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Existence and stability of periodic solutions in the
isosceles three-body problem

By

Mitsuru Shibayama∗

Abstract

The isosceles three-body problem is a special case of the three-body problem, which is a
sufficiently difficult and interesting problem. In the problem there is a family of well-known
periodic solutions called Euler solutions. We investigate the Birkhoff normal form around
the circular Euler solution and check the twist condition to prove the KAM-stability of the
Euler solutions with small eccentricity. Next by using the variational method we prove the
existence of new periodic and quasi-periodic solutions which are bifurcated from the circular
Euler solutions.

§ 1. Introduction and Main Theorems

The three-body problem is given by the following set of ODEs:

d2qi

dt2
= −

∑

j !=i

mj(qi − qj)
|qi − qj |3

, qi ∈ R3,mi ! 0, i = 1, 2, 3.

In this paper we deal with the isosceles three-body problem; assume m1 = m2, and
consider motions for which m3 remains on the z-axis in R3, while m1 and m2 remain
symmetric with respect to this axis (see figure 1). The Lagrangian of the three-body
problem is

L =
1
2

3∑

k=1

mk|q̇k|2 +
∑

j<k

mjmk

|qj − qk|
.
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Figure 1. Spatial isosceles three-body problem

Let α be a mass ratio m3/m1 and use (x, y, z) ∈ R3 as coordinates on the configuration
space where

q1 =
(

x, y,
α

α + 2
z

)
, q2 =

(
−x,−y,

α

α + 2
z

)
, q3 =

(
0, 0,− 2

α + 2
z

)
.

The Lagrangian becomes

L = m1

(
ẋ2 + ẏ2 +

α

α + 2
ż2

)
+ m1m3

(
1

2α
√

x2 + y2
+

2√
x2 + y2 + z2

)
.

It is possible to alter the above Lagrangian to

L = ẋ2 + ẏ2 +
α

α + 2
ż2 +

1
2α

√
x2 + y2

+
2√

x2 + y2 + z2

by rescaling the variables.
The isosceles three-body problem has an invariant manifold {z ≡ ż ≡ 0} on which

the differential equations are reduced to Kepler problem and on which all solutions are
periodic solutions, so-called Euler solutions. With respect to the Euler solutions m1

and m2 move on ellipses and m3 always stays at the origin.
By using the cylindrical coordinates: (x, y, z) = (r cos θ, r sin θ, z), the Lagrangian

is
L = ṙ2 + r2θ̇2 +

α

α + 2
ż2 +

1
2αr

+
2√

r2 + z2
.

By the Legendre transformation, we obtain the Hamiltonian:

(1.1) H =
1
4
p2

r +
1

4r2
p2

θ +
α + 2
4α

p2
z − 1

2αr
− 2√

r2 + z2
.
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The variable pθ is the angular momentum and constant along solutions. By fixing pθ =
ω > 0 and ignoring θ, we can reduce it to a system with two degrees of freedom. Under
the reduction we prove the stability of the Euler solutions with small eccentricities:

Theorem 1.1. For 0 < α < ∞, the circular Euler solution is stable. In par-
ticular there are “many” KAM tori around the solution. Furthermore if α &= 1

3 , the
elliptic Euler solutions with small eccentricity are stable and there are “many” KAM
tori around the solution on the energy surface.

KAM tori stand for quasi-periodic solutions around the Euler solutions. The word
“many” KAM tori means that the smaller neighborhood of the Euler solution is chosen,
the nearer to the full measure the measure of KAM tori on the neighborhood is.

Next we prove the existence of symmetric periodic solutions bifurcated from the
circular Euler solution. Define two functions f and g by

f(α) =
π

2

√
4α + 1
α + 2

, g(α) =
π(2α + 1)

4α + 1

√
2(2α + 1)
α + 2

.

We use the coordinates (x, y, z) here.

Theorem 1.2. For any T > 0 and c ∈ (f(α), g(α)), there is a solution (x(t), y(t), z(t))
such that




x(−t)
y(−t)
z(−t)



 =




1 0 0
0 − 1 0
0 0 −1








x(t)
y(t)
z(t)



 ,




x(t + 2T )
y(t + 2T )
z(t + 2T )



 =




cos 2c − sin 2c 0
sin 2c cos 2c 0

0 0 1








x(t)
y(t)
z(t)





and z(t) &≡ 0.

It turns out that if c/π ∈ Q, the obtained solution is a periodic solution and if
c/π /∈ Q, quasi-periodic solution. Note that z(t) &≡ 0 means that the obtained solutions
are different from the Euler solutions.

We prove Theorem 1.1 in section 2. Since in the case of α &= 1/3 the frequency
ratio is non-resonant, Birkhoff normal form can be constructed and hence the stability
follows from KAM theory by checking the twist condition. In the case of α = 1/3, the
1:2 resonance occurs. But fortunately Birkhoff normal form can be constructed in such
a way that the resonance terms vanish. For the computations the computer algebra
system Maple is effectively used.

Theorem 1.2 can be proved by using a variational method. A difficulty is to prove
that the minimzer has no collision. The symmetry the desired solutions have is too
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Figure 2. Graphs of f , g, h and π(f(α) < g(α) < h(α) < π)

strong to satisfy “the rotating circle property”, that is a known criterion for the elim-
ination of collisions([2]). But a little less symmetric constraint satisfies the rotating
circle property, and we can partly apply [2] and then we show that the minimizer has
no collision in the interior (0, T ). So we prove that the minimizer does not have collision
t = 0 and t = T by comparing the values of the action functional between the circular
motion and curves with collision at t = 0 or t = T . By using another test path instead
of the circular motion, we find a better function h(α) than g(α) (h(α) > g(α)) such that
Theorem 1.2 holds for f(α) < c < h(α). But the expression of h is too complicated to
denote explicitly. We just show the graph in figure 2.

The paper is organized as follows. In the next section we prove theorem 1.1. In
subsection 2.1 we write down the Taylor expansion of the Hamiltonian at the circular
Euler solution. In subsection 2.2 we use the Lie transforms to construct the Birkhoff
normal form from the Taylor expansion. Then by checking the twist condition we prove
the KAM-stability of the Euler solutions. Section 3 is devoted to the proof of theorem
2 which is based on the variational method. We express the spatial isosceles three-body
problem by the Lagrangian formulation in subsection 3.1 and show the existence of
a minimizer in subsection 3.2. In subsection 3.3, we show that the minimizer has no
collision. So in subsection 3.4 we will prove z-component of the obtained minimizer is
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not identically zero. In Appendix, we give a better estimate for collisionlessness.

§ 2. Stability of Euler solution

§ 2.1. Taylor expansion of Euler solution

We consider the Hamiltonian system with Hamiltonian (1.1). By fixing pθ ≡ ω and
ignoring θ, the system is reduced to the one with Hamiltonian

H(pr, pz, r, z) =
1
4
p2

r +
1

4r2
ω2 +

α + 2
4α

p2
z −

1
2αr

− 2√
r2 + z2

.

The point (pr, pz, r, z) = (0, 0, ω2α
4α+1 , 0) is an equilibrium point corresponding to the

circular Euler solution. By the linear canonical transformation

q1 =
4α + 1
ω3/2α

(
r − ω2α

4α + 1

)

p1 =
ω3/2α

4α + 1
pr

q2 =
21/2(4α + 1)3/4

ω3/2α1/2(α + 2)1/4
z

p2 =
ω3/2α1/2(α + 2)1/4

21/2(4α + 1)3/4
pz

the quadratic terms of H are taken into normal form. The Taylor expansion of H is

H =
(4α + 1)2

4ω3α2
(p2

1 + q2
1) +

(4α + 1)3/2(α + 2)1/2

2ω3α2
(p2

2 + q2
2)

− (4α + 1)2

2ω7/2α2
q3
1 − 9(4α + 1)3/2(α + 2)1/2

2ω7/2α2
q1q

2
2

+
3(4α + 1)2

4ω4α2
q4
1 +

18(4α + 1)2/3(α + 2)1/2

ω4α2
q2
1q2

2 − 3(4α + 1)2(α + 2)
16ω4α2

q4
2 + O(|(p, q)|5).

The frequency ratio is

λ = 2
√

α + 2
4α + 1

and the resonance of no more than degree four occurs in the case of α = 1/3 (1:2
resonace). We will use λ as the parameter instead of α.

We will carry out the Birkhoff normalization of H so that those terms up to order
four depend only on

τk =
1
2
(p2

k + q2
k) (k = 1, 2).
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Define the canonical transformation

pk =
1√
2
(xk − iyk)

qk =
1√
2
(−ixk + yk) (k = 1, 2).

Then we have τk = −ixkyk. It will be useful for further calculation. The Hamiltonian
in this coordinates is

H = −392i(x1y1 + λx2y2)
ω3(8 − λ2)2

+
49
√

2
ω7/2(8 − λ2)2

{−2i(x3
1 − iy3

1) + 6(x2
1y1 + ix1y

2
1)

+ 6λ(x1x2y2 + ix2y1y2) − 3iλ(x1x
2
2 + ix2

2y1 − x1y
2
2 − iy1y

2
2)}

+
147

2(λ2 − 8)3 ω4
{−24(λ2 − 8)x1

2y1
2 − 32λ(λ2 − 8)x1y1x2y2 − 42λ2x2

2y2
2

+ 4(λ2 − 8)(x4
1 + y4

1) + 16i(λ2 − 8)(x3
1y1 − x1y

3
1) + 7λ2(x4

2 + y4
2)

+ 8λ(λ2 − 8)(x1
2x2

2 − x2
1y

2
2 − y2

1x2
2 + y2

1y2
2) + 16iλ(λ2 − 8)(x1y1x

2
2 − x1y1y

2
2)

+ 16iλ(λ2 − 8)(x2
1x2y2 − y2

1x2y2) + 28iλ2(x2
3y2 − x2y2

3)} + . . .

§ 2.2. Lie transforms

We denote

H(x1, x2, y1, y2) =
∞∑

i=0

1
i!

H0
i (x1, x2, y1, y2),

where H0
i is a homogeneous polynomial of degree i + 2. Consider an analytic function

W (x1, x2, y1, y2) =
∞∑

i=0

1
i!

Wi+1(x1, x2, y1, y2),

where Wi is a homogeneous polynomial of degree i + 2. The time 1 map of the Hamil-
tonian system with the Hamiltonian W is a canonical transformation. We denote the
Hamiltonian H transformed by the time 1 map by G:

G(x1, x2, y1, y2) =
∞∑

i=0

1
i!

Hi
0(x1, x2, y1, y2),

where Hi
0 is a homogeneous polynomial of degree i + 2. We can get Hi

0 by a formula

(2.1) Hi
j = Hi−1

j+1 +
j∑

k=0

(
j

k

)
{Hi−1

j−k,Wk+1}

(see [4]).
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If W ′ = ρxayb = ρxa1
1 xa2

2 yb1
1 yb2

2 ,

{H0
0 , W ′} = ρb((1, λ) · (b − a))xayb

where b = − 392i
ω3(8−λ2)2 . Hence we can eliminate the terms except resonance terms xayb

with

(2.2) (1, λ) · (b − a) = 0.

In the case of i = 1, the formula (2.1) is

H1
0 = H0

1 + {H0
0 ,W1}.

The resonance occur in the case of λ = 2 (α = 1/3). The resonance terms satisfies
|a| + |b| = 3 and (2.2), then a = (2, 0),b = (0, 1) and a = (0, 1),b = (2, 0). Hence the
resonance terms of degree three are x2

1y2 and x2y2
1 . But H0

1 dose not have these terms,
because the Hamiltonian (1.1) is invariant under the transformations:

pr → −pr, pz → −pz, z → −z,

which correspond to

(x1, y1) → (iy1,−ix1), (x2, y2) → (iy2,−ix2), (x2, y2) → (−iy2, ix2)

respectively. Therefore we can eliminate all terms of degree three.
For i = 2, the formula (2.1) is

H1
1 = H0

2 + {H0
1 ,W1} + {H0

0 ,W2}
H2

0 = H1
1 + {H1

0 ,W1},

hence
H2

0 = H0
2 + {H0

1 + H1
0 ,W1} + {H0

0 ,W2}.

The part H0
2 + {H0

1 + H1
0 ,W1} is

147
(λ2 − 8)2 ω4

{
8x1

2y1
2 +

8λ(7λ2 − 1)
4λ2 − 1

x1y1x2y2 +
3λ2(8λ4 − 95λ2 + 31)

(λ2 − 8)(4λ2 − 1)
x2

2y2
2

+ 4(x1
4 + y4

1) +
31λ2(λ2 − 1)

2(λ2 − 8)(4λ2 − 1)
(x2

4 + y4
2)

− 2iλ2(6λ4 − 79λ2 + 31)
(λ2 − 8)(4λ2 − 1)

(x2
3y2 − x2y

3
2)

− 4iλ(λ2 − 1)
4λ2 − 1

(x1y1x2
2 − x1y1y

2
2 − x1

2x2y2 + y2
1x2y2)

+
2λ(λ + 1)(3λ− 1)

2λ− 1
(x1

2x2
2 + y2

1y2
2) +

2λ(λ− 1)(3λ + 1)
2λ + 1

(x1
2y2

2 + x2
2y

2
1)

}
.
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Consequently for 1 < λ< 2
√

2 we obtain Birkhoff normal form

G =
392(τ1 + λτ2)
ω3(8 − λ2)2

− 588
ω4(8 − λ2)2

τ2
1 − 588λ(1 − 7λ2)

ω4(8 − λ2)2(1 − 4λ2)
τ1τ2 −

441λ2(8λ4 − 95λ2 + 31)
2ω4(8 − λ2)3(1 − 4λ2)

τ2
2 + . . . .

(2.3)

We denote
G = a1τ1 + a2τ2 + a11τ

2
1 + 2a12τ1τ2 + a22τ

2
2 + . . . .

The twist condition is

det

(
a11 a12

a12 a22

)
= −43218λ2(λ2 − 1)(2λ4 + 354λ2 − 77)

ω8(1 − 4λ2)2(λ2 − 8)5
&= 0.

This holds for all 1 < λ< 2
√

2(0 < α < ∞). The isoenergetic twist condition is

det




a11 a12 a1

a12 a22 a2

a1 a2 0



 = −1050370272λ2(λ2 − 1)
ω10(λ2 − 8)7(4λ2 − 1)

&= 0.

This also holds for all 1 < λ< 2
√

2(0 < α < ∞).
Consequently the circular Euler solution is KAM stable for all 1 < λ < 2

√
2

(0 < α < ∞) and the elliptic Euler solutions with small eccentricity are KAM stable on
the energy surface for all λ &= 2(α &= 1/3).

§ 3. Existence of symmetric solutions

§ 3.1. Lagrangian formulation

The isosceles three-body problem is equivalent to the variational problem with
respect to the action functional

A(γ) =
∫ T

0
L(γ, γ̇)dt.

Define

A(c) = {(r cos c, r sin c, 0) | r ! 0}
Ω(c1, c2) = {γ ∈ H1([0, T ], R3) | γ(0) ∈ A(c1), γ(T ) ∈ A(c2), },
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A(0)

c
γ

A(c)

where H1([0, T ], R3) is the Sobolev space with Sobolev norm ‖ ·‖ H1 :

‖γ‖H1 =
∫ T

0
|γ(t)|2 + |γ̇(t)|2dt

H1([0, T ], R3) = {γ : [0, T ] → R3 | γ ∈ L2, γ̇ ∈ L2, ‖γ‖H1 < ∞}.

We will apply the minimizing method for A|Ω(0,c).

§ 3.2. Coercivity of the action functional

In this subsection we prove the coercivity of the action functional A|Ω(0,c), that
is, if ‖xn‖H1 → ∞(xn ∈ Ω(0, c)), then A(xn) → ∞. The coercivity guarantees the
existence of a minimizer of A|Ω(0,c).

Proposition 3.1. The action functional A|Ω(0,c) is coercive and hence attains
its minimum.

Proof. Our argument is not new and has been used by Chen in his several papers
(see for example [1, Section 4]). Consider the function δ : Ω(0, c) → R defined by

δ(γ) := max
s1,s2∈[0,T ]

|γ(s1) − γ(s2)|.

Let
ν = cos c,
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which is consistent with x(0)·x(T )
|x(0)||x(T )| , greater than −1 and less than 1. We easily obtain

|γ(0) − γ(T )| ! Cν |γ(0)|

where Cν =
√

1 − ν2. Note that Cν > 0. For any t ∈ [0, T ],

|γ(t)| " |γ(0)| + δ(γ) " 1
Cν

|γ(0) − γ(T )| + δ(γ) "
(

1
Cν

+ 1
)
δ(γ),

and hence ∫ T

0
|γ|2dt "

(
1

Cν
+ 1

)2

δ(γ)2T.

On the other hand, by the Cauchy-Schwarz inequality

δ(γ)2 "
(∫ T

0
|γ̇|dt

)2

" T

∫ T

0
|γ̇|2dt.

Therefore the H1 norm of γ is controlled by its action:

‖γ‖2
H1 =

∫ T

0
|γ|2 + |γ̇|2dt

"
((

1
Cν

+ 1
)2

T 2 + 1

) ∫ T

0
|γ̇|2dt

<

((
1

Cν
+ 1

)2

T 2 + 1

)
α + 2
α

A(γ).

This implies that A|Ω(0, c) is coercive.

The minimizer γ satisfies the first variational formula:

(3.1) δA(γ) =
[
∂L

∂q̇
· δγ

]T

t=0

−
∫ T

0

(
d

dt

∂L

∂q̇
− ∂L

∂q

)
· δγdt = 0

for any δγ ∈ Ω(0, c). Hence by considering any variations δγ with δγ(0) = δγ(T ) = 0,
we see that the minimizer satisfies the Euler-Lagrange equation:

d

dt

∂L

∂q̇
− ∂L

∂q
= 0

which is equivalent to the equation of the isosceles three-body problem. We again
consider (3.1), and then we obtain

∂L

∂q̇
(γ(T ), γ̇(T )) · δγ(T ) − ∂L

∂q̇
(γ(0), γ̇(0)) · δγ(0) = 0.
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Note
∂L

∂q̇
=

(
2ẋ, 2ẏ,

2α
α + 2

ż

)
.

Since δγ(0) and δγ(T ) can have any point in A(0) and A(c) respectively, it follows that

(3.2) γ̇(0) ⊥ A(0), γ̇(T ) ⊥ A(c).

§ 3.3. Collision-free minimizer

In this subsection we show that the minimizer has no collision. First we discuss
the isosceles symmetry in order to explain “the rotating circle property” introduced by
Ferrario and Terracini [2]. They dealt with more general case (the planar and spatial
N -body problem and more general group actions) but here we just consider the isosceles
symmetry in the spatial three-body problem. Let X be the configuration space of the
spatial three-body problem:

X = {(q1, q2, q3) ∈ (R3)3 | m1q1 + m2q2 + m3q3 = 0}.

We consider a finite group G and representations

ρ : G → O(3)

σ : G → S3,

such that for g ∈ G, q = (q1, q2, q3) ∈ X

g · (q1, q2, q3) = (ρ(g)qσ(g−1)(1), ρ(g)qσ(g−1)(2), ρ(g)qσ(g−1)(3)).

The symmetric configuration space is defined by XG = {q ∈ X | g · q = q (∀g ∈ G)}. In
our situation G = {±1} and the isosceles symmetry is determined by

(3.3) ρ(−1) =




−1 0 0
0 − 1 0
0 0 1



 , σ(−1) = (1 2).

For i = 1, 2, 3, let Gi be the isotropy subgroup of G at i under the σ-action, namely,

Gi = {g ∈ G|σ(g)i = i}.

Definition 3.2. We say a finite group G acts with the rotating circle property,
if for at least 2 indices i there exists a circle in R3 such that G acts on the circle by
rotation and that the circle is contained in (R3)Gi

= {w ∈ R3 | ρ(g) ·w = w(∀g ∈ Gi)}.

In our case (3.3), G1 = G2 = {1}. If we take a circle S on xy-plane whose center
is the origin, then g ∈ G acts on S by rotation and S is contained in (R3)Gi

= R3 for
i = 1, 2. Therefore the group action satisfies the rotating circle property.



152 Mitsuru Shibayama

Proposition 3.3 ([2] Theorem 10.10). Consider a finite group G acting with the
rotating circle property. Then a minimizer of the fixed-ends problem on XG is free of
collisions.

The proposition can be applied to our situation. Let γ be a minimizer of A|Ω(0,c).
Of course γ is also a minimizer of A on

{ρ : [0, T ] → R3 | ρ(0) = γ(0), ρ(T ) = γ(T )}

that is, a minimizer of fixed-end problem. From Proposition 3.3, γ has no collision in
(0, T ). So it is enough to show γ does not have a collision at t = 0, T .

We will estimate the value of the action functional with respect to curves with
collisions at t = 0 (the case of t = T is similar) and find a test path with less value
of the action functional than any collision path. It follows that the minimizer has no
collision.

We use the circular solution as a test path:

(3.4) γcir(t) = 3

√
T 2(4α + 1)

4c2α

(
cos

c

T
t, sin

c

T
t, 0

)
.

By an easy calculation, the value of the action functional with respect to the orbit
is

Acir(c, α, T ) := A(γcir) =
∫ T

0

(
c(4α + 1)

4Tα

)2/3

+
(

1
2α

+ 2
)(

4c2α

T 2(4α + 1)

)1/3

dt

= 2−4/3 · 3c2/3T 1/3α−2/3(4α + 1)2/3.

We assume that a curve γcol(t) = (x(t), y(t), z(t)) ∈ Ω(0, c) has a collision at t = 0. Since
γcol belongs to A(0) at t = 0, (x(0), y(0), z(0)) = (0, 0, 0). Let (x, y) = r(cos θ, sin θ).
Then

L = ṙ2 + r2θ̇2 +
α

α + 2
ż2 +

1
2α

r−1 + 2(r2 + z2)−1/2

! ṙ2 +
α

α + 2
ż2 +

1
2α

r−1 + 2(r2 + z2)−1/2

=
(

2
α + 2

ṙ2 +
1
2α

r−1

)
+

(
α

α + 2
(ṙ2 + ż2) + 2(r2 + z2)−1/2

)
.

It is known [3] that the minimizer of Lagrangian of collinear or planar Kepler problem

L = aξ̇2 + bξ−1 or L = a(ξ̇2 + η̇2) + b(ξ2 + η2)−1/2

with ξ(0) = η(0) = 0 is attained by the collision-ejection orbit and that the value of the
action functional is

gab = 2−2/3 · 3π2/3a1/3b2/3T 1/3.
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Therefore since r(0) = s(0) = 0,

A(γcol) !
∫ T

0

(
2

α + 2
ṙ2 +

1
2α

r−1

)
dt +

∫ T

0

(
α

α + 2
(ṙ2 + ṡ2) + 2(r2 + s2)−1/2

)
dt

! g 2
α+2 , 1

2α
+ g α

α+2 ,2

= 2−2/3 · 3π2/3T 1/3

((
2

α + 2

)1/3 (
1
2α

)2/3

+
(

α

α + 2

)1/3

· 22/3

)

= 2−1 · 3π2/3T 1/3α−2/3 (α + 2)−1/3 (2α + 1) =: Acol(α, T ).

If
Acir(c, α, T ) < Acol(α, T )

(that is, c < g(α)), then the minimizer does not have collision at t = 0.

Remark. We can obtain better estimate by finding another test path. But the
calculation is very complicated. We show that in the appendix.

§ 3.4. Non-constancy of the vertical component

In this subsection we show that z-component of the minimizer is not identically
zero and hence that the obtained minimizer is a non-trivial (non-Keplerian) orbit.

Proposition 3.4. Let γ = (γx, γy, γz) be the minimizer. If f(α) < c, γz &≡ 0.

Proof. If γz ≡ 0, the motion is Keplerian. From (3.2), this is the circular motion.
We can solve the motion:

(3.5) γ(t) = 3

√
T 2(4α + 1)

4c2α

(
cos

c

T
t, sin

c

T
t, 0

)
.

Define a modified curve γ(ε) by

γ(ε)(t) = γ(t) +
(

0, 0, ε sin
πt

T

)
.

The difference of the values of the action functional is

A(γ) −A(γ(ε))

=
∫ T

0
− α

α + 2

(
γ̇(ε)

z

)2
+

2√
γ2

x + γ2
y

− 2√
γ2

x + γ2
y +

(
γ(ε)

z

)2
dt

=
∫ T

0
− π2αε2

(α + 2)T 2
cos2

πt

T
+

4c2αε2

(4α + 1)T 2
sin2 πt

T
+ O(ε4)dt

=
2αε2

(4α + 1)T

(
c2 − π2(4α + 1)

4 (α + 2)

)
+ O(ε4).
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Therefore if f(α) < c, A(γ) > A(γ(ε)) for small ε > 0 and hence the minimizer is not
an Keplerian orbit.

This proposition means that if f(α) < c < g(α), the obtained solutions are new
solutions.

Remark. The circular orbit (3.5) exists for any c > 0. The proposition means
that if f(α) < c < g(α), the circular orbit is a critical point of A|Ω0,c but not a minimizer.

Define

R(θ) =




cos 2θ sin 2θ 0
sin 2θ − cos 2θ 0

0 0 −1



 .

Let γ ∈ Ω(0, c) be a minimizer of A|Ω(0,c). For n ∈ Z, γn := R(nc)γ belongs to
Ω(nc, (n + 1)c) and is a minimizer of A|Ω(nc,(n+1)c). From (3.2), the curves γn(n ∈ Z)
can be smoothly connected and the connected curve is a solution defined for all time.
This is the solution we desired.

§ 4. Future direction

Further research is in progress on the existence and bifurcations of families of
periodic solutions. It will be shown ([5, 6]) that the Euler orbits and the obtained
minimizing orbits are complicatedly connected by families of periodic solutions and
complicated bifurcations occur and in particular many bifurcated orbits connect to
heteroclinic connections of the triple collision.

Appendix. Better estimate than g

We use the curve

γ(t) =
(
d cos

c

T
t, d sin

c

T
t, ζ(t)

)

as a test path instead of the circular motion, where c and d are constans and

ζ = ε sin
πt

T
.

From the inequality
1√

1 + x2
" 1 − x2

2
+

3x4

8
,



Existence and stability of periodic solutions in the isosceles three-body problem 155

A(γ) =
∫ T

0
d2

( c

T

)2
+

α

α + 2
ζ̇2 +

1
2dα

+
2√

d2 + ζ2
dt

"
∫ T

0
d2

( c

T

)2
+

α

α + 2
ζ̇2 +

1
2dα

+
2
d
− ζ2

d3
+

3ζ4

4d5
dt

=
∫ T

0
d2

( c

T

)2
+

1
2dα

+
2
d

+
ε2π2α

(α + 2) T 2
cos2

πt

T
− ε2

d3
sin2 πt

T
+

3ε4

4d5
sin4 πt

T
dt

= T

(
d2

( c

T

)2
+

1
2dα

+
2
d

)
+ ε2

(
π2α

2 (α + 2) T
− T

2d3

)
+

9ε4T

32d5

=: B(c, T, α−1, ε, d).

The minimum attains at

ε = ε0 :=
2d0

3T

√

2T 2 − 2π2d3
0α

α + 2

d = d0 :=
{(

(α + 2)T 2

10π4α2

)
×

(
18c2 + 4π2α + 9c2α

−3
√

36c4α + 16π2c2α2 + 36c4α2 − 16π4 + 8π2c2α3 + 9c4α3 − 5π4α2
)}1/3

.

The minimum value is
Atest(c, α, T ) = B(c, T, α, ε0, d0).

and the explicit representation is very complicated. Define an implicit function h(α) by

Atest(h(α), α, T ) = Acol(α, T ).

We show the graph obtained numerically(figure 2). If f(α) < c < h(α), there is a new
(quasi-)periodic solution.
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