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RIMS Kôkyûroku Bessatsu
B11 (2009), 87–100

Double Schubert polynomials of classical type and

Excited Young diagrams

By

Takeshi Ikeda∗ and Hiroshi Naruse∗∗

Abstract

In this article we announce the main results of our forthcoming paper with L.Mihalcea

[8] that introduces double Schubert polynomials for types B,C,D. Another aim is to show how

“excited Young diagrams” introduced in [9] can be used in the equivariant Schubert calculus.

§ 1. Introduction

We studied previously the equivariant Schubert classes for maximal isotropic Grass-
mannians in [7],[9], and found that they are represented by factorial Schur P, Q-functions
defined by V.N.Ivanov [7]. For type A Schubert calculus, there exist well known (dou-
ble) Schubert polynomials defined by A.Lascoux and M.-P.Schützenberger [13],[14]. For
Grassmannian permutations, these double Schubert polynomials coincide with factorial
Schur functions sλ(x|a) and a geometric interpretation of these polynomials is given
by L.Mihalcea in [17] using Kempf-Laksov’s formula. In an attempt to extend this
geometric interpretation to factorial Schur P,Q-functions, we found double Schubert
polynomials for type B, C,D [8]. These are natural analogue of type A double Schu-
bert polynomials so that they share many common properties. Most notable one is the
stability. Also these polynomials are extensions of both factorial Schur P, Q-functions
and Billey-Haiman’s (single) Schubert polynomials [2]. They are polynomials in two
series of infinite variables z1, z2, ..., t1, t2, ... with coefficients in the ring Γ′ of Schur P -
functions and charactereized by left and right divided difference relations. While the
existence and meaning of these polynomials are established in [8] within a geometric
framework such as GKM-description of equivariant cohomology [6], here we treat these
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polynomials in another approach using the combinatorics of excited Young diagrams,
which was first introduced in [9] for the Schubert calculas of isotropic Grassmannians.

In §2, we state the main results of [8] without using geometric language, so that
we focus on combinatorial properties of the double Schubert polynomials. In §3, we
give three effective ways to compute the double Schubert polynomials. The first two
are supplementary to [8], while the third one is included in [8]. In §3.4, we will give
a sketch of an alternative proof for Thm 3.3 — a key formula for the third way of
computing DSPs — using EYDs. The details of this argument will be included in [10],
where we will give a general framework for EYDs. In §4, we discuss specialization of
our polynomials to equivariant cohomology classes for flag varieties. In §5, we discuss
some related topics for future works.

§ 2. Notations and Definitions

§ 2.1. Expression of elements of Weyl groups

We realize the Weyl group of type Cn as a subgroup of the symmetric group S2n

of 2n alphabets {n̄, · · · , 1̄, 1, · · · , n} with linear order n̄ < · · · < 1̄ < 1 < · · · < n. Let
w0 = (1̄, 1)(2̄, 2) · · · (n̄, n) ∈ S2n. Then

W (Cn) =
{

v ∈ S2n vw0 = w0v
}

with Coxeter generators s0 = (1̄, 1), si = (i, i+1)(̄i, i + 1), 1 ≤ i ≤ n−1. It is convenient
for our purpose to write w ∈ W (Cn) in one line notation w = [w(1), w(2), ..., w(n)].
Then w0 = w

(n)
0,C = [1̄, ..., n̄] is the longest element in W (Cn) with length `(w0) = n2.

A permutation w ∈ W (Cn) is Grassmannian if w(1) < w(2) < · · · < w(n), Example.
[3̄, 1̄, 2, 4] = s2s0s1s0 is a Grassmannian permutation in W (C4). The Weyl group W (Dn)
of type Dn is a subgroup of index 2 in W (Cn), consisting of permutations with even
number of barred parts in one line notation. Coxeter generators of W (Dn) are s1̂ =
(1̄, 2)(2̄, 1), si = (i, i+1)(̄i, i + 1), 1 ≤ i ≤ n−1 and the longest element w

(n)
0,D has length

n(n−1). Natural inclusion of W (Cn) ⊂ W (Cn+1) becomes inductive system of Coxeter
groups and we can define the infinite hyperoctahedral group W (C∞) =

⋃
n

W (Cn) with

subgroup W (D∞) =
⋃
n

W (Dn). Weyl group of type Bn is W (Bn) = W (Cn). These

groups contain as a subgroup S∞ =
⋃
n

Sn of infinite symmetric group generated by

si, i ≥ 1.

§ 2.2. Factorial Schur P, Q-functions

According to Ivanov [11], we define the factorial Schur P - or Q-functions as follows.
Let SP := {λ = (λ1, ..., λr) | λ1 > · · · > λr > 0} be the set of strict partitions. For
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an infinite sequence of parameters a = (ai)∞i=1, we define the factorial k-th power as
(y|a)k := (y − a1)(y − a2) · · · (y − ak).

Definition 2.1. Let λ = (λ1, ..., λr) ∈ SP. Put

(2.1) P
(n)
λ (x|a) =

1
(n− r)!

∑

w∈Sn

w


(x1|a)λ1 · · · (xr|a)λr

∏

1≤i≤r, i<j≤n

xi + xj

xi − xj


 ,

where w ∈ Sn acts as a permutation of variables x1, . . . , xn. If r > n then we set
P

(n)
λ (x|a) = 0. We also put Q

(n)
λ (x|a) = 2rP

(n)
λ (x|a).

It is known that P
(n)
λ (x|a) is supersymmetric in the sense that it is symmetric with

respect to the variables x1, x2, ..., xn, and P
(n)
λ (x1, ..., xn−2, t,−t|a) does not depend on t.

If a1 = 0 then P (n)(x|a) has a stability i.e. P (n+1)(x1, . . . , xn, 0|a) = P (n)(x1, . . . , xn|a).
In general it does not hold. For example

(2.2) P
(n)
1 (x|a) =





x1 + · · ·+ xn if n is even,

x1 + · · ·+ xn − a1 if n is odd.

But P
(n)
λ (x|a) has mod 2 stability, i.e. P

(n+2)
λ (x1, . . . , xn, 0, 0|a) = P

(n)
λ (x1, . . . , xn|a),

so that we can define Pλ(x|a) := lim
←n: even

P
(n)
λ (x|a). For Q

(n)
λ (x|a), we will always

assume a1 = 0 and omit it, i.e. Qλ(x|a) = Qλ(x1, x2, ...|a2, a3, ...) := lim
←n

Q
(n)
λ (x|a).

By specializing all parameters ai to 0, we get usual Schur P - or Q- functions Pλ(x) =
Pλ(x|0) and Qλ(x) = Qλ(x|0) cf.[16].

§ 2.3. The ring R∞ and R′∞ and divided difference operators

Let Pλ(x), Qλ(x) denote the Schur P, Q-functions and put

Γ =
⊕

λ∈SP
ZQλ(x) = Z[Q1(x), Q2(x), ...], Γ′ =

⊕

λ∈SP
ZPλ(x) = Z[P1(x), P2(x), ...],

R∞ := Γ⊗Z Z[t1, t2, . . .]⊗Z Z[z1, z2, . . .], R′∞ := Γ′ ⊗Z Z[t1, t2, . . .]⊗Z Z[z1, z2, . . .].

We define two kinds of actions ρz and ρt of W (C∞) on R∞ and R′∞ as follows. For
i > 0 let ρz(si) interchange zi and zi+1, and fix other zj ’s and let ρz(s0) replace z1 and
−z1, and fix other zj ’s. The ρz action is trivial on ti’s. The action on Γ (and on Γ′) is
defined from the rules

ρz(s0)Qk(x) = Qk(x) + 2
k∑

j=1

zj
1Qk−j(x) and ρz(si)Qk(x) = Qk(x) for i > 0.
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Note that the action ρz on Γ⊗Z Z[z1, z2, ...] is identical to the action defined in [2]. The
action ρt is defined by

ρt(w) = ωρz(w)ω

where ω : R∞ → R∞ is the involution defined by ω(zi) = −ti, ω(ti) = −zi, ω(Qk(x)) =
Qk(x).

We define divided difference operators ∂i, δi (i = 0, 1, 2, · · · ), ∂1̂, δ1̂ on R∞ and R′∞
by

∂0f =
f − ρz(s0)f

−2z1
, ∂if =

f − ρz(si)f
−(zi+1 − zi)

for i > 0, ∂1̂f =
f − ρz(s1̂)f
−(z2 + z1)

δ0f =
f − ρt(s0)f

2t1
, δif =

f − ρt(si)f
ti+1 − ti

for i > 0, δ1̂f =
f − ρt(s1̂)f

t2 + t1
.

§ 2.4. Definition and basic properties of double Schubert polynomials

We define double Schubert polynomials of type C (resp. D) as polynomials in the
unique family in R∞ (resp. R′∞) satisfying the condition of the theorem below. Note
that type B double Schubert polynomial can be defined from type C polynomials as
in [2], i.e. Bw(z, t; x) = 2−s(w)Cw(z, t; x) ∈ R′, where s(w) is the number of s0 in a
reduced expression of w.

Theorem 2.2. [8] There exists a unique family of elements {Cw}w∈W (C∞) ⊂
R∞ satisfying the equations

∂iCw =





Cwsi if `(wsi) < `(w)

0 otherwise
, δiCw =





Csiw if `(siw) < `(w)

0 otherwise

for all i ≥ 0, together with the condition that the constant term of Cw is zero except for
w = e, and that Ce = 1.

Theorem 2.3. [8] There exists a unique family of elements {Dw}w∈W (D∞) ⊂
R′∞ satisfying the equations

∂iDw =





Dwsi if `(wsi) < `(w)

0 otherwise
, δiDw =





Dsiw if `(siw) < `(w)

0 otherwise

for all i ≥ 1 and i = 1̂, together with the condition that the constant term of Dw is zero
except for w = e, and that De = 1.

We collect here some basic properties of Cw = Cw(z, t;x). The polynomials Dw also
have similar properties.
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Theorem 2.4. [8]

1. The double Schubert polynomials {Cw}w∈W (C∞) form a Z[t]-basis of R∞.

2. For all w ∈ W (C∞) we have

Cw(z, 0; x) = CBH
w (z; x),

where CBH
w (z; x) is Billey-Haiman’s Schubert polynomial([2]).

3. (Symmetry) Cw(−t,−z;x) = Cw−1(z, t;x).

4. (Positivity) When we write

Cw(z, t;x) =
∑

λ∈SP
fw,λ(z, t)Qλ(x),

we have fw,λ(z, t) ∈ N[−t1, . . . ,−tn−1, z1, . . . , zn−1] if w ∈ W (Cn).

There are similar results for type B and D (see[8]). For example both {Bw}w∈W (B∞)

and {Dw}w∈W (D∞) form Z[t]-basis of R′∞.
For a Grassmannian permutationw = [w1, w2, ..., wn], if the barred part of w is

b1, ..., br, we set λw = (b1, ..., br) for type Bn and Cn, while λw = (b1 − 1, ..., br − 1) for
type Dn.

Theorem 2.5. [8] If w ∈ W (X∞) is a Grassmannian permutation correspond-
ing to strict partition λ = λw in SP, then

Bw(z, t;x) = Pλ(x|0, t) for X = B,

Cw(z, t; x) = Qλ(x|t) for X = C,

Dw(z, t;x) = Pλ(x|t) for X = D.

Example.
B[3̄,2̄,1] = P3,2(x|0, t) = P3,2 + P3,1(−t1) + P2,1t

2
1,

C[3̄,2̄,1] = Q3,2(x|t) = Q3,2 + Q3,1(−t1) + Q2,1t
2
1,

D[3̄,2̄,1] = P2,1(x|t) = P2,1 + P2(−t1) + P1t
2
1.

§ 3. How to calculate double Schubert polynomials

There are at least three ways to calculate double Schubert polynomials.

(1) use explicit form of single Schubert polynomials,

(2) use transition equation,
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(3) use divided difference and an expression of the longest element w0.

The most efficient way is (2), once we know that factorial Schur P−(or Q−) func-
tions correspond to Grassmannian permutations.

§ 3.1. Double Schubert polynomials in terms of single ones

For w ∈ Sn, let Sw(z) be the single Schubert polynomial of type A. For w ∈ W (Cn)
(resp. w ∈ W (Dn)), let Fw(x) (resp. Ew(x)) be the Stanley symmetric function of type
C (resp. type D), (cf. [2])

Fw(x) :=
∑

a∈R(w)

∑

(i1≤···≤i`)∈A(P (a))

2|i|xi1xi2 · · ·xi`
,

Ew(x) :=
∑

a∈R(w)

∑

(i1≤···≤i`)∈A(P (a))

2|i|−o(a)xi1xi2 · · ·xi`
,

where R(w) is the set of reduced expressions of w, a = a1a2 · · · a` corresponds to the
reduced expression w = sa1sa2 · · · sa`

. The condition (i1 ≤ · · · ≤ i`) ∈ A(P (a)) means
that we do not have ij−1 = ij = ij+1 if aj−1 < aj > aj+1. |i| is the number of distinct
i′js in the sequence i = (i1, i2, ..., i`) and o(a) is the total numbers of 1’s and 1̂’s in a.

Theorem 3.1. [8] (for single Schubert polynomials [2] Theorem 3A,4A)

Cw(z, t; x) =
∑

v1uv2=w
`(v1)+`(u)+`(v2)=`(w)

v1,v2∈Sn,u∈W (Cn)

Sv−1
1

(−t)Fu(x)Sv2(z),

Dw(z, t;x) =
∑

v1uv2=w
`(v1)+`(u)+`(v2)=`(w)

v1,v2∈Sn,u∈W (Dn)

Sv−1
1

(−t)Eu(x)Sv2(z).

If we set t = 0 then these formulas become the original formulas [2].
More generally, we have

Cw(z, t; x) =
∑

vu=w
`(v)+`(u)=`(w)

Sv(y, t)Cu(z, y; x),

Dw(z, t; x) =
∑

vu=w
`(v)+`(u)=`(w)

Sv(y, t)Du(z, y; x).

Example.
Cs0(z, t; x) = Q1(x),
Csi(z, t; x) = Q1(x) + (z1 + · · ·+ zi − t1 − · · · − ti) for i ≥ 1
Cs1s0(z, t;x) = Cs1s0(z; x) + Ss1(−t)Cs0(z;x) = Q2(x) + (−t1)Q1(x)
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Cs1s2s0s1(z, t; x) = Cs1s2s0s1(z; x) + Ss1(−t)Cs2s0s1(z; x) + Ss2s1(−t)Cs0s1(z;x)
= (Q3,1 + z1Q3 + z1Q2,1 + z2

1Q2) + (−t1)(Q3 + Q2,1 + 2z1Q2 + z2
1Q1) + t21(Q2 + z1Q1)

= Q3,1 + (z1 − t1)Q3 + (z1 − t1)Q2,1 + (z1 − t1)2Q2 + (−z1t1)(z1 − t1)Q1.

§ 3.2. Transition equation

For type A Schubert polynomials, it is known that there exists a recurrence relation
called transition equation [13]. S. Billey [1] extended it to other classical types. We
extend Billey’s results to our double Schubert polynomials. The reflections in W (C∞)
are of the form tir = (i, r)(̄i, r̄), sir = (i, r̄)(̄i, r), and srr = (r, r̄). Using equivariant
Chevalley formula, we get the following recurrence formula called transition equation.
(for single Schubert polynomials cf.[1])

Proposition 3.2. For a permutation w = [w(1), w(2), ..., w(n), ...] of type B, C,D,
let r be the last descent of w i.e. the largest r such that w(r) > w(r + 1), and s be the
largest index such that s > r and w(s) < w(r). Put v = wtrs. X represents one of
B, C, D. Then

Xw(z, t;x) = (zr−v(tr)) Xv(z, t; x)+
∑

1≤i<r

X∗vtir
(z, t; x)+

∑

i 6=r

X∗vsir
(z, t; x)+χX∗vsrr

(z, t; x)

where X∗u = Xu if `(u) = `(w) and 0 otherwise. χ = 2, 1, 0 according to type B, C, D.

Using this equation recursively, we can calculate double Schubert polynomials as a
linear combination of factorial Schur P− or Q− functions.

Example 1.
w = [3, 1̄, 2] ∈ W (C3). In this case r = 1, s = 3 and v = [2, 1̄, 3]. Then

C[3,1̄,2](z, t; x) = (z1 − t2)C[2,1̄,3](z, t;x) + C[1,2̄,3](z, t; x) + C[2̄,1̄,3](z, t; x).

The term C[2,1̄,3](z, t; x) and C[1,2̄,3](z, t;x) can be also rewritten as

C[2,1̄,3] = (z1 + t1)C[1̄,2,3] + C[2̄,1,3], C[1,2̄,3] = (z1 + t2)C[2̄,1,3] + C[3̄,1,2].

Therefore we get
C[3,1̄,2] = Q3(x|t) + Q2,1(x|t) + 2z1Q2(x|t) + (z1 − t2)(z1 + t1)Q1(x|t)

= Q3 + Q2,1 + Q2(2z1 − t1 − t2) + Q1z1(z1 − t1 − t2).

Example 2.
w = [3̄, 1, 2̄] ∈ D3. In this case r = 2, s = 3 and v = [3̄, 2̄, 1]. Then
D[3̄,1,2̄] = (z2 + t2)D[3̄,2̄,1] + D[2̄,3̄,1] and D[2̄,3̄,1] = (z1 + t3)D[3̄,2̄,1] + D[4̄,3̄,1,2].

Therefore we get
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D[3̄,1,2̄] = P3,1(x|t) + (z1 + z2 + t2 + t3)P2,1(x|t)
= P3,1 + P2,1(z1 + z2 − t1) + P3(−t1) + P2t1(t1 − z1 − z2) + P1t

2
1(z1 + z2).

§ 3.3. The Double Schubert polynomials for the longest elements

The main object of this subsection is to express double Schubert polynomials for
the longest element w0 in terms of factorial Schur P - or Q- functions. For the proof we
use excited Young diagrams.

Theorem 3.3. [8]
Bn : B

w
(n)
0,B

(z, t;x) = Pρn+ρn−1(x | 0,−z1, t1,−z2, t2, ...),

Cn : C
w

(n)
0,C

(z, t; x) = Qρn+ρn−1(x | − z1, t1,−z2, t2, ...),

Dn : D
w

(n)
0,D

(z, t;x) = Pρn−1+ρn−1(x | − z1, t1,−z2, t2, ...),

where ρn = (n, n− 1, · · · , 1).

Example.
C

w
(3)
0,C

(x, z; t) = Q5,3,1(x | − z1, t1,−z2, t2)

= Q5,3,1 + Q4,3,1(z1 + z2 − t1 − t2) + Q5,2,1(z1 − t1) + Q4,2,1(z1 − t1)(z1 + z2 − t1 − t2)
+ Q3,2,1((z2

1 − z1z2 + z2
2)(z2 − t2) + z1(−t1)(z1 − t1))

D
w

(3)
0,D

(z, t;x) = P4,2(x | − z1, t1,−z2, t2)

= P4,2 + P3,2(z1 + z2 − t1 − t2) + P4,1(z1 − t1) + P3,1(z1 − t1)(z1 + z2 − t1 − t2)
+ P2,1(z2

1z2 − t21t2 + z1t1t2 − z1z2t1 + z2
1(−t1 − t2) + t21(z1 + z2)) + P4(−z1t1)

+ P3(−z1t1)(z1 + z2 − t1 − t2) + P2(−z1t1)(−z1t1 − z2t1 − z1t2 + z1z2 + t1t2)
+ P1(z2

1t21)(z2 − t2).

The above theorem follows from the next proposition. We only indicate for the
case of type Cn.

Proposition 3.4. ([8])
δn · · · δ1δ0δ1 · · · δnQρn+1+ρn(x| − z1, t1,−z2, t2, · · · ,−zn, tn)

= Qρn+ρn−1(x| − z1, t1,−z2, t2, · · · ,−zn−1, tn−1),
and for each step the polynomial has an expression in terms of a factorial Schur Q-
function. More precisely,

δi+1 · · · δnQρn+1+ρn(x| − z1, t1, · · · ,−zn, tn)
= Qρn+1+ρn−1n−i(x| − z1, t1, · · · ,−zi, ti, ti+1,−zi+1, ti+2,−zi+2, · · · , tn,−zn),

δi · · · δ1δ0δ1 · · · δnQρn+1+ρn(x| − z1, t1, · · · ,−zn, tn)
= Qρn+ρn−1+1n−i(x| − z1, t1, · · · ,−zi, ti, ti+1,−zi+1, ti+2,−zi+2, · · · , tn,−zn).
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Remark: By the duality Cw(z, t; x) = Cw−1(−t,−z; x) and
(w(n+1)

0 )−1 = w
(n+1)
0 , the sequence ∂n · · · ∂1∂0∂1 · · · ∂nC

w
(n+1)
0

(z, t;x) also has the above
property.

To prove proposition, we use excited Young diagram (EYD). These are defined
in [9] for describing equivariant multiplicity of the Schubert class for Grassmannians.
But EYD can also describe Schur functions and factorial Schur functions [10]. Here we
briefly explain this for the case of factorial Schur Q-functions.

§ 3.4. Factorial Q-function in terms of Excited Young Diagrams.

In order to manipulate infinite variables x1, x2, . . . , we need infinite rows numbered
1, 2, . . . from bottom to top. We also need infinite columns numbered . . . ,−2,−1, 0, 1, 2, . . . .
Let D = {(i, j) | i > 0, i, j ∈ Z} be the set of cells. At the cell (row-i,column-j) we put
weight wt(i, j) as follows.

wt(i, j) = xi + x−j if j < 0, and wt(i, j) = xi − aj+2 if j ≥ 0.
For a strict partition λ = (λ1, λ2, . . . , λr) ∈ SP, let E(λ) be the set of excited Young

diagrams (EYD’s for short) corresponding to λ, i.e. all the diagrams C ′ obtained from
forward and backward elementary excitations C(λ) → · · · → C ′, where

C(λ) := { (r + 1− i, i + j − r − 2) | 1 ≤ i ≤ r, 1 ≤ j ≤ λi} ⊂ D.

Forward elementary excitation is as defined as follows ([9]). If a box (i, j) ∈ C s.t.
(i, j + 1), (i− 1, j), (i− 1, j + 1) 6∈ C, we move the box to the position (i− 1, j + 1) to
make C ′ = (C\(i, j))∪{(i− 1, j +1)}. We call this move C → C ′ a forward elementary
excitation. Backward elementary excitation is the reverse move. Then we have

Proposition 3.5. ([10])

Qλ(x|a) =
∑

C∈E(λ)

∏

(i,j)∈C

wt(i, j).

Example. for λ = (3, 1) the diagram C(λ) is indicated by black boxes.
· · · x2 x1 −a2 −a3 · · ·

...
x2 ¥ ¥ ¥
x1 ¥

Q3,1(x|a) = 2x12x2(x2 + x1)(x2 − a2) + 2x12x2(x2 + x1)(x1 − a3)
+ 2x12x3(x2 + x1)(x2 − a2) + 2x12x3(x3 + x2)(x2 − a2) + · · ·
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Remark. In [11] there exists another tabelaux sum formula for Qλ(x|a). The
relation between two different formulas can be explained by excited Young diagram
arguments cf. [10].

Lemma 3.6. (Local change of weights for Excited Young Diagrams)
For some column j and j + 1, j ≥ 0 in the diagram D, if there is a weight pattern

of the form of left hand side of the diagram below, one can replace the weights as shown
in the right hand side without changing the value of weight sum of EYD’s.

βh+1 + t 0 βh+1 0
βh + t βh βh βh + t

...
... ⇐⇒ ...

...
β2 + t β2 β2 β2 + t

β1 + t β1 β1 β1 + t

0 β0 0 β0 + t

Proof) Using a determinantal formula for weight sum, it is enough to show the
invariance for the case of one cell and two cells , cf. [10].

Corollary 3.7. For Qλ(x|a), fix i ≥ 2 and assume that there is no C ∈ E(λ)
such that (1, i− 2) ∈ C and (1, i− 1) 6∈ C, then Qλ(x|a) is symmetric for the variables
ai and ai+1.

Proof) By the condition of λ, we can replace the weight x1− ai of the left diagram
to zero, and apply the lemma above. After that we can replace the weight 0 to x1−ai+1

without changing the weight sum.

...
...

...
...

x3 − ai x3 − ai+1 ⇐⇒ x3 − ai+1 x3 − ai

x2 − ai x2 − ai+1 x2 − ai+1 x2 − ai

x1 − ai x1 − ai+1 x1 − ai+1 x1 − ai

Lemma 3.8. (Divided difference and excited Young diagram)
1) If a box ¥ of C(λ) in the position (p, q) is a corner box, i.e. (p−1, q), (p, q+1) 6∈

C(λ) ,and ap+q+1 = ti, ap+q+2 = ti+1 for some i > 0, then

δi(Qλ(x|a2, . . . , ap+q, ti, ti+1, ap+q+3, . . . )) = Qλ(x|a2, . . . , ap+q, ti, ti+1, ap+q+3, . . . ),

where λ is the shifted Young diagram obtained from λ by removing ¥ .

2) If the position (1,−1) of C(λ) is a corner box ¥ and a2 = t1, then

δ0(Qλ(x|t1, a3, a4, . . . ) = Qλ(x|t1, a3, a4, . . . ),

where λ = (λ1, λ2, . . . , λr−1).
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1) ti ti+1

C(λ) ¥
↘

¥

2) · · · x2 x1 t1

C(λ)

¥

Using above Corollary 3.7 and Lemma 3.8 we get Proposition 3.4 and Theorem 3.3.
Example.
Q5,3,1(x| − z1, t1,−z2, t2) = Q5,3,1(x| − z1, t1,−z2, t2, t3)

δ2→ Q4,3,1(x| − z1, t1,−z2, t2) = Q4,3,1(x| − z1, t1, t2,−z2)
δ1→ Q4,2,1(x|−z1, t1, t2,−z2)

∗= Q4,2,1(x|t1,−z1, t2,−z2)
δ0→ Q4,2(x|t1,−z1, t2,−z2) = Q4,2(x|t1, t2,−z1,−z2)
δ1→ Q4,1(x|t1, t2,−z1,−z2) = Q4,1(x|t1,−z1, t2,−z2)

= Q4,1(x|t1,−z1, t2,−z2) = Q4,1(x|−z1, t1, t2,−z2) = Q4,1(x| − z1, t1, t2, t3)
δ2→ Q3,1(x| − z1, t1, t2, t3) = Q3,1(x| − z1, t1).

2x3 x3 + x2 x3 + x1 x3 + z1 x3 − t1 x3 − t2 x3 + z2

2x2 x2 + x1 x2 + z1 x2 − t1 x2 − t2 x2 + z2

2x1 x1 + z1 x1 − t1 x1 − t2 x1 + z2

= Q4,2,1(x|−z1, t1, t2,−z2)

∗ ‖
2x3 x3 + x2 x3 + x1 x3 − t1 x3 + z1 x3 − t2 x3 + z2

2x2 x2 + x1 x2 − t1 x2 + z1 x2 − t2 x2 + z2

2x1 x1 − t1 x1 + z1 x1 − t2 x1 + z2

= Q4,2,1(x|t1,−z1, t2,−z2)

§ 4. Equivariant Schubert calculus for classical flag varieties

The double Schubert polynomials Bw,Cw, Dw represent the torus equivariant Schu-
bert classes σw

T ∈ H
2`(w)
T (G/B) of classical full flag varieties G/B of type B,C, D.

§ 4.1. Specialization

Here we explain for the case of type Cn. In this case it is known that the T -
equivariant cohomology ring H∗

T (Sp2n(C)/B) has a presentation Z[z1, ..., zn, t1, ..., tn]/In,
where the ideal In is generated by homogeneous parts of

∏n
i=1(1− t2i )−

∏n
i=1(1− z2

i ).
There are at least three types of specialization R∞ → H∗

T (Sp2n(C)/B) by which
Cw goes to σw

T for w ∈ W (Cn).
ti and zi become zero for i > n. Qλ(x) is specialized to q

(a)
λ which is given as

follows.
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type 1)
Qn

i=1(1+ti)Qn
i=1(1+zi)

= 1 +
∑∞

k=1 q
(1)
k .

type 2)
Qn

i=1(1−zi)Qn
i=1(1−ti)

= 1 +
∑∞

k=1 q
(2)
k .

type 3)
√Qn

i=1(1+ti)
Qn

i=1(1−zi)Qn
i=1(1−ti)

Qn
i=1(1+zi)

= 1 +
∑∞

k=1 q
(3)
k .

For i > j, q
(a)
i,j = q

(a)
i q

(a)
j + 2

∑j
k=1(−1)kq

(a)
i+kq

(a)
j−k, q

(a)
λ = Pf(q(a)

λi,λj
).

In type 3 case, Cw(z, t; q(3)) ∈ Q[z1, ..., zn, t1, ..., tn].

Example. n = 3
Cs0(z, t; q(a)) = t1 + t2 + t3 − z1 − z2 − z3,
Cs1(z, t; q(a)) = t2 + t3 − z2 − z3, Cs2(z, t; q(a)) = t3 − z3 (a = 1, 2, 3).

Cs1s0(z, t; q(1)) = z2
1 +z2

2 +z2
3− t21 + t2t3− (t2 + t3)(z1 +z2 +z3)+z1z2 +z1z3 +z2z3,

Cs1s0(z, t; q(2)) = t22 + t2t3 + t23 − (t2 + t3)(z1 + z2 + z3) + z1z2 + z1z3 + z2z3,

Cs1s0(z, t; q(3)) = (t1 + t2 + t3 − z1 − z2 − z3)(−t1 + t2 + t3 − z1 − z2 − z3)/2.

Remark. The type 3 specialization gives Fomin-Kirillov’s combinatorial double
Schubert polynomials of second kind [4].

§ 4.2. Schubert calculus

There are product formulas for Schur Q-functions, such as by Stembridge [19]
or by Shimozono [18]. Therefore in principle we can calculate a product of Schubert
polynomials, but it is rather hard to calculate in general.

Example. Cs0s1Cs0 = (Q2(x) + z1Q1(x))×Q1(x) = Q2,1(x) + 2Q3(x) + 2z1Q2(x)
= Cs0s1s0 + 2Cs1s0s1 + 2t1Cs0s1 .

§ 5. Future works, problems and comments

There are diverse directions related to double Schubert polynomials. We only point
some of them relating to excited Young diagrams (EYD).

1. One of the most desirable thing to know is a combinatorial description of product
formula for double Schubert polynomials. For the special case of Grassmannians, the
product formulas of Qλ(x) given by Stembridge [19] or Shimozono [18] may be extended
to that of factorial Schur Q− functions. These product formulas, if exist, will serve for
describing further general Littlewood-Richardson rule for double Schubert polynomials.

2. In many cases the double Schubert polynomials can be expressed using some
variants of excited Young diagram. For example of type C3 case, all but two elements
([1̄, 3, 2], [3̄, 2, 1̄]) have double Schubert polynomials expressed in terms of EYD. It is
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hoped that vexillary elements of type B, C,D (cf. [3]) as well as type A vexillary
elements (cf. [15]) have this property.

3. Using a generalization of excited Young diagrams we have a candidate of dou-
ble Grothendieck polynomials to describe equivariant K-theory. The details will be
explained elsewhere.

4. The expression of double Schubert polynomials for w0 (Theorem 3.3) was found
for the first time using excited Young diagrams as described here. But after that we
get another proof not using EYD, that will be included in [8]. This expression means
a degeneracy loci formula, different from Fulton’s [5] and Kresch-Tamvakis’s [12], and
has a Pfaffian formula.
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