–3.
We find in Figure 2 and 3 that the solution (2.11) actually describes an oscillatory
phenomenon.
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Figure 1. An example of linear growth type solution. Values of the system parameter
and initial values are B = 1, C = −1, X0 = 1, X1 = −1.

We next study the case of b > 0 and c < 0. Setting b = eB/ε, c = −eC/ε, xn =
eXn/ε, transposing the negative term and taking the limit ε → +0, we have

max(Xn+1, Xn + B) = Xn−1 + C.(2.12)

We again consider the initial value problem of (2.12). Here, we require existence and
uniqueness of the solution at each step. Then, we have the unique solution for n ≥ 0
only in the case that 2B < C and X1 satisfies X0 +B < X1 < X0 +C −B for arbitrary
X0,

Xn =





X0 + kC (n = 2k ≥ 0),

X1 + kC (n = 2k + 1 ≥ 1),
(2.13)

which is an oscillatory type.
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Figure 2. An example of oscillating type
solution. Values of the system parameter
and initial values are B = −1, C = 1,
X0 = 1, X1 = −1.
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Figure 3. An example of oscillating type
solution. Values of the system parameter
and initial values are B = −2, C = 0,
X0 = 1, X1 = −1.

In the case of b < 0 and c > 0, we have the ultradiscrete system

max(Xn+1, Xn−1 + C) = Xn + B.(2.14)

Again we consider the initial value problem and require existence and uniqueness of
solution. The unique solution, which is a linear growth type,

Xn = X1 + (n − 1)B (n ≥ 1)(2.15)

exists only in the case of 2B > C and X1 > X0 + C − B.
Finally, in the case of b, c > 0, we have the ultradiscrete system

max(Xn+1, Xn + B, Xn−1 + C) = −∞,(2.16)

whose solution is a trivial solution Xn = −∞ for n ≥ 0.
The solution in the case b < 0, c < 0 has the richest structure among all the cases.

In order to clarify the origin of this solution, we derive it by taking the limit of a solution
of (2.7). The characteristic roots of (2.7) are

λ± =
−b ±

√
b2 − 4c

2
=

eB/ε ±
√

e2B/ε + 4eC/ε

2
,(2.17)

where we put b = −eB/ε and c = −eC/ε. The general solution is given by

xn = a1(ε)λ+
n + a2(ε)λ−

n,(2.18)

where a1(ε) and a2(ε) do not depend on n. If 2B ≥ C, we have

λ+ ∼ eB/ε, λ− ∼ −e(C−B)/ε (ε → +0).(2.19)
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As a sufficient condition of xn > 0, we assume a1 = eA1/ε, a2 = eA2/ε and A1 * A2.
Then

xn ∼ e(A1+nB)/ε (ε → +0)(2.20)

and its ultradiscrete limit gives a growth type solution

Xn = A1 + nB.(2.21)

If 2B < C, we have

λ+ ∼ eC/2ε, λ− ∼ −eC/2ε (ε → +0).(2.22)

Here we set a1 = eA1/ε+eA2/ε and a2 = eA2/ε, which is valid for our assumption xn > 0,
and further assume A1 < A2. Then, in ε → +0, we have

xn ∼ (eA1/ε + eA2/ε)enC/2ε + (−1)neA2/εenC/2ε

∼





(eA1/ε + 2eA2/ε)enC/2ε (n: even),

eA1/εenC/2ε (n: odd),

∼





e(A2+nC/2)/ε (n: even),

e(A1+nC/2)/ε (n: odd).
(2.23)

Its ultradiscrete limit gives an oscillatory type solution

Xn =





A2 + nC/2 (n: even),

A1 + nC/2 (n: odd).
(2.24)

We comment that the origin of an oscillatory solution is not the trigonometric function.
A point constructing an oscillatory type solution is to consider a pair of the exponential
functions with positive and negative roots, respectively.

§ 3. Nonlinear System

We apply the result in the previous section to a nonlinear system [2]. We consider
the SG equation

∂2ϕ

∂x∂t
= sinϕ.(3.1)

As is well known, the SG equation possesses the N -soliton solution, which is usually
called the multi-kink solution. The two-soliton solution is written as

ϕ = 4 tan−1



 eη1 + eη2

1 − (p1−p2)
2

(p1+p2)
2 eη1+η2



 ,(3.2)

ηj := pjx +
t

pj
+ dj .(3.3)
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The breather solution, which describes an oscillatory phenomenon, is also a well-known
special solution of (3.1). It is obtained as a specific case of (3.2). If we put p1 = a + ib,
p2 = a−ib (a, b ∈ R) and d1 = d2 = d ∈ R for simplicity, (3.2) is reduced to the breather
solution

ϕ = 4 tan−1



2e
ax+ at

a2+b2
+d cos(bx − bt

a2+b2 + d)

1 + b2

a2 e
2(ax+ at

a2+b2
+d)



 .(3.4)

If we further introduce new axes (ξ, s) by

ξ = x + t, s = x − t(3.5)

and put a2 + b2 = 1 for simplicity, (3.4) is deformed into a well-known form,

ϕ = 4 tan−1
(∣∣∣

a

b

∣∣∣ sech(aξ − log
∣∣∣
a

b

∣∣∣) cos(bs)
)

.(3.6)

An integrable discrete analogue of (3.1) is given by Hirota [3]

(3.7) sin
(φm+1

n+1 + φm−1
n−1 − φm−1

n+1 − φm+1
n−1

4

)
= δ2 sin

(φm+1
n+1 + φm−1

n−1 + φm−1
n+1 + φm+1

n−1

4

)

through the bilinearizing technique. In order to construct an ultradiscrete analogue
of the SG equation, coworkers and two of the authors (S.I and J.S) proposed another
discrete SG equation [4]

∣∣∣∣∣

(
1 − δ2

)
um−1

n−1 − 1
(
1 + δ2

)
/um+1

n−1 − 1(
1 + δ2

)
/um−1

n+1 − 1
(
1 − δ2

)
um+1

n+1 − 1

∣∣∣∣∣ = 0.(3.8)

If we introduce a new variable f t
j by

um
n =

fm+1
n+1 fm−1

n−1

fm−1
n+1 fm+1

n−1

,(3.9)

(3.8) is reduced to the trilinear form
∣∣∣∣∣∣∣

(
1 − δ2

)
fm−2

n−2 fm
n−2

(
1 + δ2

)
fm+2

n−2

fm−2
n fm

n fm+2
n(

1 + δ2
)
fm−2

n+2 fm
n+2

(
1 − δ2

)
fm+2

n+2

∣∣∣∣∣∣∣
= 0.(3.10)

For the purpose of ultradiscretization, setting

δ = tanh(L/2ε), fm
n = eF m

n /ε, um
n = eUm

n /ε(3.11)
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and taking the limit ε → +0, we have an ultradiscrete analogue of the SG (udSG)
equation for Um

n

max
[
−|L| + Um+1

n+1 + Um−1
n−1 , |L|− Um−1

n+1 , |L|− Um+1
n−1

]

= max
[
|L|− Um−1

n+1 − Um+1
n−1 , Um+1

n+1 , Um−1
n−1

]
(3.12)

from (3.8) and for Fm
n

max
[
−|L| + Fm+2

n+2 + Fm
n + Fm−2

n−2 , |L| + Fm−2
n+2 + Fm+2

n + Fm
n−2,

|L| + Fm
n+2 + Fm−2

n + Fm+2
n−2

]

= max
[
|L| + Fm−2

n+2 + Fm
n + Fm+2

n−2 , Fm+2
n+2 + Fm−2

n + Fm
n−2,

Fm
n+2 + Fm+2

n + Fm−2
n−2

]
(3.13)

from (3.10) and the relation between Fm
n and Um

n

Um
n = Fm+1

n+1 + Fm−1
n−1 − Fm−1

n+1 − Fm+1
n−1(3.14)

from (3.9). Refer to [4] for more details about the udSG equation and its soliton
solutions.

For the purpose of our discussion, we consider the two-soliton solution of (3.10),

fm
n = 1 + a1x1 + a2x2 + a1a2b12x1x2,(3.15)

xj := pj
nqj

m,(3.16)

bjk :=
(pj

2 − pk
2)2

((pjpk)2 − 1)2
,(3.17)

where pj , qj are parameters satisfying the dispersion relation

δ2(pj
2 + 1)(qj

2 + 1) = (pj
2 − 1)(qj

2 − 1)(3.18)

and aj ’s are arbitrary phase constants. Let us construct a 2-periodic solution. If we set

p2 = −p1, q2 = q1, a1 = α1 + α2, a2 = α2,(3.19)

then (3.15) is reduced to

fm
n =





1 + (α1 + 2α2)x1 (n : even),

1 + α1x1 (n : odd).
(3.20)

In order to ultradiscretize (3.20), we put

p1 = eP1/ε, q1 = eQ1/ε, α1 = eA1/ε, α2 = eA2/ε (A1 < A2)(3.21)
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and take the limit ε → +0. Then we have the ultradiscrete analogue of (3.20),

Fm
n =





max(0, P1n + Q1m + A2) (n : even),

max(0, P1n + Q1m + A1) (n : odd),
(3.22)

where P1 and Q1 satisfy the dispersion relation

|P1 + Q1| = |L| + |P1 − Q1|.(3.23)

We have a solution of (3.12) by substituting (3.22) into (3.14). In order to exaggerate
its periodic behaviour, we introduce new independent variables (k, l) by

n = k − l, m = k + l(3.24)

and consider a specific case P = Q = |L|/2.
Tables 1, 2 show behaviour of Um

n for various values of parameters A1, A2. In both
cases, the solutions describe localized pulses oscillating in period 2 for l. This behaviour
is similar to that of the breather solution.

· · · -2 -1 0 1 2 3 · · · → k

l: even · · · 0 0 1 0 0 0 · · ·
l: odd · · · 0 0 2 1 0 0 · · ·

Table 1. Behaviour of oscillatory solution. L = 2, P1 = Q1 = 1, A1 = −1, A2 = 0.

· · · -4 -3 -2 -1 0 1 2 3 · · · → k

l: even · · · 0 0 0 1 1 0 0 0 · · ·
l: odd · · · 0 0 1 0 0 1 0 0 · · ·

Table 2. Behaviour of oscillatory solution. L = 2, P1 = Q1 = 1, A1 = −1, A2 = 3.

We can construct the oscillatory solutions with richer structure by starting from
the four-soliton solution. Refer to [2] for details of these solutions.

§ 4. Concluding Remarks

We have given the ultradiscrete analogue of the second-order linear equation. The
solutions of the ultradiscrete system are classified to two types, linear growth and oscil-
lating types. This classification depends only on the values of system parameters. We
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have also given oscillating solutions of the udSG equation. They are considered to be a
counterpart of the breather solutions. We comment that these solutions are essentially
2-periodic ones due to its construction.
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