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RIMS Kôkyûroku Bessatsu
B10 (2008), 205–224

Sato’s conjecture for the Weber equation and

transformation theory for Schrödinger equations

with a merging pair of turning points

By

Yoshitsugu Takei∗

Abstract

In [3], together with Aoki and Kawai, I developed the transformation theory for an MTP

equation (i.e., a Schrödinger equation with a merging pair of simple turning points) to the

Weber equation and combined it with Sato’s conjecture to clarify the analytic structure of

Borel transformed WKB solutions of an MTP equation. In this paper I present a new proof of

Sato’s conjecture based on the use of the creation operator for the harmonic oscillator (i.e., the

Weber equation) and explain a core part of the transformation theory for an MTP equation

developed in [3] with emphasizing the role of Sato’s conjecture there.

§ 0. Introduction

In [2] Aoki, Kawai and the author of the present paper developed the exact WKB

theoretic transformation theory for a one-dimensional Schrödinger equation near a sim-

ple turning point and showed that Voros’ connection formula ([12]) for Borel resummed

WKB solutions on a Stokes curve emanating from a simple turning point can be ob-

tained from that of the canonical equation, i.e., the Airy equation. In [2] we also

constructed a transformation that brings a Schrödinger equation to the Weber equation

near two simple turning points. Very recently, in [3] we have succeeded in showing that

this transformation near two simple turning points together with what we call Sato’s

conjecture for the Voros coefficient of the Weber equation (cf. [8], [11]) enables us to

analyze the structure of “fixed singularities” (cf. [4], [5], [6]) of Borel transformed WKB
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solutions of a Schrödinger equation with a merging pair of simple turning points (“a

merging-turning-points equation” or “an MTP equation” for short). The purpose of this

paper is to discuss Sato’s conjecture and its analytic implication in details, including its

direct proof based on the use of the creation operator for the harmonic oscillator (i.e.,

the Weber equation), and to explain a core part of the transformation theory for an

MTP equation developed in [3] with emphasizing the role of Sato’s conjecture there.

The paper is organized as follows: In Section 1 we present a WKB theoretic for-

mulation of Sato’s conjecture and give its direct proof. Then, making use of Sato’s

conjecture, we analyze the structure of fixed singularities of Borel transformed WKB

solutions of the Weber equation in Section 2. Finally the transformation theory for an

MTP equation is explained in Section 3.

In ending this Introduction, the author expresses his heartiest thanks to Professors

T. Kawai, T. Aoki and T. Koike for their kind encouragements and continual stimulating

discussions with them. The author sincerely thanks also to Professor H.J. Silverstone

for the stimulating discussions with him during his extended stay at RIMS.

§ 1. Sato’s conjecture

Sato’s conjecture is concerned with WKB solutions

(1.1) ψ±(z, η) = exp

(
±
∫ z

z0

S±dz

)

of the Weber equation (i.e., the harmonic oscillator)

(1.2)

(
d2

dz2
− η2(

z2

4
− λ)

)
ψ = 0.

Here η > 0 is a large parameter, λ 6= 0 is a non-zero complex constant, z0 is an arbitrarily

chosen point and

S± = ±ηS−1(z) + S0(z)± η−1S1(z) + η−2S2(z)± · · ·(1.3)

S−1(z) =

√
z2

4
− λ, S0(z) = − z

8(z2/4− λ)
, S1(z) = − 3z2/8 + λ

16(z2/4− λ)5/2
, . . .(1.4)

denote WKB solutions of the Riccati equation

(1.5) S2 +
∂S

∂z
= η2

(
z2

4
− λ

)

associated with (1.2). Note that, if we use the odd part Sodd = (S+ − S−)/2 of S±,

WKB solutions (1.1) can be expressed also as

(1.6) ψ±(z, η) =
1√
Sodd

exp

(
±
∫ z

z0

Sodddz

)



Sato’s conjecture and transformation theory for Schrödinger equations 207

since

(1.7) Seven = S+ − Sodd = −1

2

d

dz
logSodd

holds. (In what follows we mainly use the form (1.6) to express WKB solutions.) Sato’s

conjecture is then explicitly described in the following way:

Theorem 1.1 (Sato’s conjecture). The following relation (as formal power se-

ries in η−1) holds for the Weber equation (1.2).

(1.8)

∫ ∞

2
√

λ

(Sodd − ηS−1)dz =
1

2

∞∑

n=1

21−2n − 1

2n(2n− 1)
B2n(ηλ)1−2n,

where B2n designates the (2n)-th Bernoulli number, i.e.,

(1.9)
w

ew − 1
= 1− w

2
+

∞∑

n=1

B2n

(2n)!
w2n.

Remark 1. The original version of Sato’s conjecture was described as a relation

between the parabolic cylinder function Dηλ−1/2(η1/2z), a special solution of (1.2), and

a WKB solution (1.6) with z0 being chosen to be a turning point z0 = 2
√
λ ([8, p.95]).

Recently Shen and Silverstone ([11]) have elucidated its WKB-theoretic meaning and

reformulated it in its WKB-theoretic form (1.8). See also [3, Section 3]. Note that after

[12] the left-hand side of (1.8) is often called “Voros’ coefficient” in exact WKB analysis.

Throughout this paper we use Sato’s conjecture in the form (1.8).

A clear-cut proof of Theorem 1.1, which is based on the use of some analytic

properties of the parabolic cylinder function, is given by Shen and Silverstone ([11]). An

equivalent formula was also derived by Voros ([12]) through the asymptotic expansion

of the Jost function (i.e., the quantization condition) of (1.2). In what follows we give

another proof of (1.8); it is more straightforward in the sense that it directly verifies

(1.8) as a relation of formal power series in η−1 without resorting to any analytic object

corresponding to the left-hand side of (1.8).

Proof of Theorem 1.1.

Let σ denote ηλ. A key for the proof of Theorem 1.1 is to consider the following

difference equation with respect to σ.

(1.10) F (σ + 1)− F (σ) = 1 + log(1 +
1

2σ
)− (σ + 1) log(1 +

1

σ
).

This equation (1.10) and the Bernoulli number are related in the following manner:
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Lemma 1.2. (i) Let F0(σ) denote

(1.11) F0(σ) =
∞∑

n=1

21−2n − 1

2n(2n− 1)
B2nσ

1−2n,

that is, two times the right-hand side of (1.8). Then F0(σ) formally satisfies (1.10).

(ii) Conversely, if F (σ) =
∑

n≥1 cnσ
n is a formal solution of (1.10), then F (σ) must

coincide with F0(σ).

Proof. (i) Combining the asymptotic expansion for log Γ(z)

(1.12) log Γ(σ)− (σ − 1

2
) logσ + σ − log

√
2π ∼

∞∑

n=1

B2n

2n(2n− 1)
σ1−2n (| argσ| < π)

([7, Section 1.18, (1)]) with the duplication formula

(1.13) Γ(2σ) = 22σ−1π−1/2Γ(σ)Γ(σ + 1/2)

([7, Section 1.2, (15)]), we find

(1.14) log
Γ(σ + 1/2)√

2π
− σ(logσ − 1) ∼ F0(σ) (| argσ| < π).

Replacing σ by σ + 1, we also have

(1.15) log
Γ(σ + 3/2)√

2π
− (σ + 1)(log(σ + 1)− 1) ∼ F0(σ + 1) (| argσ| < π).

Taking the difference of both sides of (1.14) and (1.15), we thus obtain

log
Γ(σ + 3/2)

Γ(σ + 1/2)
− (σ + 1)(log(σ + 1)− 1) + σ(logσ − 1)(1.16)

= 1 + log(1 +
1

2σ
)− (σ + 1) log(1 +

1

σ
)

∼ F0(σ + 1)− F0(σ).

This means that F0(σ) formally satisfies (1.10).

(ii) By a simple computation we have

(1.17) (σ + 1)−n = σ−n(1 +
1

σ
)−n =

∑

m≥0

(−1)m (n+m− 1)!

(n− 1)!m!
σ−n−m

for n = 1, 2, . . .. Hence

F (σ + 1)− F (σ) =
∑

n≥1

∑

m≥1

cn(−1)m (n+m− 1)!

(n− 1)!m!
σ−n−m(1.18)

=
∑

k≥2

(
k−1∑

n=1

cn(−1)k−n

(n− 1)!(k − n)!

)
(k − 1)!σ−k.
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Thus, once F (σ + 1) − F (σ) is given (by the right-hand side of (1.10) in our current

situation), all the coefficients {cn}n≥1 of F (σ) are uniquely determined in a recursive

manner. This completes the proof of Lemma 1.2.

In view of Lemma 1.2 it now suffices to show that two times the left-hand side of

(1.8) satisfies the difference equation (1.10) to prove Theorem 1.1. To confirm this we

make use of the creation operator

(1.19) A = η−1 d

dz
− z

2

for the harmonic oscillator (1.2). As a matter of fact, using (1.19), we can prove the

following

Lemma 1.3. Let S+ = S+(z, λ, η) be the WKB solution (1.3) (starting with

S−1 =
√
z2/4− λ) of the Riccati equation (1.5) associated with the Weber equation

(1.2). Then the following relation holds:

(1.20) S+(z, λ+ η−1, η)− S+(z, λ, η) =
d

dz
log
(
η−1S+(z, λ, η)− z

2

)
.

Proof. It follows from the commutation relation

(1.21)

(
d2

dz2
− η2 z

2

4
+ η

)
A = A

(
d2

dz2
− η2 z

2

4

)

that, if ψ is a solution of (1.2), then ϕ = Aψ satisfies

(1.22)

(
d2

dz2
− η2(

z2

4
− λ− η−1)

)
ϕ = 0.

In particular, for a WKB solution ψ+ = exp(

∫ z

S+(z, λ, η)dz) of (1.2),

(1.23) ϕ+ = Aψ+ =
(
η−1S+(z, λ, η)− z

2

)
exp

(∫ z

S+(z, λ, η)dz

)

becomes a WKB solution of (1.22), that is,

(1.24)(
η−1S+(z, λ, η)− z

2

)
exp

(∫ z

S+(z, λ, η)dz

)
= C(η) exp

(∫ z

S+(z, λ+ η−1, η)dz

)

holds for some constant C(η) independent of z. Taking the logarithmic derivative of

both sides of (1.24) with respect to z, we then obtain (1.20).

Using Lemma 1.3, we now finish the proof of Theorem 1.1. Thanks to the square-

root character of the coefficients of Sodd at z = 2
√
λ, we can write two times the

left-hand side of (1.8) as

(1.25) 2

∫ ∞

2
√

λ

(Sodd − ηS−1)dz =

∫

γ∞

(Sodd − ηS−1)dz,
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where γ∞ is a path that runs from ∞ to z = 2
√
λ + ε for a sufficiently small number

ε > 0, encircles z = 2
√
λ along {|z − 2

√
λ| = ε} in a clockwise manner, and then

returns from z = 2
√
λ + ε to ∞ (cf. Figure 1). Furthermore, since each coefficient of

Seven = S+ − Sodd is single-valued at z = 2
√
λ and

(1.26) Res
z=2
√

λ
Seven = Res

z=2
√

λ
S0 = −1

4

holds in view of (1.7) and (1.4), we also find

(1.27)

∫

γ∞

(Sodd − ηS−1)dz =

∫

γ∞

(S+ − ηS−1 − S0)dz.

Thus it suffices to show that the right-hand side of (1.27) satisfies the difference equation

(1.10).

z

γ
∞

2
√

λ

2
√

λ + ε ∞

z

γ
z

2
√

λ

2
√

λ + ε z ∞

Figure 1. Integration paths γ∞ and γz.

Let γz be a path that runs from z to 2
√
λ+ ε, encircles 2

√
λ in a clockwise manner

and returns from 2
√
λ+ ε to z (cf. Figure 1), and let I(z, σ) and Ij(z, σ) denote

I(z, σ) =

∫

γz

S+dz

∣∣∣∣
λ=η−1(σ+1)

−
∫

γz

S+dz

∣∣∣∣
λ=η−1σ

,(1.28)

Ij(z, σ) =

∫

γz

Sjdz

∣∣∣∣
λ=η−1(σ+1)

−
∫

γz

Sjdz

∣∣∣∣
λ=η−1σ

,(1.29)

respectively. It then follows from Lemma 1.3 that

(1.30) I(z, σ) = log
(
η−1S+(z, η−1σ, η)− z

2

)
− log

(
η−1S+(ẑ, η−1σ, η)− z

2

)
.

(Note that the branch of S+(z, λ, η) at the starting point of γz is different from the

branch at its end point. To distinguish these two different branches, we use the notation

ẑ in (1.30) to specify the branch of S+ at the starting point of γz.) Using (1.4) and

(1.31) Sj = O(
1

z3
) as z →∞ for j ≥ 1,

we thus find that

(1.32) I(z, σ) = log
η−1σ

z2
+ log(1 +

1

2σ
) + O(

1

z2
) as z →∞.
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On the other hand, since

(1.33)

∫ z

S−1dz =
z

4

√
z2 − 4λ− λ log(z +

√
z2 − 4λ),

∫ z

S0dz = −1

4
log(z2 − 4λ),

we can confirm

ηI−1(z, σ) = −1 + log
η−1σ

z2
+ (σ + 1) log(1 +

1

σ
) +O(

1

z2
) (as z →∞),(1.34)

I0(z, σ) = 0(1.35)

by straightforward computations. Hence we obtain

(1.36) lim
z→∞

(I(z, σ)− ηI−1(z, σ)− I0(z, σ)) = 1 + log(1 +
1

2σ
)− (σ + 1) log(1 +

1

σ
).

Relation (1.36) means that the right-hand side of (1.27) satisfies the difference equation

(1.10). This completes the proof of Theorem 1.1.

§ 2. Fixed singularities of Borel transformed WKB solutions of the Weber

equation

In this section we discuss analytic implications of Sato’s conjecture.

In what follows, rotating the variables as

(2.1) z = exp(πi/4)x, λ = exp(πi/2)E0

(where we adopt to use E0 instead of E to denote the new parameter exp(−πi/2)λ in

order that it may be consistent with the notation in the subsequent section), we deal

with the Schrödinger equation with the inverted-parabola potential

(2.2)

(
d2

dx2
− η2Q(x)

)
ψ = 0 with Q(x) = E0 −

x2

4
,

which is equivalent to (1.2) via (2.1), and its WKB solutions normalized at a simple

turning point x = 2
√
E0

ψ±(x, η) =
1√
Sodd

exp

(
±
∫ x

2
√

E0

Sodddx

)(2.3)

= exp(ηy±(x))

∞∑

n=0

ψ±,n(x)η−(n+1/2) where y±(x) = ±
∫ x

2
√

E0

√
Q(x)dx.

Here and in what follows the branch of S−1(x) =
√
Q(x) =

√
E0 − x2/4 is chosen so

that exp(−πi/2)
√
E0 − x2/4 > 0 holds for E0 > 0, x > 2

√
E0. In exact WKB analysis
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we endow ψ±(x, η) with an analytic meaning through Borel resummation method (with

respect to the large parameter η), that is, we first define the Borel transform of ψ±(x, η),

denoted by ψ±,B(x, y), by

(2.4) ψ±,B(x, y) =

∞∑

n=0

ψ±,n(x)

Γ(n+ 1/2)
(y + y±(x))n−1/2,

and then consider its Borel sum

(2.5)

∫ ∞

−y±(x)

exp(−yη)ψ±,B(x, y)dy

as an analytic substitute of ψ±. Here the path of integration for (2.5) is conventionally

taken to be parallel to the positive real axis.

The Borel sum of a WKB solution is well-defined in a Stokes region, i.e., a region

surrounded by Stokes curves

(2.6) Im

∫ x

a

S−1(x)dx = Im

∫ x

a

√
Q(x)dx = 0

(where a is a turning point ±2
√
E0 of (2.2)), provided that there is no Stokes curve

connecting two turning points. Note that the relations between WKB solutions in

adjacent two Stokes regions are described by Voros’ connection formula and that Voros’

connection formula takes the simplest form when we choose ψ±(x, η) normalized as (2.3)

as a basis of WKB solutions (cf. [12]). In the case of (2.2) two turning points ±2
√
E0

are connected by a Stokes curve when and only when E0 ∈ R (cf. Figure 2). Such a

x

2
√

E0−2
√

E0

Figure 2. Stokes curves of (2.2) for E0 > 0.

degenerate configuration of Stokes curves then causes a kind of Stokes phenomenon to

occur with the Borel resummed WKB solutions ψ± normalized as (2.3) and it can be

explicitly analyzed by using Sato’s conjecture in the following manner: The degenerate
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(i)

2
√

E0

−2
√

E0

Region I

(ii)

2
√

E0

−2
√

E0

Region II

Figure 3. Stokes curves of (2.2) when (i) Im E0 > 0, and (ii) Im E0 < 0.

configuration observed for, say, E0 > 0 is resolved in two different ways by adding a

small imaginary part to E0, as is indicated in Figure 3. Let ψI
+ denote the Borel sum

of the WKB solution ψ+ defined by (2.3) in, say, Region I of Figure 3, (i) (i.e., when

Re E0 > 0 and Im E0 > 0) and ψII
± the Borel sum of the same WKB solution in the

corresponding Region II of Figure 3, (ii) (i.e., when Re E0 > 0 and Im E0 < 0). Then

these two Borel sums define different analytic functions. As a matter of fact, Sato’s

conjecture (Theorem 1.1) analytically implies the following

Theorem 2.1. Between the Borel sums ψI
+ and ψII

+ of the WKB solution ψ+

defined by (2.3) the following relation holds:

(2.7) ψI
+ = (1 + exp(−2πE0η))

1/2
ψII

+.

Formula (2.7) describes the Stokes phenomenon for the WKB solution ψ+ of (2.2)

when the parameter E0 crosses the positive real axis. Although an equivalent formula

is already discussed in [11] (cf. [11, Formula (50)]; note that ~ ± i0 in [11] correspond

to Im E0 → ∓0 in this article, respectively) and the essential part of its proof was

given by [8, Proposition 2.2], we present the proof of Theorem 2.1 here for the reader’s

convenience.

Proof. We factorize ψ+(x, η) as

(2.8) ψ+(x, η) = exp

(∫ ∞

2
√

E0

(Sodd − ηS−1)dx

)
ψ

(∞)
+ (x, η).

Here, thanks to Sato’s conjecture (Theorem 1.1), the first factor of the right-hand side

can be written as expφ(E0, η) with

(2.9) φ(E0, η) =
1

2

∞∑

n=1

21−2n − 1

2n(2n− 1)
B2n(iE0η)1−2n,
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i.e., the right-hand side of (1.8) (after the rotation of variables (2.1) is substituted), and

(2.10) ψ
(∞)
± (x, η) =

1√
Sodd

exp

(
±
[
η

∫ x

2
√

E0

S−1dx+

∫ x

∞
(Sodd − ηS−1)dx

])

is a WKB solution of (2.2) that is normalized at infinity in the sense of [5] and [6].

Let us define two Borel sums ψ
(∞),I
+ and ψ

(∞),II
+ of ψ

(∞)
+ similarly to ψI

+ and ψII
+. It is

then known that ψ
(∞),I
+ and ψ

(∞),II
+ coincide since ψ

(∞)
+,B(x, y), the Borel transform of

ψ
(∞)
+ (x, η), is free from singularities on the half line

(2.11) {y ∈ C ; y = −
∫ x

2
√

E0

√
E0 −

x2

4
dx+ ρ, ρ > 0}

([5], [6, Theorem 1.2.2 (c)]). Hence, to verify (2.7), it suffices to compare the Borel sums

φI (i.e., the Borel sum of φ for Im E0 > 0) and φII (i.e., that for Im E0 < 0).

Let us now compute the Borel transform φB(E0, y) of φ. It follows from the defi-

nition of the Borel transformation and (2.9) that

φB(E0, y) =
1

2

∞∑

n=1

21−2n − 1

2n(2n− 1)
B2n(iE0)1−2n y2n−2

(2n− 2)!
(2.12)

=
iE0

y2

∞∑

n=1

B2n

(2n)!
(2iE0)−2ny2n − iE0

2y2

∞∑

n=1

B2n

(2n)!
(iE0)−2ny2n

=
iE0

y2

(
y/(2iE0)

exp(y/(2iE0))− 1
− 1 +

y

4iE0

)

− iE0

2y2

(
y/(iE0)

exp(y/(iE0))− 1
− 1 +

y

2iE0

)

=
1

4y

(
1

exp(y/(2iE0))− 1
+

1

exp(y/(2iE0)) + 1
− 2iE0

y

)
.

To simplify the computation we introduce the following auxiliary infinite series

(2.13) φ̃ = φ+
1

4
− iE0η

2
log(1 +

1

2iE0η
) = φ− 1

4

∞∑

n=0

1

n+ 2
(−2iE0η)−(n+1).

Then (2.12) implies

φ̃B =φB +
1

8iE0

∞∑

n=0

1

(n+ 2)n!

(
− y

2iE0

)n

(2.14)

=φB +
1

8iE0

(
−2iE0

y

)2 [(
− y

2iE0
− 1

)
exp

(
− y

2iE0

)
+ 1

]

=
1

4y

[
1

exp(y/(2iE0))− 1
+

1

exp(y/(2iE0)) + 1
− 2iE0

y

]
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− 1

4y

[(
1 +

2iE0

y

)
exp

(
− y

2iE0

)
− 2iE0

y

]

=
1

2y
exp

(
− y

2iE0

)[
1

exp(y/(iE0))− 1
+

1

2
− iE0

y

]
.

Hence, making a change of variable y/(iE0) = t of integration and using an integral

representation of the logarithm of the Γ-function

(2.15)

∫ ∞

0

(
1

et − 1
+

1

2
− 1

t

)
e−tθ dt

t
= log

Γ(θ)√
2π
− (θ − 1

2
) log θ + θ (for Re θ > 0)

([7, Section 1.9, (5)]), we find that the Borel sum of φ̃ is given by

(2.16)
1

2

(
log

Γ(iE0η + 1/2)√
2π

− iE0η log(iE0η + 1/2) + iE0η +
1

2

)

when Im E0 < 0. We thus obtain

(2.17) φII =
1

2
log

Γ(iE0η + 1/2)√
2π

− iE0η

2
(log(iE0η)− 1).

On the other hand, when Im E0 > 0, making use of the relation

(2.18) φ(E0, η) = −φ(−E0, η)

and employing the above reasoning for φ(−E0, η), we find

φI = −
[

1

2
log

Γ(−iE0η + 1/2)√
2π

+
iE0η

2
(log(−iE0η)− 1)

]
(2.19)

= −1

2
log

Γ(−iE0η + 1/2)√
2π

− iE0η

2
(log(iE0η)− 1)− πE0η

2
.

Comparison of (2.17) and (2.19) entails

φII − φI =
1

2
log

Γ(iE0η + 1/2)Γ(−iE0η + 1/2)

2π
+
πE0η

2
(2.20)

= −1

2
log (2 cos(iπE0η)) +

πE0η

2

= −1

2
log (1 + exp(−2πE0η)) .

Hence we conclude

ψI
+ = (expφI)ψ

(∞),I
+(2.21)

= (1 + exp(−2πE0η))
1/2

(expφII)ψ
(∞),II
+

= (1 + exp(−2πE0η))
1/2

ψII
+.
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This completes the proof of Theorem 2.1.

In view of (2.12) we find that φB(E0, y) is holomorphic at y = 0 whereas it has

simple poles at y = 2mπE0 for every non-zero integer m = ±1,±2, . . .. This implies

that the Borel transform ψ+,B(x, y) of the WKB solution (2.3) has singularities at

(2.22) y = −y±(x) + 2mπE0 where y±(x) = ±
∫ x

2
√

E0

√
E0 −

x2

4
dx, m ∈ Z

(cf. Figures 4 and 5). Among them y = −y+(x) + 2mπE0 (m ∈ Z) are called “fixed

−2
√

E0 2
√

E0

x
y = −y

−
(x)

y = −y
−
(x) + 2πE0

y = −y+(x)

y = −y+(x) + 2πE0

y = −y+(x) − 2πE0

y

x

Figure 4. Singularity locus of ψ+,B(x, y) in Cx × Cy.

y

s s s s s

s s s s s

· · ·
−y

−
(x) −y

−
(x) + 2πE0 · · ·

· · ·
−y+(x) −y+(x) + 2πE0 −y+(x) + 4πE0 · · ·

Figure 5. Singular points of ψ+,B(x, y) in y-plane for fixed x 6= ±2
√
E0.

singularities” of the WKB solution ψ+(x, η) (or ψ+,B(x, y)), since their relative location

with respect to the reference point y = −y+(x) is not changed as x varies. These fixed
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singularities lie on the path of integration for the Borel sum of ψ+(x, η) when E0 ∈ R;

this is the origin of the Stokes phenomenon (2.7) for E0 ∈ R.

The comparison, such as (2.7), between two Borel sums of WKB solutions of

Schrödinger equations with polynomial potentials is investigated in [5] and [6] under the

name of “Stokes automorphism” or “connection automorphism” from the viewpoint of

the theory of Ecalle’s resurgent functions. In discussing formulas like (2.7) in the frame-

work of resurgent functions theory, the fixed singularities of Borel transformed WKB

solutions and the alien derivatives there play a crucially important role. The principal

aim of [3] and this paper is to verify (2.7) for WKB solutions of an MTP equation (a

merging-turning-points equation) by using Theorem 2.1 above and the transformation

theory to the Weber equation, as will be explained in Section 3 below. In what follows,

as preliminaries for Section 3, we reformulate Theorem 2.1 in terms of the Borel trans-

form ψ+,B(x, y), that is, in the language of the fixed singularities of ψ+,B(x, y) and the

alien derivatives there.

Here we briefly review the definition of the alien derivative. Recall that the fixed

singularities y = −y+(x) + 2mπE0 (m ∈ Z) of ψ+,B(x, y) lie on {y ∈ C ; y = −y+(x) +

ρ, ρ ∈ R} when E0 > 0. Under this situation the alien derivative ∆ψ+ of ψ+(x, η) is

defined by

∆ψ+ = B−1 log(L−1
− L+)Bψ+(2.23)

= B−1 log(1 + (L−1
− L+ − 1))Bψ+

= B−1
∞∑

n=1

(−1)n−1

n
(L−1
− L+ − 1)nBψ+,

where B denotes the Borel transformation (2.4) and L+ (resp., L−) denotes the Laplace

transformation (2.5) along a path which avoids the singular points from the above

(resp., from the below). It is also known (cf., e.g., [6]) that the alien derivative (2.23)

is decomposed as

(2.24) ∆ψ+ =

∞∑

m=1

∆y=−y+(x)+2mπE0
ψ+

with

(2.25) ∆y=−y+(x)+2mπE0
ψ+ = B−1

[
(γ

(m)
+ − γ(m)

− )
∑

εk=±

p+!p−!

m!
γ(m−1)

εm−1
· · ·γ(1)

ε1

]
Bψ+,

where γ
(k)
+ (resp., γ

(k)
− ) designates analytic continuation along a path avoiding the k-th

singular point y = −y+(x) + 2kπE0 from the above (resp., from the below) and p+

(resp., p−) denotes the number of indices k satisfying 1 ≤ k ≤ m− 1 and εk = + (resp.,
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εk = −). Note that, in terms of L± and B, formula (2.7) is expressed as

(2.26) B−1L−1
+ L−Bψ+ = (1 + exp(−2πE0η))1/2ψ+.

Thus the verification of formula (2.7) can be achieved also through the computation of

the alien derivative ∆ψ+.

The computation of ∆ψ+ is done in [3, Section 3] in the following manner: Since the

Borel transform φB(E0, y) of φ(E0, η) is a single-valued analytic function with simple

poles at y = 2mπE0 (m 6= 0) and its residue there is equal to (−1)m−1/(4πim) in view

of (2.12), we find

(2.27) ∆y=2mπE0
φ =

(−1)m

2m
.

(Cf. [4], [6], [10].) Then the alien calculus leads to

(2.28) ∆y=2mπE0
(expφ) =

(−1)m

2m
expφ.

On the other hand, as we have observed above, the Borel transform of ψ
(∞)
+ (x, η) is free

from singularities on (2.11). This implies that

(2.29) ∆
(

exp(−y+(x)η)ψ
(∞)
+ (x, η)

)
= 0

holds when x is in Region I and Region II, i.e., the Stokes regions in question. Hence,

combining (2.28) and (2.29), we obtain

∆y=2mπE0

(
exp(−y+(x)η)ψ+(x, η)

)
(2.30)

= ∆y=2mπE0

(
exp(−y+(x)η) exp(φ(E0, η))ψ

(∞)
+ (x, η)

)

=
(−1)m

2m

(
exp(−y+(x)η) exp(φ(E0, η))ψ

(∞)
+ (x, η)

)

=
(−1)m

2m

(
exp(−y+(x)η)ψ+(x, η)

)
.

We have thus verified the following Theorem 2.2, which is equivalent to Theo-

rem 2.1, on the singularity structure of ψ+,B(x, y) expressed in terms of its alien deriva-

tives.

Theorem 2.2. Let ψ+(x, η) denote the WKB solution of the Weber equation

(2.2) that is normalized as in (2.3). Then its Borel transform ψ+,B(x, y) is singular at

(2.31) y = −y+(x) + 2mπE0 (m = 0,±1,±2, . . .),

where y+(x) is given by (2.22), and its alien derivative ∆y=−y+(x)+2mπE0
ψ+ there sat-

isfies the following relation (2.32) for x in Region I and Region II:

(2.32) (∆y=−y+(x)+2mπE0
ψ+)B(x, y) =

(−1)m

2m
ψ+,B(x, y − 2mπE0).
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§ 3. Transformation theory for an MTP equation

The transformation theory to the Weber equation developed in [3] enables us to

extend Theorems 2.1 and 2.2 to a wider class of Schrödinger equations, that is, MTP

equations (Schrödinger equations with a merging pair of simple turning points). In this

section we explain the core part of [3] and discuss an extension of Theorems 2.1 and 2.2

to an MTP equation.

Let us begin with recalling the definition of an MTP equation.

Definition 3.1. A Schrödinger equation of the form

(3.1)

(
d2

dx2
− η2Q(x, t)

)
ψ = 0 (η > 0 : a large parameter)

is called an MTP equation if the potential Q(x, t) is holomorphic and has the following

form on a sufficiently small neighborhood of the origin (x, t) = (0, 0):

(3.2) Q(x, t) = Q(0)(x) + tQ(1)(x) + t2Q(2)(x) + · · ·

with

Q(0)(x) = cx2 + O(x3) (c : a non-zero constant),(3.3)

Q(1)(0) 6= 0.(3.4)

Under the conditions (3.3) and (3.4) we can confirm that the equation Q(x, t) = 0

in x has two distinct simple zeros s±(t) in a neighborhood of x = 0 for each t (6= 0),

whereas the other zeros of the equation stay uniformly away from 0 for sufficiently small

t. Furthermore, these two simple zeros (i.e., simple turning points) merge together at

t = 0 with the merging speed

(3.5) s±(t) = O(
√
t), |s+(t)− s−(t)| ≥ σ0

√
t for some positive constant σ0.

Thus it is reasonable to call equation (3.1) satisfying the conditions (3.3) and (3.4) “an

equation with a merging pair of simple turning points”.

Remark 2. In [3] we defined an MTP equation as an equation that has a merging

pair {s±(t)} of simple turning points satisfying (3.5). As was discussed in [3, Proposition

2.1], the definition adopted in [3] is equivalent to the above Definition 3.1.

One of the main results of [3] is the following transformation theorem of an MTP

equation to the “∞-Weber equation”, i.e., the Weber equation containing an infinite

series as its parameter:
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Theorem 3.2 ([3, Theorem 2.2]). Let Q(x, t) be the potential of an MTP equa-

tion. Then we can find a positive constant δ, holomorphic functions Xk(x, t) (k ≥ 0)

of (x, t) on {(x, t); |x|, |t| < δ}, holomorphic functions Ek(t) (k ≥ 0) of t on {t; |t| < δ}
such that the formal series

X(x, t, η) =
∑

k≥0

Xk(x, t)η−k,(3.6)

E(t, η) =
∑

k≥0

Ek(t)η−k(3.7)

satisfy the following relations (3.8) ∼ (3.12):

Q(x, t) =

(
∂X(x, t, η)

∂x

)2 (
E(t, η)− X(x, t, η)2

4

)
− η−2

2
{X(x, t, η);x},(3.8)

X0(0, 0) = 0,
∂X0

∂x
(0, 0) 6= 0,(3.9)

E0(0) = 0,
∂E0

∂t
(0) 6= 0,(3.10)

X0(s+(t), t) = 2
√
E0(t),(3.11)

X2p+1(x, t) = 0, E2p+1(t) = 0 for p = 0, 1, 2, . . .,(3.12)

where {X(x, t, η);x} designates the Schwarzian derivative

(3.13)

(
d3X

dx3

/
dX

dx

)
− 3

2

(
d2X

dx2

/
dX

dx

)2

.

Otherwise stated, an MTP equation (3.1) can be transformed into the∞-Weber equation

(3.14)

(
d2

dX2
− η2(E(t, η)− X2

4
)

)
Ψ = 0

by the formal transformation

(3.15) X = X(x, t, η) and ψ(x, t, η) =

(
∂X(x, t, η)

∂x

)−1/2

Ψ(X(x, t, η), η;E(t, η))

on a neighborhood of the origin (x, t) = (0, 0).

Remark 3. By taking a smaller δ if necessary, we can also verify the following

estimates for Xk(x, t) and Ek(t): There exist positive constants M and C0 so that

sup
|x|,|t|≤δ

|Xk(x, t)| ≤MCk
0 k!(3.16)

sup
|t|≤δ

|Ek(t)| ≤MCk
0 k!(3.17)

hold for k = 0, 1, 2, . . ..



Sato’s conjecture and transformation theory for Schrödinger equations 221

Remark 4. Let Sodd(x, t, η) denote the odd part of WKB solutions of the Riccati

equation associated with (3.1). Then the infinite series E(t, η) in Theorem 3.2 for t 6= 0

is given by the following contour integral of Sodd(x, t, η):

(3.18) E(t, η) =
1

2πi

∮

γ(t)

Sodd(x, t, η)dx,

where γ(t) designates the closed curve in the cut plane shown in Figure 6.

γ(t)

2
√

E0(t)

x

−2
√

E0(t)

Figure 6. Closed curve γ(t).

See Section 2 and Appendix B of [3] for the proof of Theorem 3.2, Remark 3 and

Remark 4.

As is discussed in [3], the formal transformation (3.15) can be endowed with an

analytic meaning by considering its action on the Borel transform of WKB solutions.

Let ψ±(x, t, η) be a WKB solution of an MTP equation (3.1) for t 6= 0 that is normalized

as follows:

(3.19) ψ±(x, t, η) =
1√
Sodd

exp

(
±
∫ x

s+(t)

Sodddx

)
.

Then, if Todd = Todd(X, η) (or, if we use more specific notation, Todd(X, η;E(t, η)))

denotes the odd part of WKB solutions of the Riccati equation associated with the

∞-Weber equation (3.14), ψ±(x, t, η) corresponds to a WKB solution

(3.20) Ψ±(X, η) = Ψ±(X, η;E(t, η)) =
1√
Todd

exp

(
±
∫ X

2
√

E0(t)

TodddX

)

of (3.14) normalized at a simple turning point X = 2
√
E0(t) through the formal trans-

formation (3.15), that is, ψ± and Ψ± are related by

(3.21) ψ±(x, t, η) =

(
∂X(x, t, η)

∂x

)−1/2

Ψ±(X(x, t, η), η).
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Note that each factor of the right-hand side of (3.21) can be formally expressed as

(3.22)

(
∂X

∂x

)−1/2

=

(
∂g

∂X

)1/2(
1 +

∂r

∂X

)−1/2
∣∣∣∣∣
X=X0(x,t)

and

(3.23) Ψ±(X(x, t, η), η) =
∞∑

n=0

(r1η
−1 + r2η

−2 + · · · )n

n!

(
∂

∂X

)n

Ψ±

∣∣∣∣
X=X0(x,t)

,

where g(X, t) is the inverse function of X = X0(x, t), i.e., X0(g(X, t), t) = X near

(X, t) = (0, 0) and r = r(X, t, η) is defined by

(3.24) r(X, t, η) =

∞∑

k=1

rk(X, t)η−k with rk(X, t) = Xk(g(X, t), t).

Hence the Borel transformation of (3.21) with respect to the large parameter η provides

us with the following microdifferential relation

(3.25) ψ±,B(x, t, y)

∣∣∣∣
x=g(X,t)

= X
(
X, t,

∂

∂X
,
∂

∂y

)
Ψ±,B(X, y)

with X = X (X, t, ∂/∂X, ∂/∂y) being a microdifferential operator in the sense of [9]

defined by

(3.26) X = :

(
∂g

∂X
(X, t)

)1/2(
1 +

∂r

∂X

)−1/2

exp(r(X, t, η)Ξ) :

where the ideograph : : designates the normal ordered product (cf. [1]) and Ξ denotes

the symbol of ∂/∂X.

Remark 5. In this case the action of X upon the multi-valued analytic function

Ψ±,B(X, t, y) can be represented as an integro-differential operator of the following form

(3.27) XΨ±,B =

∫ y

y0

K

(
X, t, y − y′, d

dX

)
Ψ±,B(X, t, y′)dy′,

where K(X, t, y, d/dX) is a differential operator of infinite order in X and y0 is a con-

stant that is chosen arbitrarily to fix the action of (∂/∂y)−1 as an integral operator.

For details see [3, Theorem 2.7 and Appendix C].

Furthermore, if we use X and Φ instead of x and ψ to express the independent

variable and the unknown function, respectively, of the ordinary Weber equation (2.2) in

this section, we also find that the Borel transform of the normalized WKB solution (3.20)
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of the∞-Weber equation (3.14) and that of the WKB solution Φ±(X, η) of the ordinary

Weber equation (2.2) normalized as in (2.3) are related by another microdifferential

operator E(E0, ∂/∂y, ∂/∂E0) (in the variables (y, E0)) as

(3.28) Ψ±,B(X, y) = E
(
E0,

∂

∂y
,
∂

∂E0

)
Φ±,B(X, y),

where E is explicitly given by

E
(
E0,

∂

∂y
,
∂

∂E0

)
= :

∞∑

n=0

(E1η
−1 + E2η

−2 + · · · )nθn

n!
:(3.29)

=
∞∑

n=0

(E1(∂/∂y)−1 + E2(∂/∂y)−2 + · · · )n

n!

(
∂

∂E0

)n

(3.30)

(with θ denoting the symbol of ∂/∂E0; cf. [3, Section 4]). Thanks to the microdifferential

relations (3.25) and (3.28) we find that the singularity structure of Φ+,B is inherited to

that of ψ+,B. In particular, Theorem 2.2 entails the following Theorem 3.3, an extension

of Theorem 2.2 to an MTP equation (3.1).

Theorem 3.3 ([3, Theorem 5.1]). Let ψ+,B be the Borel transform of the WKB

solution ψ+ of an MTP equation (3.1) that is normalized as in (3.19). Then ψ+,B are

singular at

(3.31) y = −y+(x, t) + 2mπE0(t) (m = 0,±1,±2, . . .)

in a sufficiently small neighborhood of the origin (x, y, t) = (0, 0, 0), where

(3.32) y+(x, t) =

∫ x

s+(t)

√
Q(x, t)dx.

Furthermore, its alien derivative there satisfies the following relation (3.33) for suffi-

ciently small t(6= 0).

(∆y=−y+(x,t)+2mπE0(t)ψ+)B(x, t, y)

(3.33)

=
(−1)m

2m
: exp(−2mπ(E2(t)η−1 +E4(t)η−3 + · · · )) : ψ+,B(x, t, y − 2mπE0(t)),

where

(3.34) Ej =
1

2πi

∮

γ(t)

Sj(x, t)dx

with γ(t) being the closed path given in Figure 6 and with Sj denoting the coefficient of

η−j in Sodd, the odd part of WKB solutions S± of the Riccati equation associated with

(3.1).
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Remark 6. The operator : exp(−2mπ(E2(t)η−1 + E4(t)η−3 + · · · )) : in (3.33)

originates from the comparison (3.28) between the Borel transform of the WKB solution

of the ∞-Weber equation and that of the ordinary Weber equation. See [3, Section 4]

for details.

Finally, as a corollary of Theorem 3.3, we also obtain the following formula (3.35),

an extension of (2.7) to an MTP equation:

(3.35) ψI
+ = (1 + exp(−2πE(t, η)η))

1/2
ψII

+,

where ψI
+ (resp. ψII

+) denotes the Borel sum of the WKB solution of an MTP equation

(3.1) that is normalized as in (3.19) in the region corresponding to Region I (resp. Region

II) through the coordinate change X = X0(x, t) for t (6= 0) satisfying Re E0(t) > 0 and

Im E0(t) > 0 (resp. Re E0(t) > 0 and Im E0(t) < 0).
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