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RIMS Kôkyûroku Bessatsu
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On a Problem of Hasse

By

Yasuo Motoda∗, Toru Nakahara1)∗∗ Syed Inayat Ali Shah∗∗∗ and
Tsuyoshi Uehara1)†

Abstract

In this article we shall construct a new family of cyclic quartic fields K with odd composite

conductors, which give an affirmative solution to a Problem of Hasse(Problem 6 in [12, p. 529]);

indeed our family consists of cyclic quartic fields whose ring ZK of integers are generated by a

single element ξ over Z. We will find an integer ξ in K by the two different ways; one of which

is based on an integral basis of ZK and the other is done on a field basis of K.

§ 1. Introduction

In the year 1966, Hasse’s problem was brought to Kyushu Univ. in Japan from
Hamburg by K. Shiratani. Let K be an algebraic number field of degree n over the
rationals Q. Let Z denote the ring of integers. It is called Hasse’s problem to characterize
whether the ring ZK of integers in K has a generator ξ as Z-free module, namely ZK

coincides with
Z[1, ξ, · · · , ξn−1],

which we denote by Z[ξ]. If ZK = Z[ξ], it is said that ZK has a power integral basis; it
is also said that K is monogenic. In this article, we consider the case of cyclic quartic
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fields K with composite conductors over Q. In the case of cyclic quartic field K with
a prime conductor, ZK has no power integral basis except for K = k5 or the maximal
real subfield of k16 as is shown by one of the author in [11]. Here, kn means the n-th
cyclotomic field over Q. On the contrary, infinitely many monogenic cubic or biquadratic
Dirichlet fields are found by D. S. Dummit - H. Kisilevsky in [1] and Y. Motoda in [6, 7].
In the case of biquadratic fields, M.-N. Gras - F. Tanoé [4] gave a necessary and sufficient
condition for the fields to be monogenic. IfK is 2-elementary abelian extension of degree
not less than 8, we proved in [8, 15] that ZK does not have any power integral basis
except for the 24-th cyclotomic field k24 = Q(ζ24), which coincides with

Q(ζ4, ζ3, ζ8 + ζ−1
8 ),

where ζm denotes a primitive m-th root of unity. Besides the results referred above,
there are works of I. Gaál, L. Robertson, S. I. A. Shah, T. Uehara [2, 16, 17, 13, 11]
for monogenic fields, and ones of M. N. Gras and authors [3, 11, 9] for non-monogenic
fields. An expository paper [5] by K. Győry and the frequentry updated tables [20, 21]
by K. Yamamura are significant for future research on Hasse’s problem.

§ 2. New examples of monogenic cyclic quartic fields based on integral
bases of their rings of integers

A quarter of century ago, we found several monogenic cyclic quartic fieldsK = Q(η)
of composite conductor D over Q in [N1]. This result was obtained when we restricted
ourselves to the assiciated Gauß period ηχ of φ(D)/4 terms with the character χ as a
generator ξ of ZK = Z[ξ], where χ = χD is the quartic character with conductor D and

φ(·) denotes Euler’s function. We calculated the group index [ZK : Z[ξ]] =
√∣∣∣dK(ξ)

dK

∣∣∣
of a number ξ under the integral basis {1, ηχ, ησχ, ησ

2

χ }, i.e., nearly the normal basis of
K/Q, where dF , dF (α) and σ denote the field discriminant of a field F, the discriminant
of a number α with respect to F/Q and a generator of the Galois group of K/Q,
respectively.

In this section, we use a different integral basis from the previous one and seek a
candidate ξ of a generator of ZK using a linear combination of certain partial differents
of ξ. First we consider examples. Let k15 be the cyclotomic field with conductor 5 · |−3|.
Then all the proper subfields consists of three quartic fields Kj and three quadratic ones
Lj (1 5 j 5 3), namely K1 = k5,K2 = Q(

√
5,
√
−3),K3 = Q(ζ15 + ζ−1

15 ), L1 = Q(
√

5),
L2 = Q(

√
−3), L3 = Q(

√
−15). In the biquadratic field K2, a prime number 2 remains

prime in its subfield L1. Then using Lemma 2, we see that K2 is non-monogenic. The
other five subfields are monogenic by [18]. Next we take the cyclotomic field k371 with
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composite conductor 53 · | − 7|. This field has three quartic subfields Kj (1 5 j 5 3);

K1 = Q(ηχ53
), K2 = Q(

√
53,

√
−7), K3 = Q(ηχ371

).

In the field K2, since 2 remains prime in the quadratic subfield Q(
√

53) and is decom-
posed in Q(

√
−7), i.e., its relative degree fK2 with respect to K2/Q is 2, we see by

Lemma 2 that K2 is non-monogenic. However, since the relative degree fK1 with re-
spect to K1/Q is 4, we could not use Lemma 2 for K1. Since the conductor of K1 is a
prime > 5, K1 is also non-monogenic by the former work [11]. Now we shall show that
K3 is monogenic and this is a new example, which was not obtained by the previous
method in [10].
Let D = dd1 be a square free odd integer with d = a2 + 4b2 ≡ −d1 ≡ 1 (mod 4) and

d =
r∏

j=1

pj and d1 =
s∏

k=1

qk, the canonical factorizations of d and d1, respectively. Let

δ =
r∏

j=1

πj be the prime decomposition of a factor δ = a+ 2bi of d with i =
√
−1 in k4,

where pj = πj · πj , d = δ · δ; here α denotes the complex conjugate of α ∈ k4. Let G
be the Galois group of the cyclotomic extension kD/Q. We identify the group G with

the reduced residue group modulo D. Let χp(x) =
(
x

πj

)
4

be a pure quartic character

with conductor pj for x ∈ G, where
(

·
πj

)
4

means the quartic residue symbol modulo

πj with normalized πj ≡ 1 (mod (1 − i)3) (1 5 j 5 r). Then the quartic character χd

is defined by
r∏

j=1

χpj
. Let ψd and ψd1

denote the quadratic characters χ2
d and

s∏
k=1

ψqk

for the quadratic character ψqk
with conductor qk, respectively. Then χ = χdψd1

is a

quartic character with conductor dd1. Let τ(χ) =
∑
x∈G

χ(x)ζx
D be the Gauß sum attached

with χ. From the norm relation of the Gauß sum, Jacobi sum and the decomposition of
τ(χ), we have

τ(χp)τ(χ̄p) = χp(−1)p,

τ(χp)
2/τ(χ2

p) = −χp(−1)πp,

τ(χ) =

 r∏
j=1

χpj
(d/pj)

( s∏
k=1

ψqk
(d1/qk)

) r∏
j=1

τ(χπj
)

( s∏
k=1

τ(ψqk
)

)
,

where χp denotes the complex conjugate character of χp. Then we can derive for d = δ ·δ,
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δ ≡ 1 (mod (1 − i)3),

τ(χ)τ(χ̄) = χ(−1)dd1 = (−1)sdd1,

τ(χ)2 = (−1)r+sψd(d1)δd1

√
d,

τ(χ2) = (−1)sψd(d1)
√
d.

Let H be the kernel of χ. Then the residue class group G/H is isomorphic to a cyclic
subgroup < χ > of order 4 of the character group X of G. Let K denote the subfield of
kD associated with < χ > . Then K is a cyclic quartic extension over Q, whose Galois
group Gal(K/Q) is isomorphic to G/H. Let η = ηχ =

∑
x∈H

ζx
D be the associated Gauß

period of φ(D)/4 terms with the character χ of conductor D. Then we have K = Q(η).
Fix an element σ ∈ G such that χ(σ) = i. Then we get

η = ((−1)r+s + τ(χ) + τ(χ2) + τ(χ))/4

τ(χ)σ = −iτ(χ), τ(χ2)σ = −τ(χ2), τ(χ)σ = iτ(χ).

Lemma 2.1. Being the same notation as above, it holds that

ZK = Z[1, η, ησ, ησ
2
] = Z[1, η, ησ, η + ησ

2
].

Proof. Since the set {η, ησ, ησ
2
, ησ

3
} forms a normal basis of ZK , we have ZK =

Z[1, η, ησ, ησ
2
] by (−1)r+s = η + ησ + ησ

2
+ ησ

3
. Applying a suitable special linear

transformation to a basis {1, η, ησ, ησ
2
}, we obtain the basis {1, η, ησ, η + ησ

2
}.

Now, we choose the integral basis {1, η, η + ησ
2
, ησ} because the number η + ησ

2

= {(−1)r+s + τ(χ2)}/2 = {(−1)r+s +
√
d}/2 belongs to k = Q(

√
d). Assume that we

have ZK = Z[ξ] for ξ = xη + yησ + z(η + ησ
2
). Then for the candidate ξ of a power in-

tegral basis, the different dK(ξ) of ξ should be equal to the field different dK . By Hasse’s
Conductor-Discriminant formula, we have dK =

∏
ρ∈<χ>

fρ = 1 · dd1 · d · dd1 = d3d2
1 and

dK = NK(dK), where fρ denotes the conductor of a character ρ.
By dK(ξ) = (ξ − ξσ)(ξ − ξσ

2
)(ξ − ξσ

3
) we have

±dK(ξ) = NK(dK(ξ))

= (ξ − ξσ)(ξ − ξσ
2
)(ξ − ξσ

3
)

× (ξσ − ξσ
2
)(ξσ − ξσ

3
)(ξσ − ξ)

× (ξσ
2
− ξσ

3
)(ξσ

2
− ξ)(ξσ

2
− ξσ)

× (ξσ
3
− ξ)(ξσ

3
− ξσ)(ξσ

3
− ξσ

2
)

= {(ξ − ξσ)(ξ − ξσ)σ
2
}2{(ξ − ξσ

2
)(ξ − ξσ

2
)σ}2

[
{(ξ − ξσ)(ξ − ξσ)σ

2
}2
]σ
.
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Here, we select ξ = xη + z(η + ησ
2
) with y = 0 and put

I = NK/k(dK/k(ξ)) = −(ξ − ξσ
2
)2, J = NK/k(dk(ξ)) = (ξ − ξσ)(ξ − ξσ)σ

2
.

Then it follows that I = x2(η − ησ
2
)2. On the other hand, by the transitive law of the

field differents for K ⊃ k ⊃ Q, we have

dK = dK/kdk,

where dK/k is the relative different with respect to K/k, namely

dK/k =< α− ασ
2
; ∀α ∈ ZK > .

Thus, by NK(dK) = NK(dK/k)NK(dk), NK(dK) = dK = d3d2
1 and Nk(dk) = d, we

obtain NK(dK/k) = dd2
1, namely the relative discriminant

dK/k
∼= NK/k(dK/k) ∼=

√
dd1.

Here α ∼= β means that both sides are equal to each other as ideals. Then
I = x2d1

√
d · γ for some integer γ ∈ k. Since the ‘obstacle’ factor x2γ should disappear,

we have x = ±1. By virtue of NK(dk(ξ))2 ≡ 0 (mod dK/d
2
K/k) and

dK/d
2
K/k = d3d2

1/(dd
2
1) = d2, we obtain J ∼= dk(ξ)dk(ξ)σ

2
≡ 0 (mod

√
d). Next we con-

sider the following linear relation of three partial differents;

NK/k(dk(ξ)) −Nk(dK/k(ξ)) −NK/k(dk(ξ)σ
−1

) = 0,

namely,

(ξ − ξσ)(ξ − ξσ)σ
2
− (ξ − ξσ

2
)(ξ − ξσ

2
)σ − (ξ − ξσ

−1
)(ξ − ξσ

−1
)σ

2
= 0.

For ξ to satisfy ZK = Z[ξ], there must be such units εj in k as

ε1
√
d+ ε2

√
dd1 + ε3

√
d = 0.

Here by NK/k(dk(ξ)) = dk(ξ)dk(ξ)σ
2 ∼=

√
dd1, we have Nk(dK/k(ξ)) = dK/k(ξ)dK/k(ξ)σ

∼=
√
dd1, because, for a ramified ideal L in K, i.e., L|dd1, Lσ = L holds. Then we get

(∗)0

ε1 + ε2d1 + ε3 = 0,

ε̄1 + ε̄2d1 + ε̄3 = 0,

where ε̄ for ε ∈ k means the real conjugate of ε with respect to K/Q. When we consider
the simultaneous equation (∗)0 with coefficients εj , ε̄j , under the assumption that the
rank of (∗)0 would be equal to 1, then we have 1 ± d1 ± 1 = 0, which is impossible by
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d1 = 3. Then the rank of (∗)0 is equal to 2. Without loss of generality, we may consider
the equations dividing both sides of (∗)0 by ε2;

(∗)

ε1 · 1 + 1 · d1 + ε3 · 1 = 0,

ε̄1 · 1 + 1 · d1 + ε̄3 · 1 = 0,

with units εj =
vj + uj

√
d

2
in k. Thus we have the ratios

1 : d1 : 1 =

∣∣∣∣∣1 ε31 ε̄3

∣∣∣∣∣ :
∣∣∣∣∣ε3 ε1ε̄3 ε̄1

∣∣∣∣∣ :
∣∣∣∣∣ε1 1
ε̄1 1

∣∣∣∣∣ .
Then by 1 : 1 = ε̄3 − ε3 : ε1 − ε̄1 = −u3 : −u1 and d1 : 1 = ε3ε̄1 − ε3ε̄1 : ε1 − ε̄1

= (v3(−u1) + u3v1)/2 : u1, we obtain d1 = −(v3 + v1)/2. Since ε3 = (v3 + u3

√
d)/2,

ε1 = (v1 + u1

√
d)/2 and −u3 = u1, we have v3 = ±v1, and hence v3 = v1 by d1 ̸= 0.

Then d1 = −v1. Thus Nk(ε1) = (d2
1 − u2

1d)/4 = ±1, namely d2
1 ± 4 = u2

1d holds. From
dk(ξ) = (2z + (−1)sψd1

(d)
√
d)/2 +{(1 + i)τ(χ) + (1 − i)τ(χ̄)}/4, it follows that

J =NK/k(dk(ξ)) = dk(ξ)dk(ξ)σ
2

=[(2z ± 1)
√
d/2 + {(1 + i)τ(χ) + (1 − i)τ(χ̄)}/4]

×[(2z ± 1)
√
d/2 − {(1 + i)τ(χ) + (1 − i)τ(χ̄)}/4]

=(2z ± 1)2d/4 − {2iτ(χ)2 − 2iτ(χ̄)2 + 4τ(χ)τ(χ̄)}/(16)

=(2z ± 1)2d/4 − {2i(±δd1

√
d) − 2i(±δ̄d1

√
d) + 4(±dd1)}/(16)

=(2z ± 1)2d/4 − {±8bd1

√
d) + 4(±dd1)}/(16)

=
{
±bd1/2 + [{(2z ± 1)2 − d1}/4]

√
d)
}√

d.

Here we conclude that (2z ± 1)2 ± d1 is equal to (2z ± 1)2 − d1, because J is an integer
in k. We choose b = 1 and the number (2z ± 1)2 ± 2 as d1. Then for ε = (±d1 ±

√
d)/2

we see that Nk(ε) = −1, namely that ε is a unit in k. Thus for square free numbers
d1 = (2z + 1)2 ± 2 and d = d2

1 + 4, we obtain

dK(ξ) ∼=NK(dK(ξ))
∼=NK(dK/k(ξ) ·NK/k(dk(ξ)))
∼=NK(dK/k(ξ)) ·NK(NK/k(dk(ξ)))
∼=Nk(I) ·NK(J)
∼=dd2

1 · (
√
d)4 = d3d2

1,

where I = NK/k(dK/k(ξ)), J = NK/k(dk(ξ)) and σ2Gal(K/Q) = Gal(K/Q). Therefore
we verified the following Theorem.
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Theorem 2.2. Let d1 = (z + 1)2 ± 2 (z ∈ Z) and d = d2
1 + 4 be square free

integers. Then the cyclic quartic field K = Q(η) with conductor dd1 is monogenic;
namely its ring ZK of integers has a power integral basis ZK = Z[ξ] for ξ = η +
z
√
d. Here η means the associated Gauß period of φ(dd1)/4 terms with the quartic

character χ = χdψd1
, where χd denotes the quartic character with conductor d and ψd1

the quadratic one with conductor d1.

§ 3. A new family of monogenic cyclic quartic fields based on bases of the
fields

Let K be a cyclic quartic extension Q(θ) over Q associated to the character χ =
χdψd1 , where χd is a quartic and ψd1 is a quadratic character. Then K has a quadratic
subfield k = Q(

√
d) with the field discriminant d. In this article, we restrict ourselves

within an odd factor d ≡ 5 (mod 8) of the conductor dd1 of K. It is because ZK has no
power basis if d ≡ 1 (mod 8). Indeed, the prime 2 is completely decomposed in k in this
case, and hence the relative degree f of 2 with respect to K/Q is at most 2. Thus by
Lemma 2 of [17], ZK has no power basis. Since K is a quadratic extension of k, we can

choose an integer
√

a+b
√

d
2 for a, b ∈ Z, a ≡ b (mod 2) as a generator θ for the field K.

Here we use the following lemmas.

Lemma 3.1 ([17]). Let ℓ be a prime number and let F/Q be a Galois extension
of degree n = efg with ramification index e and the relative degree f with respect to ℓ.
If one of the following two conditions is satisfied, then the ring ZF of integers in F has
no power integral basis, i.e., F is non-monogenic:

(1) eℓf < n and f = 1;
(2) eℓf 5 n+ e− 1 and f = 2.

Lemma 3.2 ([6, 19]). Being the same notation as above, the field

Q

(√
(a+ b

√
d)/2

)
is a cyclic quartic extension over Q if and only if there exists an

integer j ∈ Z such that
a2 − b2d

4
= j2d;

hence a ≡ 0 (mod d) in this case.

Let G be the Galois group < σ > of the cyclic quartic extension K/Q with a generator
σ. We may suppose

θσ =

√
a− b

√
d

2
and θσ2

= −θ.
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Proposition 3.3. Let d(1,
√
d, θ, θσ) be the discriminant of a basis {1,

√
d, θ, θσ}

of the field K, where θ =
√

a+b
√

d
2 , θσ =

√
a−b

√
d

2 and θσ2
= −θ. Then it holds that

d(1,
√
d, θ, θσ) =

∣∣∣∣∣∣∣∣∣
1

√
d θ θσ

1−
√
d θσ −θ

1
√
d −θ −θσ

1−
√
d−θσ θ

∣∣∣∣∣∣∣∣∣
2

= 64a2d.

On the other hand, we obtain the field discriminant dK by the next lemma.

Lemma 3.4 ([18]). For the field discriminant dK of the cyclic quartic field K

associated to quartic character χ = χdψd1 , it holds that
(1) dK = fIfχfχ2fχ3 = d3d2

1,

where fρ and I denote the conductor of a character ρ and the principal character,
respectively;

(2) dK = Nk(dK/k)d2
k = d3d2

1,

where k denotes the quadratic subfield Q(
√
d) of K, dK/k the relative discriminant with

respect to K/k and Nk the norm of an ideal in k with respect to k/Q, respectively.

Lemma 3.5 ([6]). Being the same notation as above, for a number
ξ = x+ y

√
d+ zθ + wθσ of the field K, x, y, z, w ∈ Q, it holds that ξ ∈ ZK if and only

if the following two conditions hold:
(IT) TrK/k(ξ) = 2(x+ y

√
d) ∈ ZK ,

(IN) NK/k(ξ) =
{
x2 + y2d− (z2 + w2)

a

2

}
+
{

2xy − (z2 − w2)
b

2
− 2zwj

}√
d ∈ ZK .

Theorem 3.6. Let χ = χdψd1 be the composite quartic character with a quar-
tic χd with odd conductor d and a quadratic ψd1 with odd conductor d1. Then a cyclic

quartic field K = Q(θ) with θ =
√

a+b
√

d
2 for square free integers a and b is monogenic,

namely ZK = Z[ξ] for some ξ = x+ y
√
d+ zθ +wθσ, x, y, z, w ∈ Q and a generator

σ of the Galois group of K/Q, if and only if the following three conditions are satisfied:
(1) For a = dd1a0, b = d1b0, d ≡ 5 (mod 8), −d1 ≡ 1 (mod 4), it holds that
da2

0 − b20
4

= j20 and a0, b0, j0 are rational integers;

(2) TrK/k
(ξ) = 2(x+ y

√
d) belongs to Zk, and

NK/k(ξ) =
{
x2 + y2d− (z2 + w2)

dd1a0

2

}
+
{

2xy − (z2 − w2)
d1b0

2
− 2zwd1j0

}√
d be-

longs to Zk;
(3) For X = (z2 − w2)j0 − zwb0 and Y = 4y2 − (z2 + w2)d1a0, it holds that
X = ±1

4 and 2d1X − Y
√
d is a unit in k.
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Proof. First we immediately see that the assertion (2) holds if and only if ξ ∈ ZK .
We now assume ξ ∈ ZK . We notice that the assertion ZK = Z[ξ] if and only if ±dK =
dK(ξ). For the different dK(ξ) = (ξ − ξσ)(ξ − ξσ2

)(ξ − ξσ3
), it holds that

dK(ξ) = NK(dK(ξ)) = NK(dK/k(ξ) ·NK/k(dk(ξ))).

We put

(I) = Nk(dK/k(ξ)) = (ξ − ξσ2
)(ξ − ξσ2

)
σ
, (II) = NK/k(dk(ξ)) = (ξ − ξσ)(ξ − ξσ)σ2

.

Then, it follows that

NK(dK/k(ξ)) = Nk(NK/k(dK/k(ξ)) = Nk(dK/k(ξ))

= NK/k(Nk(dK/k(ξ))

= NK/k((ξ − ξσ2
)(ξ − ξσ2

)
σ
)

= (I)2

and

NK(dk(ξ)) = NK/k(Nk(dk(ξ))) = NK/k(dk(ξ))

= Nk(NK/k(dk(ξ)))

= (ξ − ξσ)(ξ − ξσ)σ2

(ξ − ξσ)σ(ξ − ξσ)σ3
,

= (II)(II)σ
.

Specifically,

dK/k(θ) = NK/k(dK/k(θ)) = (θ − θσ2
)(θ − θσ2

)
σ2

= (θ − (−θ))(θ − (−θ))σ2
= 4θθσ2

.

Then by Lemma 3, it holds that

dK(θ)
dk(θ)4

= Nk(dK/k(θ)) = (4θθσ
2
)(4θθσ

2
)σ = 24(θθσ)(θθσ)σ2

= 24

√
a2 − b2d

4

(
(−1)2

√
a2 − b2d

4

)
= 24j2d.

Since gcd(d(1,
√
d, θ, θσ), Nk(dK/k(θ)) = gcd(26a2d, 24j2d) ≡ 0 (mod d2

K/k) for

d2
K/k = dK

d2
k

= d3d2
1

d2 = dd2
1, we have gcd(a2d, j2d) ≡ 0 (mod dd2

1). Then we can put

a = dd1a0, j = d1j0, a0, j0 ∈ Z together with d(1,
√
d, θ, θσ) ≡ 0 (mod dK), and hence

by a2−b2d
4 = j2d in Lemma 3, we get b = d1b0. Therefore we obtain the assertion (1),
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because K = Q(θ) is a cyclic quartic field. For a generator ξ = x+ y
√
d+ zθ + wθσ of

ZK in Q(θ) we have

(I) = 2(zθ + wθσ) · 2(zθσ + wθσ2
)

= 22(z2θθσ + zw(θθσ2
+ (θσ)2) + w2θσθσ2

)

= 22(z2j
√
d+ zw

(
−a+ b

√
d

2
+
a− b

√
d

2

)
+ w2(−j

√
d))

= 22(−zwb
√
d+ (z2 − w2)j

√
d)

= 22Xd1

√
d with X = (z2 − w2)j0 − zwb0

and

(II) = (2y
√
d+ z(θ − θσ) + w(θ + θσ))(2y

√
d− z(θ − θσ) − w(θ + θσ))

= 4y2d− {z(θ − θσ) + w(θ + θσ)}2

= 4y2d− {z2(θ2 + (θσ)2 − 2θθσ) + w2(θ2 + (θσ)2 + 2θθσ) + 2zw(θ2 − (θσ)2)}
= 4y2d− {z2(a− 2j

√
d) + w2(a+ 2j

√
d) + 2zw(b

√
d)}

= {4y2 − (z2 + w2)a0d1}d− 2{z2j − w2j − zwb}
√
d

= (Y
√
d− 2Xd1)

√
d

with Y = 4y2 − (z2 + w2)a0d1, X = (z2 − w2)j0 − zwb0.

Hence, dK(ξ) = dK if and only if two numbers 22X and Y
√
d − 2d1X are units in k,

that is,

(z2 − w2)j0 − zwb0 = ±1
4
,

(4y2 − (z2 + w2)a0d1)
√
d− 2((z2 − w2)j0 − zwb0)d1 = a unit in k.

§ 4. The density of certain monogenic fields

Finally we construct certain monogenic cyclic quartic fields K associated to the
characters of the form χ = χdψd1 where χd is a quartic character with conductor d and
ψd1 a quadratic character with conductor | −d1 | . Let< σ > be the Galois group ofK/Q

and θ =
√

a+b
√

d
2 be a primitive element of K over Q. Here we can put a = dd1a0, b =

d1b0 and j = d1j0 by the previous section. For a number ξ = x+ y
√
d+ zθ + wθσ, we

select

x = y =
d2

4
, d2 ≡ 1 (mod 2), z =

1
2
, w = 0, j0 = 1, a0 = −1, −d1 = −d2

2±2, d = d2
1+4.
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Then by

Y = 4y2 − (z2 + w2)a0d1 ≡ 1
2

(mod 1),

2X = 2((z2 − w2)j0 − zwb0) =
1
2
,

it holds that Y
√
d− 2Xd1 ∈ Zk.

We estimate the density ∆ of square free numbers d1 = d2
2 − 2 and d = d2

1 + 4. Assume
d2
2−2 ≡ D2

2−2 ≡ 0 (mod p2) for an odd prime p with d2 5 D2 and d2 ≡ D2 ≡ 1 (mod 2).
Then (d2 − D2)(d2 + D2) ≡ 0 (mod p2). If d2 − D2 ≡ d2 + D2 ≡ 0 (mod p), then
2d2 ≡ 0 (mod p), and hence d2 ≡ 0 (mod p); so −2 ≡ −d2

2 ≡ 0 (mod p), which is a
contradiction.Thus only either one of D2 ≡ d2 or − d2 (mod p2) holds. Let It =
(tp2, (t+ 1)p2) be the unique interval of the form which contains d2, and Jt be the set
{D2; p2 | (D2

2 −2), D2 ∈ It}. Then Jt = {d2, (2t+1)p2−d2} for tp2 < (2t+1)p2−d2 <

(t+ 1)p2. However, since (2t+ 1)p2 − d2 ≡ 0 (mod 2), it holds that ♯Jt = ♯{d2} = 1.
Hence, for odd primes p

lim
N→∞

♯{d1 = d2
2 − 2 < N ; d1 odd square free}

N

> lim
N→∞

1
N

(
N − ♯{d1; d1 < N, p2|d1} − ♯{d1; d1 < N, 2|d1}

)
> 1 −

∑
( 2

p )=1

1
p2

− 1
2
;

we denote the last value by δ1 where 1
2 means the the density of even d2. For d = d2

1 +4,
we have p | d if and only if (−1

p ) = 1 if and only if p ≡ 1 (mod 4). In the ring of Gaußian
integers, p | d = d2

1 + 4 if and only if p = ππ̄ for a prime π = a + ib and its conjugate
π̄ = a − ib. Suppose that d ≡ 0 (mod p2). Then since d2

1 + 4 = (d1 + 2i)(d1 − 2i) =
(d2

2−2+2i)(d2
2−2−2i), if d1 ≡ 0 (mod p2), then π2 | d2

2−2+2i, because (d2
2−2, 2) = 1.

Assume d2
2 − 2 + 2i ≡ D2

2 − 2 + 2i (mod π2) and d2 5 D2; in the same way as above,
we obtain

lim
N→∞

♯{d = d2
1 + 4 < N ; d : has a square factor > 2}

N

= lim
N→∞

1
N
♯{d; d < N, p2|d}

< lim
N→∞

1
N

∑
d<N, p2|d

N

p2
=

∑
(−1

p )=1

1
p2

;

we denote the last value by δ.
Let ∆ be the density

lim
N→∞

♯{d = d2
1 + 4 < N ; d and d1 are square free}

N
.
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Then ∆ > δ1 − δ =

1 − 1
2
−
∑

( 2
p )=1

1
p2

−
∑

(−1
p )=1

1
p2
. By virtue of the evaluation

∑
p=3

1
p2

<
19
72
, which is due to Lemma 7 in [6], we obtain ∆ > 1

2 − ( 19
72 −

1
32 )×2 = 7

36 > 0.

Indeed, from the fact (−1
3 ) = ( 2

3 ) = −1, it follows that 3 ̸ |d and 3 ̸ |d2; namely, the

prime number 3 does not appear in the both summations
∑

( 2
p )=1

1
p2

and
∑
(−1

p )

1
p2
. Then

the evaluation of
∑
p=5

1
p2

=
∑
p=3

1
p2

− 1
32

is bounded by the value
19
72

− 1
32
.

Contrary to the cyclic quartic fields with prime conductors, we obtain

Theorem 4.1. There exist infinitely many monogenic cyclic quartic fields with
odd composite conductors over the rationals.

Example 4.2. Using the parameter z in Theorem 1, several conductors of new
monogenic cyclic quartic fields are given as follows;

53· | −7 |z−=1= 371, 533· | −23 |z−=2= 13 · 41· | −23 |= 12259,

2213· | −47 |z−=3= 104011.

Two monogenic fields with conductors,

5· | −1 |z−=0= 5, 13· | −3 |z+=0= 39

coincide with the members of the former experiments [10].
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