京都大学
KYOTO UNIVERSITY

Title	On a Problem of Hasse（A lgebraic Number Theory and Related Topics 2007）
Author（s）	MOTODA，Y asuo；NA KA HA RA，Toru；SHA H，Syed Inay at Ali；UEHARA，Tsuyoshi
Citation	数理解析研究所講究録別冊＝RIMS Kokyuroku Bessatsu （2009），B12：209－221
Issue Date	2009－08
URL	http：／hdl．handle．net／2433／176786
Right	Departmental Bulletin Paper
Type	Kublisher Textversion

On a Problem of Hasse

By

Yasuo Motoda* Toru Nakahara ${ }^{1) * *}$ Syed Inayat Ali ShaH*** and Tsuyoshi UEHARA ${ }^{1) \dagger}$

Abstract

In this article we shall construct a new family of cyclic quartic fields K with odd composite conductors, which give an affirmative solution to a Problem of Hasse(Problem 6 in [12, p. 529]); indeed our family consists of cyclic quartic fields whose ring Z_{K} of integers are generated by a single element ξ over \boldsymbol{Z}. We will find an integer ξ in K by the two different ways; one of which is based on an integral basis of Z_{K} and the other is done on a field basis of K.

§ 1. Introduction

In the year 1966, Hasse's problem was brought to Kyushu Univ. in Japan from Hamburg by K. Shiratani. Let K be an algebraic number field of degree n over the rationals \boldsymbol{Q}. Let \boldsymbol{Z} denote the ring of integers. It is called Hasse's problem to characterize whether the ring Z_{K} of integers in K has a generator ξ as \boldsymbol{Z}-free module, namely Z_{K} coincides with

$$
\boldsymbol{Z}\left[1, \xi, \cdots, \xi^{n-1}\right]
$$

which we denote by $\boldsymbol{Z}[\xi]$. If $Z_{K}=\boldsymbol{Z}[\xi]$, it is said that Z_{K} has a power integral basis; it is also said that K is monogenic. In this article, we consider the case of cyclic quartic

[^0]fields K with composite conductors over \boldsymbol{Q}. In the case of cyclic quartic field K with a prime conductor, Z_{K} has no power integral basis except for $K=k_{5}$ or the maximal real subfield of k_{16} as is shown by one of the author in [11]. Here, k_{n} means the n-th cyclotomic field over \boldsymbol{Q}. On the contrary, infinitely many monogenic cubic or biquadratic Dirichlet fields are found by D. S. Dummit - H. Kisilevsky in [1] and Y. Motoda in [6, 7]. In the case of biquadratic fields, M.-N. Gras - F. Tanoé [4] gave a necessary and sufficient condition for the fields to be monogenic. If K is 2-elementary abelian extension of degree not less than 8 , we proved in $[8,15]$ that Z_{K} does not have any power integral basis except for the 24 -th cyclotomic field $k_{24}=\boldsymbol{Q}\left(\zeta_{24}\right)$, which coincides with
$$
\boldsymbol{Q}\left(\zeta_{4}, \zeta_{3}, \zeta_{8}+\zeta_{8}^{-1}\right)
$$
where ζ_{m} denotes a primitive m-th root of unity. Besides the results referred above, there are works of I. Gaál, L. Robertson, S. I. A. Shah, T. Uehara [2, 16, 17, 13, 11] for monogenic fields, and ones of M. N. Gras and authors [3, 11, 9] for non-monogenic fields. An expository paper [5] by K. Győry and the frequentry updated tables [20, 21] by K. Yamamura are significant for future research on Hasse's problem.

§2. New examples of monogenic cyclic quartic fields based on integral bases of their rings of integers

A quarter of century ago, we found several monogenic cyclic quartic fields $K=\boldsymbol{Q}(\eta)$ of composite conductor D over \boldsymbol{Q} in $\left[\mathrm{N}_{1}\right]$. This result was obtained when we restricted ourselves to the assiciated Gauß period η_{χ} of $\varphi(D) / 4$ terms with the character χ as a generator ξ of $Z_{K}=Z[\xi]$, where $\chi=\chi_{D}$ is the quartic character with conductor D and $\varphi(\cdot)$ denotes Euler's function. We calculated the group index $\left[Z_{K}: \boldsymbol{Z}[\xi]\right]=\sqrt{\left|\frac{d_{K}(\xi)}{d_{K}}\right|}$ of a number ξ under the integral basis $\left\{1, \eta_{\chi}, \eta_{\chi}^{\sigma}, \eta_{\chi}^{\sigma^{2}}\right\}$, i.e., nearly the normal basis of K / \boldsymbol{Q}, where $d_{F}, d_{F}(\alpha)$ and σ denote the field discriminant of a field F, the discriminant of a number α with respect to F / \boldsymbol{Q} and a generator of the Galois group of K / \boldsymbol{Q}, respectively.

In this section, we use a different integral basis from the previous one and seek a candidate ξ of a generator of Z_{K} using a linear combination of certain partial differents of ξ. First we consider examples. Let k_{15} be the cyclotomic field with conductor $5 \cdot|-3|$. Then all the proper subfields consists of three quartic fields K_{j} and three quadratic ones $L_{j}(1 \leqq j \leqq 3)$, namely $K_{1}=k_{5}, K_{2}=\boldsymbol{Q}(\sqrt{5}, \sqrt{-3}), K_{3}=\boldsymbol{Q}\left(\zeta_{15}+\zeta_{15}^{-1}\right), L_{1}=\boldsymbol{Q}(\sqrt{5})$, $L_{2}=\boldsymbol{Q}(\sqrt{-3}), L_{3}=\boldsymbol{Q}(\sqrt{-15})$. In the biquadratic field K_{2}, a prime number 2 remains prime in its subfield L_{1}. Then using Lemma 2 , we see that K_{2} is non-monogenic. The other five subfields are monogenic by [18]. Next we take the cyclotomic field k_{371} with
composite conductor $53 \cdot|-7|$. This field has three quartic subfields $K_{j}(1 \leqq j \leqq 3)$;

$$
K_{1}=\boldsymbol{Q}\left(\eta_{\chi_{53}}\right), \quad K_{2}=\boldsymbol{Q}(\sqrt{53}, \sqrt{-7}), \quad K_{3}=\boldsymbol{Q}\left(\eta_{\chi_{371}}\right)
$$

In the field K_{2}, since 2 remains prime in the quadratic subfield $\boldsymbol{Q}(\sqrt{53})$ and is decomposed in $\boldsymbol{Q}(\sqrt{-7})$, i.e., its relative degree $f_{K_{2}}$ with respect to K_{2} / \boldsymbol{Q} is 2 , we see by Lemma 2 that K_{2} is non-monogenic. However, since the relative degree $f_{K_{1}}$ with respect to K_{1} / \boldsymbol{Q} is 4 , we could not use Lemma 2 for K_{1}. Since the conductor of K_{1} is a prime $>5, K_{1}$ is also non-monogenic by the former work [11]. Now we shall show that K_{3} is monogenic and this is a new example, which was not obtained by the previous method in [10].
Let $D=d d_{1}$ be a square free odd integer with $d=a^{2}+4 b^{2} \equiv-d_{1} \equiv 1(\bmod 4)$ and $d=\prod_{j=1}^{r} p_{j}$ and $d_{1}=\prod_{k=1}^{s} q_{k}$, the canonical factorizations of d and d_{1}, respectively. Let $\delta=\prod_{j=1}^{r} \pi_{j}$ be the prime decomposition of a factor $\delta=a+2 b i$ of d with $i=\sqrt{-1}$ in k_{4}, where $p_{j}=\pi_{j} \cdot \overline{\pi_{j}}, d=\delta \cdot \bar{\delta}$; here $\bar{\alpha}$ denotes the complex conjugate of $\alpha \in k_{4}$. Let G be the Galois group of the cyclotomic extension k_{D} / \boldsymbol{Q}. We identify the group G with the reduced residue group modulo D. Let $\chi_{p}(x)=\left(\frac{x}{\pi_{j}}\right)_{4}$ be a pure quartic character with conductor p_{j} for $x \in G$, where $\left(\frac{\cdot}{\pi_{j}}\right)_{4}$ means the quartic residue symbol modulo π_{j} with normalized $\pi_{j} \equiv 1\left(\bmod (1-i)^{3}\right)(1 \leqq j \leqq r)$. Then the quartic character χ_{d} is defined by $\prod_{j=1}^{r} \chi_{p_{j}}$. Let ψ_{d} and $\psi_{d_{1}}$ denote the quadratic characters χ_{d}^{2} and $\prod_{k=1}^{s} \psi_{q_{k}}$ for the quadratic character $\psi_{q_{k}}$ with conductor q_{k}, respectively. Then $\chi=\chi_{d} \psi_{d_{1}}$ is a quartic character with conductor $d d_{1}$. Let $\tau(\chi)=\sum_{x \in G} \chi(x) \zeta_{D}^{x}$ be the Gauß sum attached with χ. From the norm relation of the Gauß sum, Jacobi sum and the decomposition of $\tau(\chi)$, we have

$$
\begin{aligned}
\tau\left(\chi_{p}\right) \tau\left(\bar{\chi}_{p}\right) & =\chi_{p}(-1) p \\
\tau\left(\chi_{p}\right)^{2} / \tau\left(\chi_{p}^{2}\right) & =-\chi_{p}(-1) \pi_{p} \\
\tau(\chi) & =\left(\prod_{j=1}^{r} \chi_{p_{j}}\left(d / p_{j}\right)\right)\left(\prod_{k=1}^{s} \psi_{q_{k}}\left(d_{1} / q_{k}\right)\right)\left(\prod_{j=1}^{r} \tau\left(\chi_{\pi_{j}}\right)\right)\left(\prod_{k=1}^{s} \tau\left(\psi_{q_{k}}\right)\right)
\end{aligned}
$$

where $\bar{\chi}_{p}$ denotes the complex conjugate character of χ_{p}. Then we can derive for $d=\delta \cdot \bar{\delta}$,
$\delta \equiv 1\left(\bmod (1-i)^{3}\right)$,

$$
\begin{aligned}
\tau(\chi) \tau(\bar{\chi}) & =\chi(-1) d d_{1}=(-1)^{s} d d_{1} \\
\tau(\chi)^{2} & =(-1)^{r+s} \psi_{d}\left(d_{1}\right) \delta d_{1} \sqrt{d}, \\
\tau\left(\chi^{2}\right) & =(-1)^{s} \psi_{d}\left(d_{1}\right) \sqrt{d} .
\end{aligned}
$$

Let H be the kernel of χ. Then the residue class group G / H is isomorphic to a cyclic subgroup $\langle\chi\rangle$ of order 4 of the character group \mathfrak{X} of G. Let K denote the subfield of k_{D} associated with $\langle\chi\rangle$. Then K is a cyclic quartic extension over \boldsymbol{Q}, whose Galois group $\operatorname{Gal}(K / \boldsymbol{Q})$ is isomorphic to G / H. Let $\eta=\eta_{\chi}=\sum_{x \in H} \zeta_{D}^{x}$ be the associated Gauß period of $\varphi(D) / 4$ terms with the character χ of conductor D. Then we have $K=\boldsymbol{Q}(\eta)$. Fix an element $\sigma \in G$ such that $\chi(\sigma)=i$. Then we get

$$
\begin{gathered}
\eta=\left((-1)^{r+s}+\tau(\chi)+\tau\left(\chi^{2}\right)+\tau(\bar{\chi})\right) / 4 \\
\tau(\chi)^{\sigma}=-i \tau(\chi), \quad \tau\left(\chi^{2}\right)^{\sigma}=-\tau\left(\chi^{2}\right), \quad \tau(\bar{\chi})^{\sigma}=i \tau(\bar{\chi}) .
\end{gathered}
$$

Lemma 2.1. Being the same notation as above, it holds that

$$
Z_{K}=\boldsymbol{Z}\left[1, \eta, \eta^{\sigma}, \eta^{\sigma^{2}}\right]=\boldsymbol{Z}\left[1, \eta, \eta^{\sigma}, \eta+\eta^{\sigma^{2}}\right]
$$

Proof. Since the set $\left\{\eta, \eta^{\sigma}, \eta^{\sigma^{2}}, \eta^{\sigma^{3}}\right\}$ forms a normal basis of Z_{K}, we have $Z_{K}=$ $\boldsymbol{Z}\left[1, \eta, \eta^{\sigma}, \eta^{\sigma^{2}}\right]$ by $(-1)^{r+s}=\eta+\eta^{\sigma}+\eta^{\sigma^{2}}+\eta^{\sigma^{3}}$. Applying a suitable special linear transformation to a basis $\left\{1, \eta, \eta \eta^{\sigma}, \eta^{\sigma^{2}}\right\}$, we obtain the basis $\left\{1, \eta, \eta{ }^{\sigma}, \eta+\eta^{\sigma^{2}}\right\}$.

Now, we choose the integral basis $\left\{1, \eta, \eta+\eta^{\sigma^{2}}, \eta{ }^{\sigma}\right\}$ because the number $\eta+\eta^{\sigma^{2}}$ $=\left\{(-1)^{r+s}+\tau\left(\chi^{2}\right)\right\} / 2=\left\{(-1)^{r+s}+\sqrt{d}\right\} / 2$ belongs to $k=\boldsymbol{Q}(\sqrt{d})$. Assume that we have $Z_{K}=\boldsymbol{Z}[\xi]$ for $\xi=x \eta+y \eta^{\sigma}+z\left(\eta+\eta^{\sigma^{2}}\right)$. Then for the candidate ξ of a power integral basis, the different $\mathfrak{d}_{K}(\xi)$ of ξ should be equal to the field different \mathfrak{d}_{K}. By Hasse's Conductor-Discriminant formula, we have $d_{K}=\prod_{\rho \in<\chi>} f_{\rho}=1 \cdot d d_{1} \cdot d \cdot d d_{1}=d^{3} d_{1}^{2}$ and $d_{K}=\mathrm{N}_{K}\left(\mathfrak{d}_{K}\right)$, where f_{ρ} denotes the conductor of a character ρ. By $\mathfrak{d}_{K}(\xi)=\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\sigma^{2}}\right)\left(\xi-\xi^{\sigma^{3}}\right)$ we have

$$
\begin{aligned}
\pm d_{K}(\xi) & =N_{K}\left(\mathfrak{d}_{K}(\xi)\right) \\
& =\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\sigma^{2}}\right)\left(\xi-\xi^{\sigma^{3}}\right) \\
& \times\left(\xi^{\sigma}-\xi^{\sigma^{2}}\right)\left(\xi^{\sigma}-\xi^{\sigma^{3}}\right)\left(\xi^{\sigma}-\xi\right) \\
& \times\left(\xi^{\sigma^{2}}-\xi^{\sigma^{3}}\right)\left(\xi^{\sigma^{2}}-\xi\right)\left(\xi^{\sigma^{2}}-\xi^{\sigma}\right) \\
& \times\left(\xi^{\sigma^{3}}-\xi\right)\left(\xi^{\sigma^{3}}-\xi^{\sigma}\right)\left(\xi^{\sigma^{3}}-\xi^{\sigma^{2}}\right) \\
& =\left\{\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\sigma}\right)^{\sigma^{2}}\right\}^{2}\left\{\left(\xi-\xi^{\sigma^{2}}\right)\left(\xi-\xi^{\sigma^{2}}\right)^{\sigma}\right\}^{2}\left[\left\{\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\sigma}\right)^{\sigma^{2}}\right\}^{2}\right]^{\sigma}
\end{aligned}
$$

Here, we select $\xi=x \eta+z\left(\eta+\eta^{\sigma^{2}}\right)$ with $y=0$ and put

$$
I=N_{K / k}\left(\mathfrak{d}_{K / k}(\xi)\right)=-\left(\xi-\xi^{\sigma^{2}}\right)^{2}, \quad J=N_{K / k}\left(\mathfrak{d}_{k}(\xi)\right)=\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\sigma}\right)^{\sigma^{2}}
$$

Then it follows that $I=x^{2}\left(\eta-\eta^{\sigma^{2}}\right)^{2}$. On the other hand, by the transitive law of the field differents for $K \supset k \supset \boldsymbol{Q}$, we have

$$
\mathfrak{d}_{K}=\mathfrak{d}_{K / k} \mathfrak{d}_{k},
$$

where $\mathfrak{d}_{K / k}$ is the relative different with respect to K / k, namely

$$
\mathfrak{d}_{K / k}=<\alpha-\alpha^{\sigma^{2}} ; \forall \alpha \in Z_{K}>
$$

Thus, by $\mathrm{N}_{K}\left(\mathfrak{d}_{K}\right)=\mathrm{N}_{K}\left(\mathfrak{d}_{K / k}\right) \mathrm{N}_{K}\left(\mathfrak{d}_{k}\right), \mathrm{N}_{K}\left(\mathfrak{d}_{K}\right)=d_{K}=d^{3} d_{1}^{2}$ and $\mathrm{N}_{k}\left(\mathfrak{d}_{k}\right)=d$, we obtain $\mathrm{N}_{K}\left(\mathfrak{d}_{K / k}\right)=d d_{1}^{2}$, namely the relative discriminant

$$
d_{K / k} \cong \mathrm{~N}_{K / k}\left(\mathfrak{d}_{K / k}\right) \cong \sqrt{d} d_{1} .
$$

Here $\alpha \cong \beta$ means that both sides are equal to each other as ideals. Then $I=x^{2} d_{1} \sqrt{d} \cdot \gamma$ for some integer $\gamma \in k$. Since the 'obstacle' factor $x^{2} \gamma$ should disappear, we have $x= \pm 1$. By virtue of $\mathrm{N}_{K}\left(\mathfrak{d}_{k}(\xi)\right)^{2} \equiv 0\left(\bmod d_{K} / d_{K / k}^{2}\right)$ and $d_{K} / d_{K / k}^{2}=d^{3} d_{1}^{2} /\left(d d_{1}^{2}\right)=d^{2}$, we obtain $J \cong \mathfrak{d}_{k}(\xi) \mathfrak{d}_{k}(\xi)^{\sigma^{2}} \equiv 0(\bmod \sqrt{d})$. Next we consider the following linear relation of three partial differents;

$$
N_{K / k}\left(\mathfrak{d}_{k}(\xi)\right)-N_{k}\left(\mathfrak{d}_{K / k}(\xi)\right)-N_{K / k}\left(\mathfrak{d}_{k}(\xi)^{\sigma^{-1}}\right)=0
$$

namely,

$$
\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\sigma}\right)^{\sigma^{2}}-\left(\xi-\xi^{\sigma^{2}}\right)\left(\xi-\xi^{\sigma^{2}}\right)^{\sigma}-\left(\xi-\xi^{\sigma^{-1}}\right)\left(\xi-\xi^{\sigma^{-1}}\right)^{\sigma^{2}}=0
$$

For ξ to satisfy $Z_{K}=\boldsymbol{Z}[\xi]$, there must be such units ε_{j} in k as

$$
\varepsilon_{1} \sqrt{d}+\varepsilon_{2} \sqrt{d} d_{1}+\varepsilon_{3} \sqrt{d}=0
$$

Here by $N_{K / k}\left(\mathfrak{d}_{k}(\xi)\right)=\mathfrak{d}_{k}(\xi) \mathfrak{d}_{k}(\xi)^{\sigma^{2}} \cong \sqrt{d} d_{1}$, we have $N_{k}\left(\mathfrak{d}_{K / k}(\xi)\right)=\mathfrak{d}_{K / k}(\xi) \mathfrak{d}_{K / k}(\xi)^{\sigma}$ $\cong \sqrt{d} d_{1}$, because, for a ramified ideal \mathfrak{L} in K, i.e., $\mathfrak{L} \mid d d_{1}, \mathfrak{L}^{\sigma}=\mathfrak{L}$ holds. Then we get

$$
\left\{\begin{array}{l}
\varepsilon_{1}+\varepsilon_{2} d_{1}+\varepsilon_{3}=0, \tag{*}\\
\bar{\varepsilon}_{1}+\bar{\varepsilon}_{2} d_{1}+\bar{\varepsilon}_{3}=0,
\end{array}\right.
$$

where $\bar{\varepsilon}$ for $\varepsilon \in k$ means the real conjugate of ε with respect to K / Q. When we consider the simultaneous equation $(*)_{0}$ with coefficients $\varepsilon_{j}, \bar{\varepsilon}_{j}$, under the assumption that the rank of $(*)_{0}$ would be equal to 1 , then we have $1 \pm d_{1} \pm 1=0$, which is impossible by
$d_{1} \geqq 3$. Then the rank of $(*)_{0}$ is equal to 2 . Without loss of generality, we may consider the equations dividing both sides of $(*)_{0}$ by ε_{2};

$$
\left\{\begin{array}{l}
\varepsilon_{1} \cdot 1+1 \cdot d_{1}+\varepsilon_{3} \cdot 1=0 \tag{*}\\
\bar{\varepsilon}_{1} \cdot 1+1 \cdot d_{1}+\bar{\varepsilon}_{3} \cdot 1=0
\end{array}\right.
$$

with units $\varepsilon_{j}=\frac{v_{j}+u_{j} \sqrt{d}}{2}$ in k. Thus we have the ratios

$$
1: d_{1}: 1=\left|\begin{array}{c}
1 \\
\varepsilon_{3} \\
1 \bar{\varepsilon}_{3}
\end{array}\right|:\left|\begin{array}{ll}
\varepsilon_{3} & \varepsilon_{1} \\
\bar{\varepsilon}_{3} \bar{\varepsilon}_{1}
\end{array}\right|:\left|\begin{array}{ll}
\varepsilon_{1} & 1 \\
\bar{\varepsilon}_{1} & 1
\end{array}\right| .
$$

Then by 1:1 $=\bar{\varepsilon}_{3}-\varepsilon_{3}: \varepsilon_{1}-\bar{\varepsilon}_{1}=-u_{3}:-u_{1}$ and $d_{1}: 1=\varepsilon_{3} \bar{\varepsilon}_{1}-\overline{\varepsilon_{3} \bar{\varepsilon}_{1}}: \varepsilon_{1}-\bar{\varepsilon}_{1}$ $=\left(v_{3}\left(-u_{1}\right)+u_{3} v_{1}\right) / 2: u_{1}$, we obtain $d_{1}=-\left(v_{3}+v_{1}\right) / 2$. Since $\varepsilon_{3}=\left(v_{3}+u_{3} \sqrt{d}\right) / 2$, $\varepsilon_{1}=\left(v_{1}+u_{1} \sqrt{d}\right) / 2$ and $-u_{3}=u_{1}$, we have $v_{3}= \pm v_{1}$, and hence $v_{3}=v_{1}$ by $d_{1} \neq 0$. Then $d_{1}=-v_{1}$. Thus $N_{k}\left(\varepsilon_{1}\right)=\left(d_{1}^{2}-u_{1}^{2} d\right) / 4= \pm 1$, namely $d_{1}^{2} \pm 4=u_{1}^{2} d$ holds. From $\mathfrak{d}_{k}(\xi)=\left(2 z+(-1)^{s} \psi_{d_{1}}(d) \sqrt{d}\right) / 2+\{(1+i) \tau(\chi)+(1-i) \tau(\bar{\chi})\} / 4$, it follows that

$$
\begin{align*}
J & =N_{K / k}\left(\mathfrak{d}_{k}(\xi)\right)=\mathfrak{d}_{k}(\xi) \mathfrak{d}_{k}(\xi)^{\sigma^{2}} \\
& =[(2 z \pm 1) \sqrt{d} / 2+\{(1+i) \tau(\chi)+(1-i) \tau(\bar{\chi})\} / 4] \\
& \times[(2 z \pm 1) \sqrt{d} / 2-\{(1+i) \tau(\chi)+(1-i) \tau(\bar{\chi})\} / 4] \\
& =(2 z \pm 1)^{2} d / 4-\left\{2 i \tau(\chi)^{2}-2 i \tau(\bar{\chi})^{2}+4 \tau(\chi) \tau(\bar{\chi})\right\} /(16) \\
& =(2 z \pm 1)^{2} d / 4-\left\{2 i\left(\pm \delta d_{1} \sqrt{d}\right)-2 i\left(\pm \bar{\delta} d_{1} \sqrt{d}\right)+4\left(\pm d d_{1}\right)\right\} /(16) \tag{16}\\
& \left.=(2 z \pm 1)^{2} d / 4-\left\{ \pm 8 b d_{1} \sqrt{d}\right)+4\left(\pm d d_{1}\right)\right\} /(16) \\
& \left.=\left\{ \pm b d_{1} / 2+\left[\left\{(2 z \pm 1)^{2}-d_{1}\right\} / 4\right] \sqrt{d}\right)\right\} \sqrt{d} .
\end{align*}
$$

Here we conclude that $(2 z \pm 1)^{2} \pm d_{1}$ is equal to $(2 z \pm 1)^{2}-d_{1}$, because J is an integer in k. We choose $b=1$ and the number $(2 z \pm 1)^{2} \pm 2$ as d_{1}. Then for $\varepsilon=\left(\pm d_{1} \pm \sqrt{d}\right) / 2$ we see that $N_{k}(\varepsilon)=-1$, namely that ε is a unit in k. Thus for square free numbers $d_{1}=(2 z+1)^{2} \pm 2$ and $d=d_{1}^{2}+4$, we obtain

$$
\begin{aligned}
d_{K}(\xi) & \cong N_{K}\left(\mathfrak{d}_{K}(\xi)\right) \\
& \cong N_{K}\left(\mathfrak{d}_{K / k}(\xi) \cdot N_{K / k}\left(\mathfrak{d}_{k}(\xi)\right)\right) \\
& \cong N_{K}\left(\mathfrak{d}_{K / k}(\xi)\right) \cdot N_{K}\left(N_{K / k}\left(\mathfrak{d}_{k}(\xi)\right)\right) \\
& \cong N_{k}(I) \cdot N_{K}(J) \\
& \cong d d_{1}^{2} \cdot(\sqrt{d})^{4}=d^{3} d_{1}^{2}
\end{aligned}
$$

where $I=N_{K / k}\left(\mathfrak{d}_{K / k}(\xi)\right), \quad J=N_{K / k}\left(\mathfrak{d}_{k}(\xi)\right)$ and $\sigma^{2} \operatorname{Gal}(K / \boldsymbol{Q})=\operatorname{Gal}(K / \boldsymbol{Q})$. Therefore we verified the following Theorem.

Theorem 2.2. Let $d_{1}=(z+1)^{2} \pm 2(z \in \boldsymbol{Z})$ and $d=d_{1}^{2}+4$ be square free integers. Then the cyclic quartic field $K=\boldsymbol{Q}(\eta)$ with conductor $d d_{1}$ is monogenic; namely its ring Z_{K} of integers has a power integral basis $Z_{K}=\boldsymbol{Z}[\xi]$ for $\xi=\eta+$ $z \sqrt{d}$. Here η means the associated Gauß period of $\varphi\left(d d_{1}\right) / 4$ terms with the quartic character $\chi=\chi_{d} \psi_{d_{1}}$, where χ_{d} denotes the quartic character with conductor d and $\psi_{d_{1}}$ the quadratic one with conductor d_{1}.

§ 3. A new family of monogenic cyclic quartic fields based on bases of the fields

Let K be a cyclic quartic extension $\boldsymbol{Q}(\theta)$ over \boldsymbol{Q} associated to the character $\chi=$ $\chi_{d} \psi_{d_{1}}$, where χ_{d} is a quartic and $\psi_{d_{1}}$ is a quadratic character. Then K has a quadratic subfield $k=\boldsymbol{Q}(\sqrt{d})$ with the field discriminant d. In this article, we restrict ourselves within an odd factor $d \equiv 5(\bmod 8)$ of the conductor $d d_{1}$ of K. It is because Z_{K} has no power basis if $d \equiv 1(\bmod 8)$. Indeed, the prime 2 is completely decomposed in k in this case, and hence the relative degree f of 2 with respect to K / Q is at most 2 . Thus by Lemma 2 of [17], Z_{K} has no power basis. Since K is a quadratic extension of k, we can choose an integer $\sqrt{\frac{a+b \sqrt{d}}{2}}$ for $a, b \in \boldsymbol{Z}, a \equiv b(\bmod 2)$ as a generator θ for the field K. Here we use the following lemmas.

Lemma 3.1 ([17]). Let ℓ be a prime number and let F / Q be a Galois extension of degree $n=e f g$ with ramification index e and the relative degree f with respect to ℓ. If one of the following two conditions is satisfied, then the ring Z_{F} of integers in F has no power integral basis, i.e., F is non-monogenic:
(1) $e \ell^{f}<n$ and $f=1$;
(2) $e \ell^{f} \leqq n+e-1$ and $f \geqq 2$.

Lemma $3.2([6,19]) . \quad$ Being the same notation as above, the field $\boldsymbol{Q}(\sqrt{(a+b \sqrt{d}) / 2})$ is a cyclic quartic extension over \boldsymbol{Q} if and only if there exists an integer $j \in \boldsymbol{Z}$ such that

$$
\frac{a^{2}-b^{2} d}{4}=j^{2} d
$$

hence $a \equiv 0(\bmod d)$ in this case.
Let G be the Galois group $\langle\sigma\rangle$ of the cyclic quartic extension K / \boldsymbol{Q} with a generator σ. We may suppose

$$
\theta^{\sigma}=\sqrt{\frac{a-b \sqrt{d}}{2}} \text { and } \theta^{\sigma^{2}}=-\theta
$$

Proposition 3.3. Let $d\left(1, \sqrt{d}, \theta, \theta^{\sigma}\right)$ be the discriminant of a basis $\left\{1, \sqrt{d}, \theta, \theta^{\sigma}\right\}$ of the field K, where $\theta=\sqrt{\frac{a+b \sqrt{d}}{2}}, \quad \theta^{\sigma}=\sqrt{\frac{a-b \sqrt{d}}{2}}$ and $\quad \theta^{\sigma^{2}}=-\theta$. Then it holds that

$$
d\left(1, \sqrt{d}, \theta, \theta^{\sigma}\right)=\left|\begin{array}{cccc}
1 & \sqrt{d} & \theta & \theta^{\sigma} \\
1-\sqrt{d} & \theta^{\sigma} & -\theta \\
1 & \sqrt{d} & -\theta & -\theta^{\sigma} \\
1-\sqrt{d} & -\theta^{\sigma} & \theta
\end{array}\right|^{2}=64 a^{2} d
$$

On the other hand, we obtain the field discriminant d_{K} by the next lemma.
Lemma 3.4 ([18]). For the field discriminant d_{K} of the cyclic quartic field K associated to quartic character $\chi=\chi_{d} \psi_{d_{1}}$, it holds that

$$
\begin{equation*}
d_{K}=f_{I} f_{\chi} f_{\chi^{2}} f_{\chi^{3}}=d^{3} d_{1}^{2} \tag{1}
\end{equation*}
$$

where f_{ρ} and I denote the conductor of a character ρ and the principal character, respectively;

$$
\begin{equation*}
d_{K}=\mathrm{N}_{k}\left(d_{K / k}\right) d_{k}^{2}=d^{3} d_{1}^{2}, \tag{2}
\end{equation*}
$$

where k denotes the quadratic subfield $\boldsymbol{Q}(\sqrt{d})$ of $K, d_{K / k}$ the relative discriminant with respect to K / k and N_{k} the norm of an ideal in k with respect to k / \boldsymbol{Q}, respectively.

Lemma 3.5 ([6]). Being the same notation as above, for a number $\xi=x+y \sqrt{d}+z \theta+w \theta^{\sigma}$ of the field $K, x, y, z, w \in \boldsymbol{Q}$, it holds that $\xi \in Z_{K}$ if and only if the following two conditions hold:

$$
\begin{equation*}
\operatorname{Tr}_{K / k}(\xi)=2(x+y \sqrt{d}) \in Z_{K} \tag{IT}
\end{equation*}
$$

(IN) $N_{K / k}(\xi)=\left\{x^{2}+y^{2} d-\left(z^{2}+w^{2}\right) \frac{a}{2}\right\}+\left\{2 x y-\left(z^{2}-w^{2}\right) \frac{b}{2}-2 z w j\right\} \sqrt{d} \in Z_{K}$.

Theorem 3.6. Let $\chi=\chi_{d} \psi_{d_{1}}$ be the composite quartic character with a quartic χ_{d} with odd conductor d and a quadratic $\psi_{d_{1}}$ with odd conductor d_{1}. Then a cyclic quartic field $K=\boldsymbol{Q}(\theta)$ with $\theta=\sqrt{\frac{a+b \sqrt{d}}{2}}$ for square free integers a and b is monogenic, namely $\boldsymbol{Z}_{K}=\boldsymbol{Z}[\xi]$ for some $\xi=x+y \sqrt{d}+z \theta+w \theta^{\sigma}, x, y, z, w \in \boldsymbol{Q}$ and a generator σ of the Galois group of K / \boldsymbol{Q}, if and only if the following three conditions are satisfied:
(1) For $a=d d_{1} a_{0}, \quad b=d_{1} b_{0}, d \equiv 5(\bmod 8),-d_{1} \equiv 1(\bmod 4)$, it holds that $\frac{d a_{0}^{2}-b_{0}^{2}}{4}=j_{0}^{2}$ and a_{0}, b_{0}, j_{0} are rational integers;
(2) $\quad T_{r_{K / k}}(\xi)=2(x+y \sqrt{d})$ belongs to \boldsymbol{Z}_{k}, and
$N_{K / k}(\xi)=\left\{x^{2}+y^{2} d-\left(z^{2}+w^{2}\right) \frac{d d_{1} a_{0}}{2}\right\}+\left\{2 x y-\left(z^{2}-w^{2}\right) \frac{d_{1} b_{0}}{2}-2 z w d_{1} j_{0}\right\} \sqrt{d}$ belongs to Z_{k};
(3) For $X=\left(z^{2}-w^{2}\right) j_{0}-z w b_{0}$ and $Y=4 y^{2}-\left(z^{2}+w^{2}\right) d_{1} a_{0}$, it holds that $X= \pm \frac{1}{4}$ and $2 d_{1} X-Y \sqrt{d}$ is a unit in k.

Proof. First we immediately see that the assertion (2) holds if and only if $\xi \in Z_{K}$. We now assume $\xi \in Z_{K}$. We notice that the assertion $Z_{K}=\boldsymbol{Z}[\xi]$ if and only if $\pm d_{K}=$ $d_{K}(\xi)$. For the different $\mathfrak{d}_{K}(\xi)=\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\sigma^{2}}\right)\left(\xi-\xi^{\sigma^{3}}\right)$, it holds that

$$
d_{K}(\xi)=N_{K}\left(\mathfrak{d}_{K}(\xi)\right)=N_{K}\left(\mathfrak{d}_{K / k}(\xi) \cdot N_{K / k}\left(\mathfrak{d}_{k}(\xi)\right)\right)
$$

We put

$$
(\mathrm{I})=N_{k}\left(\mathfrak{d}_{K / k}(\xi)\right)=\left(\xi-\xi^{\sigma^{2}}\right)\left(\xi-\xi^{\sigma^{2}}\right)^{\sigma}, \quad(\mathrm{II})=N_{K / k}\left(\mathfrak{d}_{k}(\xi)\right)=\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\sigma}\right)^{\sigma^{2}}
$$

Then, it follows that

$$
\begin{aligned}
N_{K}\left(\mathfrak{d}_{K / k}(\xi)\right) & =N_{k}\left(N_{K / k}\left(\mathfrak{d}_{K / k}(\xi)\right)=N_{k}\left(d_{K / k}(\xi)\right)\right. \\
& =N_{K / k}\left(N_{k}\left(\mathfrak{d}_{K / k}(\xi)\right)\right. \\
& =N_{K / k}\left(\left(\xi-\xi^{\sigma^{2}}\right)\left(\xi-\xi^{\sigma^{2}}\right)^{\sigma}\right) \\
& =(\mathrm{I})^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
N_{K}\left(\mathfrak{d}_{k}(\xi)\right) & =N_{K / k}\left(N_{k}\left(\mathfrak{d}_{k}(\xi)\right)\right)=N_{K / k}\left(d_{k}(\xi)\right) \\
& =N_{k}\left(N_{K / k}\left(\mathfrak{d}_{k}(\xi)\right)\right) \\
& =\left(\xi-\xi^{\sigma}\right)\left(\xi-\xi^{\sigma}\right)^{\sigma^{2}}\left(\xi-\xi^{\sigma}\right)^{\sigma}\left(\xi-\xi^{\sigma}\right)^{\sigma^{3}}, \\
& =(\mathrm{II})(\mathrm{II})^{\sigma}
\end{aligned}
$$

Specifically,

$$
d_{K / k}(\theta)=N_{K / k}\left(\mathfrak{d}_{K / k}(\theta)\right)=\left(\theta-\theta^{\sigma^{2}}\right)\left(\theta-\theta^{\sigma^{2}}\right)^{\sigma^{2}}=(\theta-(-\theta))(\theta-(-\theta))^{\sigma^{2}}=4 \theta \theta^{\sigma^{2}}
$$

Then by Lemma 3, it holds that

$$
\begin{aligned}
\frac{d_{K}(\theta)}{d_{k}(\theta)^{4}} & =N_{k}\left(d_{K / k}(\theta)\right)=\left(4 \theta \theta^{\sigma^{2}}\right)\left(4 \theta \theta^{\sigma^{2}}\right)^{\sigma}=2^{4}\left(\theta \theta^{\sigma}\right)\left(\theta \theta^{\sigma}\right)^{\sigma^{2}} \\
& =2^{4} \sqrt{\frac{a^{2}-b^{2} d}{4}}\left((-1)^{2} \sqrt{\frac{a^{2}-b^{2} d}{4}}\right)=2^{4} j^{2} d
\end{aligned}
$$

Since $\operatorname{gcd}\left(d\left(1, \sqrt{d}, \theta, \theta^{\sigma}\right), N_{k}\left(d_{K / k}(\theta)\right)=\operatorname{gcd}\left(2^{6} a^{2} d, 2^{4} j^{2} d\right) \equiv 0\left(\bmod d_{K / k}^{2}\right)\right.$ for $d_{K / k}^{2}=\frac{d_{K}}{d_{k}^{2}}=\frac{d^{3} d_{1}^{2}}{d^{2}}=d d_{1}^{2}$, we have $\operatorname{gcd}\left(a^{2} d, j^{2} d\right) \equiv 0\left(\bmod d d_{1}^{2}\right)$. Then we can put $a=d d_{1} a_{0}, j=d_{1} j_{0}, a_{0}, j_{0} \in \boldsymbol{Z}$ together with $d\left(1, \sqrt{d}, \theta, \theta^{\sigma}\right) \equiv 0\left(\bmod d_{K}\right)$, and hence by $\frac{a^{2}-b^{2} d}{4}=j^{2} d$ in Lemma 3 , we get $b=d_{1} b_{0}$. Therefore we obtain the assertion (1),
because $K=\boldsymbol{Q}(\theta)$ is a cyclic quartic field. For a generator $\xi=x+y \sqrt{d}+z \theta+w \theta^{\sigma}$ of Z_{K} in $\boldsymbol{Q}(\theta)$ we have

$$
\begin{aligned}
(\mathrm{I}) & =2\left(z \theta+w \theta^{\sigma}\right) \cdot 2\left(z \theta^{\sigma}+w \theta^{\sigma^{2}}\right) \\
& =2^{2}\left(z^{2} \theta \theta^{\sigma}+z w\left(\theta \theta^{\sigma^{2}}+\left(\theta^{\sigma}\right)^{2}\right)+w^{2} \theta^{\sigma} \theta^{\sigma^{2}}\right) \\
& =2^{2}\left(z^{2} j \sqrt{d}+z w\left(-\frac{a+b \sqrt{d}}{2}+\frac{a-b \sqrt{d}}{2}\right)+w^{2}(-j \sqrt{d})\right) \\
& =2^{2}\left(-z w b \sqrt{d}+\left(z^{2}-w^{2}\right) j \sqrt{d}\right) \\
& =2^{2} X d_{1} \sqrt{d} \quad \text { with } \quad X=\left(z^{2}-w^{2}\right) j_{0}-z w b_{0}
\end{aligned}
$$

and

$$
\begin{aligned}
(\mathrm{II}) & =\left(2 y \sqrt{d}+z\left(\theta-\theta^{\sigma}\right)+w\left(\theta+\theta^{\sigma}\right)\right)\left(2 y \sqrt{d}-z\left(\theta-\theta^{\sigma}\right)-w\left(\theta+\theta^{\sigma}\right)\right) \\
& =4 y^{2} d-\left\{z\left(\theta-\theta^{\sigma}\right)+w\left(\theta+\theta^{\sigma}\right)\right\}^{2} \\
& =4 y^{2} d-\left\{z^{2}\left(\theta^{2}+\left(\theta^{\sigma}\right)^{2}-2 \theta \theta^{\sigma}\right)+w^{2}\left(\theta^{2}+\left(\theta^{\sigma}\right)^{2}+2 \theta \theta^{\sigma}\right)+2 z w\left(\theta^{2}-\left(\theta^{\sigma}\right)^{2}\right)\right\} \\
& =4 y^{2} d-\left\{z^{2}(a-2 j \sqrt{d})+w^{2}(a+2 j \sqrt{d})+2 z w(b \sqrt{d})\right\} \\
& =\left\{4 y^{2}-\left(z^{2}+w^{2}\right) a_{0} d_{1}\right\} d-2\left\{z^{2} j-w^{2} j-z w b\right\} \sqrt{d} \\
& =\left(Y \sqrt{d}-2 X d_{1}\right) \sqrt{d} \\
& \text { with } \quad Y=4 y^{2}-\left(z^{2}+w^{2}\right) a_{0} d_{1}, \quad X=\left(z^{2}-w^{2}\right) j_{0}-z w b_{0} .
\end{aligned}
$$

Hence, $d_{K}(\xi)=d_{K}$ if and only if two numbers $2^{2} X$ and $Y \sqrt{d}-2 d_{1} X$ are units in k, that is,

$$
\begin{aligned}
\left(z^{2}-w^{2}\right) j_{0}-z w b_{0} & = \pm \frac{1}{4} \\
\left(4 y^{2}-\left(z^{2}+w^{2}\right) a_{0} d_{1}\right) \sqrt{d}-2\left(\left(z^{2}-w^{2}\right) j_{0}-z w b_{0}\right) d_{1} & =\text { a unit in } k .
\end{aligned}
$$

§ 4. The density of certain monogenic fields

Finally we construct certain monogenic cyclic quartic fields K associated to the characters of the form $\chi=\chi_{d} \psi_{d_{1}}$ where χ_{d} is a quartic character with conductor d and $\psi_{d_{1}}$ a quadratic character with conductor $\left|-d_{1}\right|$. Let $\langle\sigma\rangle$ be the Galois group of K / Q and $\theta=\sqrt{\frac{a+b \sqrt{d}}{2}}$ be a primitive element of K over \boldsymbol{Q}. Here we can put $a=d d_{1} a_{0}, b=$ $d_{1} b_{0}$ and $j=d_{1} j_{0}$ by the previous section. For a number $\xi=x+y \sqrt{d}+z \theta+w \theta^{\sigma}$, we select
$x=y=\frac{d_{2}}{4}, d_{2} \equiv 1(\bmod 2), z=\frac{1}{2}, w=0, j_{0}=1, a_{0}=-1,-d_{1}=-d_{2}^{2} \pm 2, d=d_{1}^{2}+4$.

Then by

$$
\begin{aligned}
Y & =4 y^{2}-\left(z^{2}+w^{2}\right) a_{0} d_{1} \equiv \frac{1}{2}(\bmod 1) \\
2 X & =2\left(\left(z^{2}-w^{2}\right) j_{0}-z w b_{0}\right)=\frac{1}{2}
\end{aligned}
$$

it holds that $Y \sqrt{d}-2 X d_{1} \in \boldsymbol{Z}_{k}$.
We estimate the density Δ of square free numbers $d_{1}=d_{2}^{2}-2$ and $d=d_{1}^{2}+4$. Assume $d_{2}^{2}-2 \equiv D_{2}^{2}-2 \equiv 0\left(\bmod p^{2}\right)$ for an odd prime p with $d_{2} \leqq D_{2}$ and $d_{2} \equiv D_{2} \equiv 1(\bmod 2)$. Then $\left(d_{2}-D_{2}\right)\left(d_{2}+D_{2}\right) \equiv 0\left(\bmod p^{2}\right)$. If $d_{2}-D_{2} \equiv d_{2}+D_{2} \equiv 0(\bmod p)$, then $2 d_{2} \equiv 0(\bmod p)$, and hence $d_{2} \equiv 0(\bmod p)$; so $-2 \equiv-d_{2}^{2} \equiv 0(\bmod p)$, which is a contradiction. Thus only either one of $D_{2} \equiv d_{2}$ or $-d_{2}\left(\bmod p^{2}\right)$ holds. Let $\mathrm{I}_{t}=$ $\left(t p^{2},(t+1) p^{2}\right)$ be the unique interval of the form which contains d_{2}, and J_{t} be the set $\left\{D_{2} ; p^{2} \mid\left(D_{2}^{2}-2\right), D_{2} \in \mathrm{I}_{t}\right\}$. Then $J_{t}=\left\{d_{2},(2 t+1) p^{2}-d_{2}\right\}$ for $t p^{2}<(2 t+1) p^{2}-d_{2}<$ $(t+1) p^{2}$. However, since $(2 t+1) p^{2}-d_{2} \equiv 0(\bmod 2)$, it holds that $\sharp J_{t}=\sharp\left\{d_{2}\right\}=1$.
Hence, for odd primes p

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\sharp\left\{d_{1}=d_{2}^{2}-2<N ; d_{1} \text { odd square free }\right\}}{N} \\
& >\lim _{N \rightarrow \infty} \frac{1}{N}\left(N-\sharp\left\{d_{1} ; d_{1}<N, p^{2} \mid d_{1}\right\}-\sharp\left\{d_{1} ; d_{1}<N, 2 \mid d_{1}\right\}\right) \\
& >1-\sum_{\left(\frac{2}{p}\right)=1} \frac{1}{p^{2}}-\frac{1}{2} ;
\end{aligned}
$$

we denote the last value by δ_{1} where $\frac{1}{2}$ means the the density of even d_{2}. For $d=d_{1}^{2}+4$, we have $p \mid d$ if and only if $\left(\frac{-1}{p}\right)=1$ if and only if $p \equiv 1(\bmod 4)$. In the ring of Gaußian integers, $p \mid d=d_{1}^{2}+4$ if and only if $p=\pi \bar{\pi}$ for a prime $\pi=a+i b$ and its conjugate $\bar{\pi}=a-i b$. Suppose that $d \equiv 0\left(\bmod p^{2}\right)$. Then since $d_{1}^{2}+4=\left(d_{1}+2 i\right)\left(d_{1}-2 i\right)=$ $\left(d_{2}^{2}-2+2 i\right)\left(d_{2}^{2}-2-2 i\right)$, if $d_{1} \equiv 0\left(\bmod p^{2}\right)$, then $\pi^{2} \mid d_{2}^{2}-2+2 i$, because $\left(d_{2}^{2}-2,2\right)=1$. Assume $d_{2}^{2}-2+2 i \equiv D_{2}^{2}-2+2 i\left(\bmod \pi^{2}\right)$ and $d_{2} \leqq D_{2}$; in the same way as above, we obtain

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} \frac{\sharp\left\{d=d_{1}^{2}+4<N ; d: \text { has a square factor }>2\right\}}{N} \\
& =\lim _{N \rightarrow \infty} \frac{1}{N} \sharp\left\{d ; d<N, p^{2} \mid d\right\} \\
& <\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{d<N, p^{2} \mid d} \frac{N}{p^{2}}=\sum_{\left(\frac{-1}{p}\right)=1} \frac{1}{p^{2}} ;
\end{aligned}
$$

we denote the last value by δ.
Let Δ be the density

$$
\lim _{N \rightarrow \infty} \frac{\sharp\left\{d=d_{1}^{2}+4<N ; d \text { and } d_{1} \text { are square free }\right\}}{N} .
$$

Then $\Delta>\delta_{1}-\delta=\left(1-\frac{1}{2}-\sum_{\left(\frac{2}{p}\right)=1} \frac{1}{p^{2}}\right)-\sum_{\left(\frac{-1}{p}\right)=1} \frac{1}{p^{2}}$ ．By virtue of the evaluation $\sum_{p \geqq 3} \frac{1}{p^{2}}<\frac{19}{72}$ ，which is due to Lemma 7 in［6］，we obtain $\Delta>\frac{1}{2}-\left(\frac{19}{72}-\frac{1}{3^{2}}\right) \times 2=\frac{7}{36}>0$. Indeed，from the fact $\left(\frac{-1}{3}\right)=\left(\frac{2}{3}\right)=-1$ ，it follows that $3 \backslash d$ and $3 \backslash d_{2}$ ；namely，the prime number 3 does not appear in the both summations $\sum_{\left(\frac{2}{p}\right)=1} \frac{1}{p^{2}}$ and $\sum_{\left(\frac{-1}{p}\right)} \frac{1}{p^{2}}$ ．Then the evaluation of $\sum_{p \geqq 5} \frac{1}{p^{2}}=\sum_{p \geqq 3} \frac{1}{p^{2}}-\frac{1}{3^{2}}$ is bounded by the value $\frac{19}{72}-\frac{1}{3^{2}}$ ．
Contrary to the cyclic quartic fields with prime conductors，we obtain
Theorem 4．1．There exist infinitely many monogenic cyclic quartic fields with odd composite conductors over the rationals．

Example 4．2．Using the parameter z in Theorem 1，several conductors of new monogenic cyclic quartic fields are given as follows；

$$
\begin{gathered}
53 \cdot|-7|_{z_{-}=1}=371, \quad 533 \cdot|-23|_{z_{-}=2}=13 \cdot 41 \cdot|-23|=12259 \\
2213 \cdot|-47|_{z_{-}=3}=104011
\end{gathered}
$$

Two monogenic fields with conductors，

$$
5 \cdot|-1|_{z_{-}=0}=5,13 \cdot|-3|_{z_{+}=0}=39
$$

coincide with the members of the former experiments［10］．
Acknowledgement．The authors would like to express their gratitude to Prof． Yuichiro Taguchi［Kyushu Univ．］for his valuable comments to §2，a referee for many notices with linguistic remarks and Prof．Ken Yamamura［National Defense Academy of Japan］for remarks on Theorem 1 and updated reference tables on monogenuity and the non－essential discriminant factor（außerwesentlicher Diskriminantenteiler）of an algebraic number field．Finally the authors would express thanks to Prof．Noriyuki Suwa［Chuo Univ．］for his ceaseless encouragements to find a new phenomenon in
漱然石 during the Conference［Algebraic Number Theory and Related Topics 2007］．

References

[1] Dummit D. S. and Kisilevsky H., Indices in cyclic cubic fields, Collection of Papers Dedicated to H. B. Mann. A. E. Ross and O. Taussky-Todd in "Number Theory and Algebra" Academic Press (New York/San Francisco/London), 1977, 29-42.
[2] Gaal, I. and Robertson, L., Power integral bases in prime-power cyclotomic fields, J. Number Theory, 120 (2006), 372-384.
[3] Gras M.-N., Non monogénéité de l'anneau des entiers de degré premier $\ell \geq 5$, J. Number Theory, 23 (1986), 347-353.
[4] Gras M.-N. and Tanoé F., Corps biquadratiques monogènes, Manuscripta Math., 86 (1995), 63-77.
[5] Győry K., Discriminant form and index form equations, Algebraic Number Theory and Diophantine Analysis (F. Halter-Koch and R. F. Tichy. Eds.), Walter de Gruyter, BerlinNew York (2000), 191-214.
[6] Y. Motoda, Notes on Quartic Fields, Rep. Fac. Sci. Engrg. Saga Univ. Math., 32-1 (2003), 1-19, Appendix and corrigenda to "Notes on Quartic Fields", ibid., 37-1(2008), 1-8.
[7] Motoda Y., Power Integral Bases for Certain Abelian Fields, Saga Univ., Ph. D. Thesis 2004, pp. 31, http://dlwww.dl.saga-u.ac.jp/contents/diss/GI00000879/motodaphd.pdf
[8] Motoda Y. and Nakahara T., Power integral bases in algebraic number fields whose Galois groups are 2-elementary abelian, Arch. Math., 83 (2004), 309-316.
[9] Motoda Y., Nakahara T. and Shah S. I. A., On a problem of Hasse for certain imaginary abelian fields, J. Number Theory, 96 (2002), 326-334.
[10] Nakahara T., On Power integral bases in the ring of integers in quartic abelian fields [in Japanese], RIMS Kôkyûroku, Kyoto Univ. Experimental Number Theory, 371 (1979), 31-46.
[11] Nakahara T., On Cyclic biquadratic fields related to a problem of Hasse, Monatsh. Math., 94 (1982), 125-132.
[12] Narkiewich W, Elementary and Analytic Theory of Algebraic Numbers, Springer-Verlag $3^{\text {rd }}$ ed., 2007, Berlin-Heidelberg-New York; PWM-Polish Scientific Publishers, Warszawa.
[13] Nakahara T. and Uehara T., Monogenesis of the Rings of Integers in Certain Abelian Fields, Preprint,
[14] Park K., Motoda Y. and Nakahara T., On integral bases of certain real octic abelian fields, Rep. Fac. Sci. Engrg. Saga Univ. Math., 34-1 (2005), 1-15.
[15] Park K., Nakahara T. and Motoda Y., On integral bases of the octic 2-elementary abelian extension fields, submitted.
[16] Robertson L., Power bases for cyclotomic integer rings, J. Number Theory, 69 (1998), 98-118.
[17] Shah S. I. A. and Nakahara T., Monogenesis of the rings of integers in certain imaginary abelian fields, Nagoya Math. J., 168 (2002), 85-92.
[18] Washington L. C., Introduction to cyclotomic fields, Graduate texts in mathematics $2^{\text {nd }}$ ed., 83, 1997, Springer-Verlag, New York-Heidelberg-Berlin.
[19] Williams K. S., Integers of biquadratic fields, Canad. Math. Bull., 13 (1970), 519-526.
[20] Yamamura K., Bibliography on monogenuity of orders of algebraic number fields, Dec. 2007, updated ed., [91 papers with MR\# are included].
[21] Yamamura K., Bibliography on außerwesentlicher diskriminantenteiler or common index divisors in algebraic number fields, Dec. 2007, updated ed., [47 papers with MR\# are included].

[^0]: Received May 12, 2008. Revised April 13, 2009.
 2000 Mathematics Subject Classification(s): 11R04.
 Key Words: Hasse's problem, Power integral basis, Partial Different
 ${ }^{1)}$ Partially supported by grant ($\sharp 18540040$) from the Japan Society for the Promotion of Science.
 *Yatsushiro National College of Technology, Yatsushiro 866-8501, Japan.
 e-mail: motoda@as.yatsushiro-nct.ac.jp
 **Faculty of Science and Engineering, Saga University 840-8502, Japan [Current address; National University of Computer \& Emerging Sciences(NUCES]) Peshawar Campus, 160-Industrial Estate, Hayatabad, Peshawar, the Islamic Republic of Pakistan.]
 e-mail: toru.nakahara@nu.edu.pk, nakahara@ms.saga-u.ac.jp
 ${ }^{* * *}$ Department of Sciences and Humanities, NUCES Peshawar Campus, [Current address; Islamia College University Peshawar, N.W.F.P., the Islamic Republic of Pakistan.]
 e-mail: inayat.shah@nu.edu.pk
 ${ }^{\dagger}$ Faculty of Science and Engineering, Saga University 840-8502, Japan.
 e-mail: uehara@ma.is.saga-u.ac.jp

