



| Title       | HIRA, a conserved histone chaperone, plays an essential role in low-dose stress response via transcriptional stimulation in fission yeast.                                                                                                                                                                                                                                                      |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Author(s)   | Chujo, Moeko; Tarumoto, Yusuke; Miyatake, Koichi; Nishida,<br>Eisuke; Ishikawa, Fuyuki                                                                                                                                                                                                                                                                                                          |
| Citation    | The Journal of biological chemistry (2012), 287(28): 23440-<br>23450                                                                                                                                                                                                                                                                                                                            |
| Issue Date  | 2012-07-06                                                                                                                                                                                                                                                                                                                                                                                      |
| URL         | http://hdl.handle.net/2433/176347                                                                                                                                                                                                                                                                                                                                                               |
| Right       | This research was originally published in "The Journal of<br>biological chemistry". Chujo M., Tarumoto Y., Miyatake K.,<br>Nishida E., Ishikawa F HIRA, a conserved histone chaperone,<br>plays an essential role in low-dose stress response via<br>transcriptional stimulation in fission yeast. 2012;287: 23440-<br>23450. © the American Society for Biochemistry and<br>Molecular Biology. |
| Туре        | Journal Article                                                                                                                                                                                                                                                                                                                                                                                 |
| Textversion | author                                                                                                                                                                                                                                                                                                                                                                                          |

## HIRA, a conserved histone chaperone plays an essential role in low-dose stress response via transcriptional stimulation in fission yeast

## Moeko Chujo<sup>1</sup>, Yusuke Tarumoto<sup>1</sup>, Koichi Miyatake<sup>2</sup>, Eisuke Nishida<sup>2</sup>, and Fuyuki Ishikawa<sup>1</sup>

From the Departments of <sup>1</sup>Gene Mechanisms and <sup>2</sup>Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan

\*Running title: Fission yeast HIRA in stress response

Address correspondence to: Fuyuki Ishikawa, MD, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan, Tel: +81 75 753 4195; Fax: +81 75 753 4197; E-mail: <u>fishikaw@lif.kyoto-u.ac.jp</u>

Keywords: Stress response; Cross tolerance; Histone chaperone; HIRA; Fission yeast

**Background:** HIRA is a conserved histone chaperone required for regulation of chromatin structure.

**Results:** Genes that encode HIRA proteins are responsible for cross tolerance. Specifically, stress-responsive gene expression was most profoundly compromised in HIRA disruptants.

**Conclusion:** HIRA is involved in cross tolerance via regulation of stress-responsive gene expression.

**Significance:** This study provides evidence that fission yeast HIRA functions in stress response.

## SUMMARY

Cells that have been pre-exposed to mild stress (priming stress) acquire transient resistance to subsequent severe stress even under different combinations of stresses. This phenomenon is called cross tolerance. Although it has been reported that cross tolerance occurs in many organisms, the molecular basis is not clear yet. Here, we identified  $slm9^+$  as a responsible gene for the cross tolerance in the fission yeast Schizosaccharomyces pombe. Slm9 is a homolog of mammalian HIRA histone chaperone. HIRA forms a conserved complex and gene disruption of other HIRA complex components, Hip1, Hip3 and Hip4, also yielded cross-tolerance-defective phenotype, a indicating that the fission yeast HIRA is involved in the cross tolerance as a complex. We also revealed that Slm9 was recruited to the stress-responsive gene loci upon stress treatment in an Atf1-dependent manner. The expression of stress-responsive genes under stress condition was compromised in HIRA

disruptants. Consistent with this, Pol II recruitment and nucleosome eviction at these gene loci were impaired in  $slm9\Delta$  cells. Furthermore, we found that the priming stress enhanced the expression of stress-responsive genes in wild-type cells that were exposed to the severe stress. These observations suggest that HIRA functions in stress response through transcriptional regulation.

Cells are equipped with stress response mechanisms at various levels in order to survive and proliferate under ever-changing environmental stresses. Cross tolerance is one of such stress response mechanisms. Cells that have been pre-exposed to mild stress (priming stress) are known to acquire transient resistance to subsequent severe stress. If the two stresses are of the same type, the phenomenon is called acquired tolerance. It is also known that this increased survival happens even under combinations of different types of stresses, such as heat stress and oxidative stress. This phenomenon is called cross tolerance. It has been reported that acquired tolerance and cross tolerance occur in a wide variety of species, including bacteria, plants, yeasts, and mammals (1-8).

Hormesis is a widely accepted term that more comprehensively describes cross tolerance (9,10). This phenomenon represents a biphasic dose response to toxins and stressors, with beneficial effects at low doses and harmful ones at high doses. Recent studies have provided new insights into hormesis as an application in anti-aging research (11,12). Thus, an understanding of the response to low-dose stress is important. However, generally, it is difficult to detect the response to low-dose stress because the low-dose stress does not induce a significant phenotype. Considering that the response to priming stress is important for survival under subsequent severe stress, the analysis of cross tolerance is expected to lead to further understanding of the response mechanism to low-dose stress.

In the fission yeast Schizosaccharomyces pombe, it is well known that a wide range of stresses lead to the activation of stress-activated mitogen-activated protein kinase (MAPK) Spc1/Sty1. The inactivation of this kinase causes hypersensitivities to various stresses (13-16). There are common stress-responsive genes, called core environmental stress response (CESR) genes whose expression is induced more than twofold under at least four of five types of stress conditions examined (17). CESR genes were regulated predominantly by Spc1 via the transcription factor Atf1. It has been proposed that the cross tolerance depends on nascent protein synthesis (7) and requires the induction of CESR genes (17). However, the molecular mechanism of the cross tolerance remains unclear.

Chromatin structure should be highly regulated in many cellular processes, such as DNA replication, repair or transcription. Accumulating evidence has shown that histone chaperones are one of the key proteins involved in those processes (18). Histone chaperones are known to associate with histones and facilitate the assembly and disassembly of nucleosomes. HIRA/HIR is one of the major histone chaperones that are conserved in many eukaryotic organisms (19). Whereas higher eukaryotes have a single HIRA protein (19-22), the fission yeast possesses two HIRA proteins (Slm9 and Hip1) (23,24), same as the budding yeast Saccharomyces cerevisiae (Hir1 and Hir2) (25). Fission yeast HIRA proteins stably associate with two other proteins, Hip3 and Hip4, and form a tetrameric complex (HIRA complex) (26,27). Recently, Cabin1 and UBN1 were identified as the human counterparts of Hip3 and Hip4. respectively (28-30), suggesting that the HIRA complex is evolutionarily conserved. HIRA is the histone chaperone for histone H3-H4 and is replication-independent involved in the nucleosome deposition pathway, whereas another histone chaperone CAF-1 is coupled to DNA replication (31-34).

HIRA has been shown to function in transcription as well. HIRA proteins were first

identified in the budding yeast as a negative regulator of histone gene expression (25,35). It has been reported that the budding yeast HIR complex interacts with nucleosomes and prevents the remodeling activity of the SWI/SNF complex (36). The ectopic expression of HIRA in human cells also represses the transcription of histones (37). In the fission yeast, HIRA is required for the suppression of Tf2 long terminal repeat (LTR) retrotransposons, normally repressed genes, or cryptic antisense transcripts (38). Consistent with its repressive role in transcription, HIRA also functions in heterochromatin assembly and silencing. In human cells, the formation of senescence-associated heterochromatin foci depends on HIRA (39). Loss of the fission yeast HIRA complex components results in silencing defects at the centromere and mating type loci (27). Recent study has also demonstrated that a complex formed by the histone chaperone Asf1 and HIRA spreads across silenced regions via its association with the chromodomain protein Swi6 to facilitate deacetylation heterochromatin histone and spreading in the fission yeast (40). On the other hand, HIRA can also act as a positive regulator of transcription. The N-terminal and C-terminal halves of chicken HIRA regulate different sets of cell-cycle-related genes positively and negatively, respectively (41). Mutations in the budding yeast HIR genes display strong synthetic defects or lethality when combined with mutations in the genes encoding the transcription elongation factor FACT components (42). In higher eukaryotes, HIRA is involved in the incorporation of H3.3 variant histones into transcriptionally active genes (33,43,44). However, it is not clear whether HIRA is involved in transcriptional activation in the fission yeast.

In this study, we found that the fission yeast  $slm9^+$  is responsible for the cross tolerance. The disruption of each component gene of the HIRA complex led to defects in the cross tolerance. In wild-type cells, Slm9 was located at several stress-responsive gene loci under the stress condition and this localization is dependent on Atf1. disruption caused impaired HIRA stress-responsive expression, gene stress-dependent Pol Π recruitment. and nucleosome eviction. Moreover, it was suggested that the priming stress facilitates stress-responsive gene expression in wild-type cells under the severe stress. Together, these results highlight the novel function of the fission yeast HIRA in stress

response.

### **EXPERIMENTAL PROCEDURES**

Yeast strains and general techniques- S. pombe strains used in this study are listed in Table 1. Growth media and basic techniques for the fission yeast have been described previously (45,46). Cells were grown in the rich medium YES or the synthetic medium SD and supplemented with amino acids as required.

Stress experiments- For the cross tolerance and acquired tolerance experiments, cells were grown in duplicate to the logarithmic phase in YES medium at 32°C. Two cultures each were subjected and not subjected to the priming stress, respectively, for 1 h and centrifuged gently (780 g for 1 min) to remove the medium. Subsequently, both cultures were resuspended in YES medium and severe stress was applied for 1 h. The stress conditions are described below. (P) and (S) indicate priming stress and severe stress, respectively. Oxidative stress: H<sub>2</sub>O<sub>2</sub> was added to make a final concentration of 0.1 mM (P) or 25 mM (S). Heat stress: Cells were cultured in a 40°C (P) or 46°C (S) water bath. Osmotic stress: YES medium containing 2.4 M KCl was added to make a final concentration of 0.6 M (P) or 2.4 M (S). After the above stress treatment, the cells were immediately collected by gentle centrifugation (400 g for 2 min) and diluted with YES medium. Five hundred cells per plate were plated onto YES plates and the number of colonies was counted after incubation for 4 days at 32°C. Viability was calculated as percentage of the number of colonies for 500 cells.

For the colony-spotting assay, the cells were grown to the logarithmic phase in YES medium at  $32^{\circ}$ C. Then, the cells were serially diluted from 5  $\times 10^{6}$  to  $5 \times 10^{3}$  cells/ml (tenfold dilution) and 5 µl of each was spotted onto YES plates. Incubation was carried out for 3-4 days at 32°C. For heat stress, cells that were spotted onto YES plates were incubated for 3-4 days at 37°C, or for 1 h at 47°C followed by incubation for 3-4 days at 32°C. For the other stresses, YES plates containing the following compounds were used: 2 mM H<sub>2</sub>O<sub>2</sub>, 50 µM menadione, 1.2 M KCl, 2 M sorbitol, and 0.1 M CaCl<sub>2</sub>.

*Chromatin immunoprecipitation*– The cells were grown in duplicate to the logarithmic phase in YES medium at  $32^{\circ}$ C. One aliquot was used as the unstressed control and the other aliquot was exposed to  $40^{\circ}$ C for 15 min. Subsequently, the

cells  $(2.5 \sim 4 \times 10^8 \text{ cells})$  were cross-linked by adding 1% formaldehyde for 30 min at 25°C and the cross-linking was stopped by treating with 125 mM glycine on ice for 5 min. The cell pellets were washed twice with ice-cold water and twice with lysis buffer 1 (50 mM HEPES-KOH [pH 7.5], 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate). The cell pellets were resuspended in lysis buffer 1 containing 50 mM NaF, 0.1 mM Na<sub>3</sub>VO<sub>4</sub>, 1 mM PMSF, and  $1 \times$ Complete (Roche), and broken with zirconia beads using a Multi-Beads Shocker (Yasui Kikai) at 4°C. The lysates were sonicated with Sonifier 250 (Branson) to yield chromatin fragments having an average size of 500 bp. The sonicated lysates were spun at 17,800 g for 15 min at 4°C. The supernatant was immunoprecipitated with mouse anti-Myc antibody (sc-40 Santa Cruz) or mouse anti-RNA polymerase II CTD antibody (05-623 Millipore) for 2 h at 4°C, and this was followed by the addition of magnetic beads (Dynal). After incubation for 1.5 h at 4°C, the beads were washed once with lysis buffer 1 containing 50 mM NaF, 0.1 mM Na<sub>3</sub>VO<sub>4</sub>, 1 mM PMSF, and  $1 \times$  Complete (Roche); once with lysis buffer 1 containing 500 mM NaCl and 1 mM PMSF; once with lysis buffer 2 (10 mM Tris-HCl [pH 8.0], 1 mM EDTA, 0.25 M LiCl, 0.5% NP-40, 0.5% sodium deoxycholate); and twice with TE (10 mM Tris-HCl [pH 8.0], 1 mM EDTA). The beads were resuspended in TER (TE containing 10 µg/ml RNase) and incubated for 15 min at 37°C. The samples were adjusted to 0.25% SDS and 250 µg/ml proteinase K, and incubated at 37°C overnight. This was followed by another incubation for 6 h at 65°C. The eluted subjected to phenol/chloroform DNA was extraction and precipitated with ethanol. The purified DNA was analyzed by real-time PCR using the StepOnePlus<sup>TM</sup> Real-Time PCR System and Power SYBR Green PCR master mix (Applied Biosystems). The nucleotide sequences of the primer sets are listed in Table S1.

*RT-PCR*– Total RNA was isolated as previously described (47) and treated with 0.625 U/g RNA of RNase-free DNase I (TaKaRa) to digest genomic DNA. cDNA samples were synthesized using AMV Reverse Transcriptase (Life Sciences Advanced Technologies, Inc.) and Random Primer (nonadeoxyribonucleotide mixture). The primer sequences are available on request. Real-time PCR was performed using the StepOnePlus<sup>TM</sup> Real-Time PCR System and Power SYBR Green PCR master mix (Applied Biosystems). The nucleotide sequences of the primer sets for real-time PCR are listed in Table S1.

Microarray analysis- The cells were grown in quadruplicate at 32°C to the logarithmic phase and an aliquot was collected as the unstressed control. The other three aliquots were exposed to  $40^{\circ}$ C for 1 h, 25 mM H<sub>2</sub>O<sub>2</sub> for 1 h, or  $40^{\circ}$ C for 1 h followed by 25 mM H<sub>2</sub>O<sub>2</sub> for 1 h, respectively. Total RNA was purified as described for RT-PCR. All the 12 RNA samples were analyzed with GeneChip Yeast Genome 2.0 Array (Affymetrix) according to the manufacturer's instructions. After using the RMA algorithm to obtain the summarized probeset-level expression data, the array data were transferred to GeneSpring 7.3 Technologies) microarray analysis (Agilent software for gene ontology (GO) analysis. Standard hypergeometric distribution was used to calculate the p-values for individual GO terms. Significant enrichment of GO was selected using a p-value of <0.05. To avoid the detection of false positives, the Benjamini-Yekutieli correction method was applied to obtain the corrected p-values. The microarray data are available at Gene Expression Omnibus (GEO) under accession number GSE35281.

Preparation of mononucleosomal DNA- The cells were grown in duplicate to the early logarithmic phase in YES medium at 32°C. One aliquot was used as the unstressed control and the other aliquot was exposed to 40°C for 15 min. Subsequently, mononucleosomal DNA was obtained as described previously (48) with some modifications. Cell wall was digested with 1 mg/ml Zymolyase 100T (Seikagaku Corporation) for 40 min at 35°C. Micrococcal nuclease (MNase) digestion was performed with MNase to final concentration of 133 U/ml. а Mononucleosomal DNA fragments were purified from the agarose gel using QIAquick Gel Extraction Kit (Qiagen).

Nucleosome-scanning analysis-The nucleosome-scanning analysis was performed as described previously (49,50). Genomic DNA was obtained from the same protocol as for the preparation of mononucleosomal DNA, without the crosslinking, MNase treatment and gel purification step. Five nanograms of purified mononucleosomal and genomic DNA were analyzed by real-time PCR using the StepOnePlus<sup>TM</sup> Real-Time PCR System and Power SYBR Green PCR master mix (Applied Biosystems). Ten overlapping primer pairs were set downstream of nucleosome depleted region (NDR) (50,51). The nucleotide sequences of the primer sets were designed by reference to the previous report (50) as listed in Table S1.

## RESULTS

*Cross tolerance in fission yeast*– We first confirmed cross tolerance in the fission yeast. Wild-type (JK317) cells were treated or not treated with mild (priming) stress and subsequently subjected to severe stress, using combinations of heat, oxidative, and osmotic stresses, and cell viability was compared (Fig. 1). In contrast to the case of the budding yeast (7), the combination of mild oxidative stress and severe heat stress induced cross tolerance. Other combinations examined also induced cross tolerance. Overall, we conclude that in the fission yeast, various combinations of stresses generally induce cross tolerance.

Identification of responsible gene of cross-tolerance-defective mutant- In order to identify the factor involved in cross tolerance, we performed genetic a screen for cross-tolerance-defective mutants and isolated several mutants (Tarumoto, Y., Kanoh, J. and Ishikawa, F., submitted for publication). Among them, 7-4 mutant, which showed clearly the cross-tolerance-defective phenotype, was chosen for further analysis (Fig. S1A). 7-4 mutant was backcrossed three times with the parental wild-type strain. Tetrad analysis revealed that the cross-tolerance-defective phenotype of 7-4 mutant was caused by a single mutation. In addition to the cross-tolerance-defective phenotype, we found that 7-4 mutant showed strong sensitivity to heat shock (37°C) and 0.1 M CaCl<sub>2</sub> treatment (Fig. S1B). The responsible gene of 7-4 mutant was cloned by complementation of heat and CaCl<sub>2</sub> sensitivities with S. pombe genomic library (pTN-L1) and subsequent sequencing revealed its identity as  $slm9^+$ . We verified that a single nucleotide deletion occurred at nucleotide 1451 in the ORF of  $slm9^+$  in 7-4 mutant (Fig. S1C). Slm9 is the homolog of mammalian HIRA in the fission yeast. HIRA is a histone chaperone that is replication-independent involved in the pathway nucleosome deposition and transcriptional control.

HIRA complex is involved in cross tolerance– The fission yeast has two HIRA/HIR proteins, Slm9 and Hip1 (23,24). In order to verify the function of the fission yeast HIRA in cross tolerance, we constructed  $slm9\Delta$  and  $hip1\Delta$  strains and examined the cross tolerance phenotype. Both showed  $slm9\Lambda$ and  $hip1\Delta$ cells the cross-tolerance-defective phenotype under the combination of mild heat stress and severe oxidative stress (Fig. 2A). As Slm9 and Hip1 form a complex with two other proteins, Hip3 and Hip4 (26,27), we also examined these HIRA complex subunit disruptants. We found that both  $hip3\Delta$  and  $hip4\Delta$  cells showed the cross-tolerance-defective phenotype, similar to  $slm9\Delta$  and  $hip1\Delta$  cells (Fig. 2B). These results suggest that the fission yeast HIRA functions as a complex to confer cross tolerance.

To examine the possibility that HIRA disruptants are specifically sensitive to the combination of mild heat stress and severe oxidative stress, the cells were treated with other stress combinations.  $slm9\Delta$  and  $hip1\Delta$  cells also showed the cross-tolerance-defective phenotype when treated with combinations of mild oxidative stress and severe heat stress, and mild osmotic stress and severe oxidative stress (Fig. 2C). These experiments demonstrated that the fission yeast HIRA is involved in cross tolerance regardless of the stress combination. Moreover, the cells were also treated with combinations of same types of stresses, namely, mild oxidative stress and severe oxidative stress (acquired-tolerance-inducible stress). Acquired tolerance was defective in  $slm9\Delta$ and  $hip1\Delta$  cells as well as cross tolerance (Fig. 2D). Hereafter, we used the combinations of mild heat stress and severe oxidative stress as the cross-tolerance-inducible stress.

To determine whether the function of HIRA in stress response is a general feature of histone chaperones, we analyzed other histone chaperone mutants,  $pcf1\Delta$  and  $nap1\Delta$ . Pcf1 is a large subunit of histone chaperone CAF-1 that loads histone H3-H4 onto DNA and is involved in the replication-dependent nucleosome deposition pathway (34,52). Nap1 is involved in the transfer of histone H2A-H2B from the cytoplasm to the nucleus and the deposition of histones onto DNA (53). Cross tolerance occurred in both  $pcf1\Delta$  and  $nap1\Delta$  cells, similar to the case of wild-type cells (Fig. 2E). These results raise an interesting possibility that among histone chaperones, HIRA is specifically involved in cross tolerance.

HIRA functions particularly under low-dose stress- As we examined the cross tolerance phenotype under various combinations of heat, oxidative, and osmotic stresses, we next investigated the viability of cells lacking each subunit of the HIRA complex under the single stress condition (Fig. 3). The HIRA subunit disruptants (*slm*9 $\Delta$ , *hip*1 $\Delta$ , *hip*3 $\Delta$ , and *hip*4 $\Delta$ ) were not so sensitive to osmotic stress (2 M sorbitol and 1.2 M KCl) and oxidative stress caused by 2 mM  $H_2O_2$ , whereas spc1 $\Delta$  mutant, which is known to be sensitive to a wide variety of stresses, showed strong sensitivity. On the other hand, the HIRA subunit disruptants showed severe sensitivity to heat shock (37°C, 3 days) and oxidative stress caused by 50 µM menadione. Although the HIRA subunit disruptants showed varied sensitivities to distinct forms of stress. the cross (acquired)-tolerance-defective phenotype of  $slm9\Delta$ and  $hip1\Delta$  cells was observed under different stress combinations (Fig. 2A, C and D). These results further suggest the stress-type-independent function of HIRA in the cross tolerance. It is known that menadione generate intracellular reactive oxygen species and exert weak oxidative stress on the cells (54). It should be noted that the HIRA subunit disruptants showed higher sensitivity to menadione than H<sub>2</sub>O<sub>2</sub>. Moreover, they were more sensitive to weak and chronic heat shock (37°C, 3 days) than strong and acute heat shock (47°C, 1 h). These observations suggest that HIRA responds to low-dose stress specifically, consistent with its response to the priming stress in the cross tolerance.

HIRA is localized at stress-responsive gene loci upon stress treatment- As the fission yeast HIRA has a function in the cross tolerance, we examined the protein levels of Slm9 and Hip1 under the stress condition. Considering the protein levels of loading control (Cdc2), it appeared that Hip1 was more abundant than Slm9. The protein levels of both Slm9 and Hip1 did not change significantly during the course of the priming stress treatment (Fig. 4A). We also examined Slm9 localization using a strain whose chromosomal copy of  $slm9^+$  was tagged with the GFP sequence. In cells expressing Slm9-GFP, fluorescent signals were observed in the nuclei, as reported previously (23). This nuclear localization was not altered significantly under the stress condition (Fig. S2A). In addition, the chromatin fractionation assay was performed to determine HIRA localization biochemically (Fig. S2B). Slm9 both enriched in and Hip1 were the chromatin-bound fractions, and the distributions of Slm9 and Hip1 among different fractions did not change notably under the stress condition (Fig. S2C).

To further investigate whether HIRA is localized at specific chromatic loci upon stress treatment, the chromatin immunoprecipitation (ChIP) assay was performed. Slm9 was enriched at both the promoters and ORFs of CESR genes  $(ctt1^+, gpx1^+, and hsp9^+)$  in a stress-dependent manner. However, such physical association of Slm9 was not observed at non-stress responsive loci ( $poll^+$  ORF and dh) (Fig. 4B). Thus, whereas the protein levels and the chromatin association of HIRA, revealed by Western blotting and chromatin fractionation assay, did not show distinct alteration. HIRA localization at chromatin revealed by the ChIP assay changes under the stress condition.

CESR genes were primarily regulated by Spc1 through its downstream b-ZIP transcription factor Atf1 (17). We hypothesized that specific localization of Slm9 at CESR gene loci is determined by Atf1. Indeed, Slm9 recruitment to CESR gene loci is almost totally dependent on Atf1 (Fig. 4B). This result suggests that Atf1 determines the stress-dependent HIRA recruitment to chromatin.

HIRA is required for stress-responsive gene transcription- Histone chaperones have been surmised to play important roles in transcriptional regulation (18). As the fission yeast HIRA was localized at the stress-responsive gene loci upon stress treatment, we hypothesized that the fission yeast HIRA complex may play a role in the stress response through the transcriptional control of stress-responsive genes. RT-PCR was performed to examine the expression of several CESR genes under the stress conditions in wild-type,  $slm9\Delta$ , and  $hip1\Delta$  cells. slm9 and hip1 disruption decreased the expression of many CESR genes  $(ctt1^+, gpx1^+, gpd1^+, and tps1^+)$  under the priming stress compared to wild-type cells (Fig. 5A). There were some exceptions, such as  $hsp9^+$  and  $hsp16^+$ that showed increased basal expression in the mutants (Fig. 5A). This basal up-regulation of some CESR genes is consistent with previous reports (26,38). In general, all the genes examined showed smaller differences in transcriptional levels between the non-stress condition and the priming stress condition in the mutant cells compared to the wild-type cells. In contrast, slm9 and hip1 disruption increased the expression of those genes under the severe stress condition (Fig. S3). Taken together, the results suggest that HIRA is required for the proper expression of stress-responsive genes. In addition to the gene expression, ChIP assay was carried out to examine the transcriptional kinetics at several gene loci in the wild-type and  $slm9\Delta$  cells under the stress condition. As expected, RNA polymerase II (Pol II) was recruited to both promoters and ORFs of CESR genes  $(ctt1^+, gpx1^+, and hsp9^+)$  in the wild-type cells subjected to stress treatment, whereas this recruitment was impaired in  $slm9\Delta$ cells. On the other hand, basal stress-independent Pol II recruitment to non-stress responsive loci  $(poll^+ \text{ ORF and } dh)$  was unaffected in *slm9* $\Delta$  cells (Fig. 5B). This result is consistent with the expression of CESR genes (Fig. 5A). Therefore, our results indicate that HIRA plays an important role in Pol II recruitment and progression, and the transcriptional activation of stress-responsive genes under the low-dose stress conditions.

HIRA particularly regulates stress-responsive genes under stress conditions- To determine whether HIRA specifically regulates stress-responsive genes or not, microarray analysis was carried out on wild-type,  $slm9\Delta$ , and  $hip1\Delta$ cells under four conditions: control, priming stress alone, priming stress followed by severe stress, and severe stress alone. Signal concordance between two arrays was evaluated using Pearson's correlation coefficient  $(r^2)$ . A strong correlation  $(r^2>0.998)$  was noted between slm9 $\Delta$  and hip1 $\Delta$ samples under all conditions (Fig. S4), consistent with the previously reported strong correlation of gene expression between  $slm9\Delta$  and  $hip1\Delta$  cells under the normal condition (38).

We identified genes that exhibited twofold or greater change in the stress-treated samples compared to the control, and categorized them by GO classification. The GO terms that were enriched in induced and repressed genes under all conditions are listed in Table S2 and Table S3, respectively. Among these results, we focused on the priming stress condition because the response to the priming stress would be important for survival under the subsequent severe stress. The principal GO terms that are most significantly associated with the priming-stress-induced genes are selected from Table S2 and shown in Table 2. GO analysis identified "cellular response to stress," "meiosis," and "M phase" as the major enriched biological functions in both wild-type cells and mutants. Whereas the p-values of "meiosis" and "M phase" were similar between the wild-type cells and the mutants, the number of genes

enriched into "cellular response to stress" was much larger in the wild-type cells than in the mutants. In addition, GO terms, including "cellular response to oxidative stress" and "oxidoreductase activity," were only found in the wild-type cells. These results are consistent with the reduced CESR gene expression in the mutants under the priming stress condition (Fig. 5A). On the contrary, the number of genes enriched into "cellular response to stress" was much larger in the mutant cells than in the wild-type cells under the severe stress condition, which was again consistent with the results of RT-PCR (Fig. S3 and Table S2) (See Discussion).

further confirm the То difference in expression between the wild-type cells and the mutants under the priming stress condition, the fold change of gene expression was plotted under the priming stress condition compared to the control condition. The fold change in expression of all genes was smaller in the mutants than in the wild-type cells (Fig. 6A). Similarly, the fold change in expression of CESR genes and genes whose expression was increased more than twofold in the wild-type cells decreased significantly in the mutants (Fig. 6B and C). Moreover, among the priming-stress-induced genes of the wild-type cells, we selected genes that showed twofold or higher change in the wild-type cells compared to each mutant, and performed GO analysis of those genes. GO analysis identified "cellular response to stress" as the most significant term (Table 3). Thus, although HIRA may be required for global gene expression, it is particularly plays an important role in regulating the stress-responsive genes.

regulates stress-responsive HIRA gene expression via nucleosome eviction- To explore the mechanism by which HIRA regulates stress-responsive transcription, gene the nucleosome-scanning analysis of  $ctt1^+$  region was performed. In wild-type cells, the position of +1 to +3 (relative to the transcription start site (TSS)) nucleosomes, as reflected by MNase sensitivity, were detected as peaks and these peaks were diminished upon heat stress (Fig. 7), as previously reported in H<sub>2</sub>O<sub>2</sub>-treated cells (50). Although positioned nucleosomes were also observed in  $slm9\Delta$  cells, decreased nucleosome peaks upon stress treatment were not observed in  $slm9\Delta$  cells (Fig. 7). Considering that regulatory regions of  $ctt1^+$  gene such as TATA box and Atf1 binding site are located in close proximity to the TSS (55) and overlapped with +1 nucleosome position (Fig. 7), it seems that HIRA is required for recruitment of Pol II to these regulatory regions. Furthermore, nucleosomes downstream of TSS are also altered in *slm9* $\Delta$  cells (Fig. 7), consistent with the result of ChIP assay detecting impaired Pol II recruitment to ORFs of CESR genes (Fig. 5B). Taken together, these results suggest that HIRA is required for nucleosome eviction to regulate Pol II accessibility and/or progression, and expression of stress-responsive genes.

Priming stress facilitates expression of stress-responsive genes under subsequent severe stress- As HIRA plays a role in the transcriptional control of stress-responsive genes under the stress conditions, we characterized the expression of several CESR genes ( $ctt1^+$ ,  $gpx1^+$ , and  $hsp9^+$ ) in the wild-type cells during cross tolerance by quantitative RT-PCR. We found that the severe stress alone induced only less than threefold increase in CESR gene expression (Fig. 8A). In contrast, when the cells were treated with the priming stress prior to the severe stress, the expression of those genes increased dramatically (Fig. 8A). Furthermore, the fold change relative to the control condition of CESR gene expression in the wild-type cells under the stress conditions was plotted using microarray data. Similar to the results of quantitative RT-PCR (Fig. 8A), the fold change of CESR gene expression under the severe stress condition showed a dramatic increase when the cells were exposed to the priming stress (Fig. 8B). These findings indicate that the priming stress enhanced stress-responsive gene expression and as a result, the cells acquired resistance to impending stress.

## DISCUSSION

We have demonstrated that the fission yeast HIRA complex is involved in cross tolerance. We also found that in the cross tolerance, the expression levels of stress-responsive genes under the severe stress was augmented when the cells were exposed to the priming stress. Although the fission yeast HIRA has been shown to be implicated in gene silencing and the heterochromatin assembly (26,38,40,56), our results showed that the fission yeast HIRA is required for the transcriptional activation of stress-responsive genes under the low-dose stress conditions. Therefore, HIRA would regulate transcription both positively and negatively.

HIRA disruption decreased stress-responsive

gene expression under the priming stress condition (Fig. 5A, Tables 2 and 3). As the expression of stress-responsive genes under the severe stress was enhanced by the priming stress (Fig. 8), the defect of the cross tolerance in the HIRA disruptants may have come from the impaired expression of those genes during the priming stress. Thus, cells may stimulate stress-responsive gene expression under the low-dose stress conditions to deal with stress and to prepare for future stress, consistent with a previous report of the budding yeast (7). In contrast, severe stress alone increased stress-responsive gene expression in  $slm9\Delta$  and  $hip1\Delta$  cells (Fig. S3 and Table S2). Considering that the severe stress alone did not lead to a marked increase of stress-responsive gene expression in the wild-type cells (Fig. 8), we speculate that the induction of those gene expression may be inhibited or occur at only a low level in the wild-type cells under the severe stress conditions. One possible explanation is that the induction of stress-responsive genes for survival would be too late after the high-dose stress, so cells may cease the transcription of those genes under the high-dose stress conditions in order not to consume extra, yet futile, energy. However, such regulation may be compromised in HIRA disruptants and this may lead to the up-regulation of stress-responsive genes. It will be important to study the dose-dependent stress response in detail to test if this hypothesis is plausible or not.

The viability of HIRA disruptants under the severe stress condition was comparable to that of the wild-type cells (Fig. 2A). Furthermore, HIRA disruptants showed high sensitivity to rather low-dose stress (Fig. 3). Thus, HIRA seems to control the transcription of stress-responsive genes specifically under low-dose stress. The accessibility of the transcription machinery is regulated by chromatin assembly and disassembly (57). Slm9 is recruited to the stress-responsive gene loci in the wild-type cells (Fig. 4B), and expression stress-responsive gene and stress-dependent Pol II enrichment are impaired in HIRA disruptants (Fig. 5). Moreover, nucleosome eviction at  $ctt1^+$  gene region upon stress treatment is hampered by slm9 disruption (Fig. 7). Taken together, HIRA likely regulates the transcription of stress-responsive genes through the eviction of histones. In addition, the position of nucleosomes was slightly different between wild-type and  $slm9\Delta$  cells (Fig. 7). Although the significance of this displacement is unclear, it may contribute to

the accessibility of proteins involved in transcription. Thus, HIRA may also have a role in the regulation of nucleosome positioning. One recent study has shown that histone H3 acetyltransferase Gcn5 facilitates Pol Π progression along stress-responsive genes in fission yeast (50). Therefore, both HIRA and Gcn5 should stimulate the eviction of histones at these loci to allow Pol II to progress, and stress-responsive gene expression is induced by stress-activated MAPK Spc1 and its downstream transcription factor Atf1 to respond to stress.

One possible factor that enhances the recruitment of HIRA and Gcn5 may be the 19S ATPase subunits of the proteasome. Mass spectrometric analysis of the fission yeast Slm9 has led to the identification of the 19S ATPase complex as the interacting proteins (27). The 19S ATPase complex is recruited to chromatin in a histone H2B ubiquitylation-dependent manner and plays a nonproteolytic role in Pol II transcriptional elongation in the budding yeast (58-60). Moreover, in the fission yeast, histone H2B ubiquitylation is required for transcriptional elongation and HIRA mutations are synthetically lethal with htb1-K119R, the mutation in the conserved ubiquitin acceptor site of histone H2B, indicating the role of histone H2B ubiquitylation in chromatin assembly during transcription (61). Indeed, the overexpression of ubiquitin-conjugating enzyme gene confers enhanced stress tolerance in plants (62) and RAD6, which encodes ubiquitin-conjugating enzyme in the budding yeast, is involved in the heat shock induction of bleomycin resistance (cross tolerance) (63). Transcriptional regulation through HIRA recruitment may be required for not only stress response but also other biological responses in general. For instance, a recent study has revealed that Hip3, a component of the HIRA complex, is engaged in the repression of meiosis-specific gene SPCC663.14c expression under the vegetative state (56). Considering that Slm9 recruitment to stress-responsive gene loci depends on Atf1 (Fig. 4B), other factors, such as transcription factor which function together with general factors including HIRA, may determine the specificity of the response. In this way, HIRA may stimulate or repress transcription via mediation of nucleosome states, depending on the situation. Thus, it will be important to reveal the relationship among all these factors as they may cooperatively regulate stress-responsive gene expression.

## REFERENCES

- 1. Hahn, G. M., Ning, S. C., Elizaga, M., Kapp, D. S., and Anderson, R. L. (1989) *Int J Radiat Biol* 56, 817-825
- 2. Davies, J. M., Lowry, C. V., and Davies, K. J. (1995) Arch Biochem Biophys 317, 1-6
- 3. Yonezawa, M., Misonoh, J., and Hosokawa, Y. (1996) *Mutat Res* **358**, 237-243
- 4. Hengge-Aronis, R., Lange, R., Henneberg, N., and Fischer, D. (1993) J Bacteriol 175, 259-265
- 5. Santos, B. C., Chevaile, A., Kojima, R., and Gullans, S. R. (1998) Am J Physiol 274, F1054-1061
- 6. Larkindale, J., and Huang, B. (2004) J Plant Physiol 161, 405-413
- 7. Berry, D. B., and Gasch, A. P. (2008) Mol Biol Cell 19, 4580-4587
- 8. Moskalev, A., Shaposhnikov, M., and Turysheva, E. (2009) *Biogerontology* 10, 3-11
- 9. Calabrese, E. J., and Baldwin, L. A. (1999) *Toxicol Pathol* 27, 195-216
- 10. Calabrese, E. J., and Baldwin, L. A. (2001) Crit Rev Toxicol 31, 353-424
- 11. Rattan, S. I. (2008) Ageing Res Rev 7, 63-78
- 12. Gems, D., and Partridge, L. (2008) Cell Metab 7, 200-203
- 13. Shiozaki, K., and Russell, P. (1995) Nature 378, 739-743
- 14. Millar, J. B., Buck, V., and Wilkinson, M. G. (1995) Genes Dev 9, 2117-2130
- 15. Degols, G., Shiozaki, K., and Russell, P. (1996) *Mol Cell Biol* 16, 2870-2877
- 16. Degols, G., and Russell, P. (1997) Mol Cell Biol 17, 3356-3363
- 17. Chen, D., Toone, W. M., Mata, J., Lyne, R., Burns, G., Kivinen, K., Brazma, A., Jones, N., and Bahler, J. (2003) *Mol Biol Cell* 14, 214-229
- 18. Avvakumov, N., Nourani, A., and Cote, J. (2011) Mol Cell 41, 502-514
- 19. Kirov, N., Shtilbans, A., and Rushlow, C. (1998) *Gene* **212**, 323-332
- 20. Lamour, V., Lecluse, Y., Desmaze, C., Spector, M., Bodescot, M., Aurias, A., Osley, M. A., and Lipinski, M. (1995) *Hum Mol Genet* **4**, 791-799
- 21. Scamps, C., Lorain, S., Lamour, V., and Lipinski, M. (1996) Biochim Biophys Acta 1306, 5-8
- 22. Roberts, C., Daw, S. C., Halford, S., and Scambler, P. J. (1997) Hum Mol Genet 6, 237-245
- 23. Kanoh, J., and Russell, P. (2000) Genetics 155, 623-631
- 24. Blackwell, C., Martin, K. A., Greenall, A., Pidoux, A., Allshire, R. C., and Whitehall, S. K. (2004) *Mol Cell Biol* 24, 4309-4320
- 25. Sherwood, P. W., Tsang, S. V., and Osley, M. A. (1993) *Mol Cell Biol* 13, 28-38
- 26. Greenall, A., Williams, E. S., Martin, K. A., Palmer, J. M., Gray, J., Liu, C., and Whitehall, S. K. (2006) *J Biol Chem* **281**, 8732-8739
- 27. Anderson, H. E., Kagansky, A., Wardle, J., Rappsilber, J., Allshire, R. C., and Whitehall, S. K. (2010) *PLoS One* **5**, e13488
- 28. Balaji, S., Iyer, L. M., and Aravind, L. (2009) Mol Biosyst 5, 269-275
- 29. Banumathy, G., Somaiah, N., Zhang, R., Tang, Y., Hoffmann, J., Andrake, M., Ceulemans, H., Schultz, D., Marmorstein, R., and Adams, P. D. (2009) *Mol Cell Biol* **29**, 758-770
- 30. Rai, T. S., Puri, A., McBryan, T., Hoffman, J., Tang, Y., Pchelintsev, N. A., van Tuyn, J., Marmorstein, R., Schultz, D. C., and Adams, P. D. (2011) *Mol Cell Biol* **31**, 4107-4118
- 31. Ray-Gallet, D., Quivy, J. P., Scamps, C., Martini, E. M., Lipinski, M., and Almouzni, G. (2002) *Mol Cell* **9**, 1091-1100
- 32. Green, E. M., Antczak, A. J., Bailey, A. O., Franco, A. A., Wu, K. J., Yates, J. R., 3rd, and Kaufman, P. D. (2005) *Curr Biol* **15**, 2044-2049
- 33. Tagami, H., Ray-Gallet, D., Almouzni, G., and Nakatani, Y. (2004) Cell 116, 51-61
- 34. Smith, S., and Stillman, B. (1989) Cell 58, 15-25
- 35. Spector, M. S., Raff, A., DeSilva, H., Lee, K., and Osley, M. A. (1997) Mol Cell Biol 17, 545-552
- 36. Prochasson, P., Florens, L., Swanson, S. K., Washburn, M. P., and Workman, J. L. (2005) *Genes Dev* **19**, 2534-2539
- 37. Nelson, D. M., Ye, X., Hall, C., Santos, H., Ma, T., Kao, G. D., Yen, T. J., Harper, J. W., and Adams, P. D. (2002) *Mol Cell Biol* **22**, 7459-7472
- 38. Anderson, H. E., Wardle, J., Korkut, S. V., Murton, H. E., Lopez-Maury, L., Bahler, J., and

Whitehall, S. K. (2009) Mol Cell Biol 29, 5158-5167

- Zhang, R., Poustovoitov, M. V., Ye, X., Santos, H. A., Chen, W., Daganzo, S. M., Erzberger, J. P., Serebriiskii, I. G., Canutescu, A. A., Dunbrack, R. L., Pehrson, J. R., Berger, J. M., Kaufman, P. D., and Adams, P. D. (2005) *Dev Cell* 8, 19-30
- 40. Yamane, K., Mizuguchi, T., Cui, B., Zofall, M., Noma, K., and Grewal, S. I. (2011) *Mol Cell* **41**, 56-66
- 41. Ahmad, A., Kikuchi, H., Takami, Y., and Nakayama, T. (2005) *J Biol Chem* **280**, 32090-32100
- 42. Formosa, T., Ruone, S., Adams, M. D., Olsen, A. E., Eriksson, P., Yu, Y., Rhoades, A. R., Kaufman, P. D., and Stillman, D. J. (2002) *Genetics* **162**, 1557-1571
- 43. Ahmad, K., and Henikoff, S. (2002) Mol Cell 9, 1191-1200
- 44. Mito, Y., Henikoff, J. G., and Henikoff, S. (2005) *Nat Genet* **37**, 1090-1097
- 45. Moreno, S., Klar, A., and Nurse, P. (1991) *Methods Enzymol* **194**, 795-823
- 46. Alfa, C., Fantes, P., Hyams, J., McLeod, M., and Warbrick, E. (1993) Cold Spring Harbor Laboratory Press
- 47. Kanoh, J., Sugimoto, A., and Yamamoto, M. (1995) *Mol Biol Cell* **6**, 1185-1195
- 48. Lantermann, A., Stralfors, A., Fagerstrom-Billai, F., Korber, P., and Ekwall, K. (2009) *Methods* **48**, 218-225
- 49. Sekinger, E. A., Moqtaderi, Z., and Struhl, K. (2005) Mol Cell 18, 735-748
- 50. Sanso, M., Vargas-Perez, I., Quintales, L., Antequera, F., Ayte, J., and Hidalgo, E. (2011) *Nucleic Acids Res* **39**, 6369-6379
- 51. Lantermann, A. B., Straub, T., Stralfors, A., Yuan, G. C., Ekwall, K., and Korber, P. (2010) *Nat Struct Mol Biol* **17**, 251-257
- 52. Dohke, K., Miyazaki, S., Tanaka, K., Urano, T., Grewal, S. I., and Murakami, Y. (2008) *Genes Cells* **13**, 1027-1043
- 53. Mosammaparast, N., Ewart, C. S., and Pemberton, L. F. (2002) *EMBO J* 21, 6527-6538
- 54. Chen, D., Wilkinson, C. R., Watt, S., Penkett, C. J., Toone, W. M., Jones, N., and Bahler, J. (2008) *Mol Biol Cell* **19**, 308-317
- 55. Nakagawa, C. W., Yamada, K., and Mutoh, N. (2000) J Biochem 127, 233-238
- 56. Mizuki, F., Tanaka, A., Hirose, Y., and Ohkuma, Y. (2011) *PLoS One* 6, e19442
- 57. Williams, S. K., and Tyler, J. K. (2007) Curr Opin Genet Dev 17, 88-93
- 58. Ferdous, A., Gonzalez, F., Sun, L., Kodadek, T., and Johnston, S. A. (2001) Mol Cell 7, 981-991
- 59. Gonzalez, F., Delahodde, A., Kodadek, T., and Johnston, S. A. (2002) Science 296, 548-550
- 60. Ezhkova, E., and Tansey, W. P. (2004) Mol Cell 13, 435-442
- 61. Tanny, J. C., Erdjument-Bromage, H., Tempst, P., and Allis, C. D. (2007) Genes Dev 21, 835-847
- 62. Zhou, G. A., Chang, R. Z., and Qiu, L. J. (2010) Plant Mol Biol 72, 357-367
- 63. Keszenman, D. J., Candreva, E. C., Sanchez, A. G., and Nunes, E. (2005) *Environ Mol Mutagen* **45**, 36-43

Acknowledgments- We are grateful to Dr. Yukinobu Nakaseko for useful discussion and critical reading of the manuscript. We thank Drs. Fumihiko Sato, Peter Baumann, and Junko Kanoh for warm encouragement and valuable suggestions, and Dr. Taro Nakamura, RIKEN Bioresource Center, for providing the *S. pombe* genomic library (pTN-L1).

## FOOTNOTES

\*This work was supported by a Grant-in-Aid for Cancer Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (to F.I.). M.C. is a recipient of a fellowship from the Japan Society for the Promotion of Science (JSPS).

<sup>1</sup>To whom correspondence should be addressed: Fuyuki Ishikawa, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan, Tel: +81 75 753 4195; Fax: +81 75 753 4197; E-mail: <u>fishikaw@lif.kyoto-u.ac.jp</u>

<sup>2</sup>The abbreviations used are: CESR, core environmental stress response; GO, gene ontology; MNase, micrococcal nuclease; NDR, nucleosome depleted region; Pol II, RNA polymerase II; TSS, transcription

start site

## FIGURE LEGENDS

## Figure 1. Various stress combinations induce cross tolerance in the fission yeast.

Viability of wild-type (JK317) cells following exposure to indicated stress is shown. Priming stress was 40°C, 0.6 M KCl, or 0.1 mM H<sub>2</sub>O<sub>2</sub> for 1 h and severe stress was 46°C, 2.4 M KCl, or 25 mM H<sub>2</sub>O<sub>2</sub> for 1 h. Results are means of at least four independent experiments and error bars represent standard error. Significant difference between viabilities with or without priming stress was determined by the Student's *t*-test (\* P<0.05, \*\* P<0.01).

## Figure 2. HIRA complex is required for cross tolerance.

The viability of the indicated cells following exposure to cross (acquired)-tolerance-inducible stress is shown. Results are means of at least three independent experiments and error bars represent standard error. (A, B, E) Cells were subjected to 40°C for 1 h (priming stress) and 25 mM  $H_2O_2$  for another 1 h (severe stress). (C) Oxidative and heat stresses: cells were subjected to 0.1 mM  $H_2O_2$  for 1 h (priming stress) and 46°C for another 1 h (severe stress). Osmotic and oxidative stresses: cells were subjected to 0.6 M KCl for 1 h (priming stress) and 25 mM  $H_2O_2$  for 1 h (priming stress) and 25 mM  $H_2O_2$  for another 1 h (severe stress). (D) Cells were subjected to 0.1 mM  $H_2O_2$  for 1 h (priming stress) and 25 mM  $H_2O_2$  for another 1 h (severe stress).

## Figure 3. HIRA complex mutants are especially sensitive to low-dose stress.

Tenfold serial dilutions of wild-type (JK317),  $slm9\Delta$  (MC3749),  $hip1\Delta$  (MC3725),  $hip3\Delta$  (MC3773),  $hip4\Delta$  (MC3799), and  $spc1\Delta$  (MC3801) cells were spotted onto YES plates or YES plates containing H<sub>2</sub>O<sub>2</sub>, menadione, KCl, or sorbitol. For heat stress, the spotted YES plates were subjected to the indicated heat stress dose.

## Figure 4. HIRA is recruited to stress-responsive gene loci upon stress treatment.

(A) slm9-12myc (MC3793) and hip1-12myc (MC3795) cells were exposed to 40°C for the indicated times. Whole cell extracts were prepared and analyzed by Western blotting with anti-Myc and anti-Cdc2 (control) antibodies. (B) slm9-12myc (MC3793) and slm9-12myc  $atf1\Delta$  (MC4219) cells were exposed or not exposed to 40°C for 15 min. ChIP assay using anti-Myc antibody was performed. Purified DNA was analyzed by real-time PCR using primer sets for the promoter (prom) and coding (ORF) regions of stress-responsive genes ( $ctt1^+$ ,  $gpx1^+$ , and  $hsp9^+$ ), non-stress-responsive gene ( $pol1^+$ ), and heterochromatic locus (outer repeats of centromere, dh). Values shown were normalized to  $cdc2^+$  promoter. Results are means of three independent experiments and error bars represent standard error.

## Figure 5. HIRA is required for stress-responsive gene expression and Pol II recruitment.

(A) Wild-type (JK317),  $slm9\Delta$  (MC3749), and  $hip1\Delta$  (MC3725) cells were exposed or not exposed to 40°C for 1 h. Total RNA was analyzed by RT-PCR using primer sets for stress-responsive genes ( $ctt1^+$ ,  $gpx1^+$ ,  $gpd1^+$ ,  $tps1^+$ ,  $hsp9^+$ , and  $hsp16^+$ ).  $act1^+$  is shown as loading control. (B) Wild-type (JK317) and  $slm9\Delta$  (MC3749) cells were exposed or not exposed to 40°C for 15 min. ChIP assay using anti-Pol II antibodies was performed. Purified DNA was analyzed in the same way as described in Fig. 4B. Results are means of three independent experiments and error bars represent standard error.

## Figure 6. HIRA disruption mainly affects stress-responsive gene expression.

(A, B, C) Fold change of gene expression under priming stress (40°C for 1 h) condition compared to no stress condition is plotted for wild-type (JK317),  $slm9\Delta$  (MC3749), and  $hip1\Delta$  (MC3725) cells. Horizontal bars represent means of fold change and mean values are shown below the abscissa axis. Fold change in expression of all genes (A), CESR genes (B), and genes whose expression was increased more than twofold in wild-type cells (C) is shown. Significant difference in expression between wild-type and mutant cells was determined by the Student's *t*-test (\* P<0.05, \*\* P<0.01).

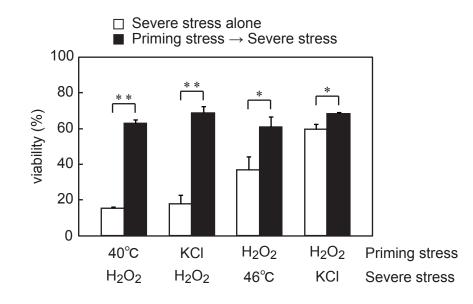
## Figure 7. HIRA is required for nucleosome eviction at stress-responsive gene locus.

Wild-type (JK317) and  $slm9\Delta$  (MC3749) cells were exposed or not exposed to 40°C for 15 min. Mononucleosomal DNA was isolated from the cells and nucleosome-scanning analysis was performed. Real-time PCR was carried out using 10 overlapping primer sets along  $ctt1^+$  gene. Nucleosomal DNA enrichment is defined by the ratio of the amplified products with mononucleosomal DNA to genomic DNA. Results are means of three independent experiments and error bars represent standard error. Inferred locations of nucleosomes (light gray ovals) with respect to ORF (white rectangle) and TSS (black arrow) are shown. TATA box (-30 to -23) and Atf1 binding site (-57 to -50) are also represented as black rectangle and dark gray rectangle, respectively (55).

### Figure 8. Priming stress enhances stress-responsive gene expression under severe stress.

(A) Wild-type (JK317) cells were either not exposed to stress (no stress) or exposed to various stresses: 40°C for 1 h (priming stress alone), 25 mM H<sub>2</sub>O<sub>2</sub> for 1 h (severe stress alone), or 40°C for 1 h followed by 25 mM H<sub>2</sub>O<sub>2</sub> for 1 h (priming stress followed by severe stress). Total RNA was analyzed by quantitative RT-PCR using primer sets for stress-responsive genes (*ctt1*<sup>+</sup>, *gpx1*<sup>+</sup>, and *hsp9*<sup>+</sup>) and non-stress-responsive gene (*ade6*<sup>+</sup>). Values shown were normalized to *act1*<sup>+</sup> expression. Results are means of five independent experiments and error bars represent standard error. (B) Fold change of CESR gene expression under three stress conditions compared to no stress condition is plotted for wild-type (JK317) cells. The three stress conditions are as follows: priming stress alone (40°C for 1 h, 1st), severe stress alone (25 mM H<sub>2</sub>O<sub>2</sub> for 1 h, 2nd), and priming stress followed by severe stress (40°C for 1 h followed by 25 mM H<sub>2</sub>O<sub>2</sub> for 1 h, 1st+2nd). Horizontal bars represent means of fold change and mean values are shown below the abscissa axis.

| Strain | Genotype                                                                      |
|--------|-------------------------------------------------------------------------------|
| JK316  | h <sup>+</sup> leu1-32 ura4-D18                                               |
| JK317  | h <sup>-</sup> leu1-32 ura4-D18                                               |
| YT2272 | h <sup>-</sup> leu1-32 ura4-D18 spc1 ::kanMX6                                 |
| MC3725 | h <sup>-</sup> leu1-32 ura4-D18 hip1 ::ura4 <sup>+</sup>                      |
| MC3749 | h <sup>-</sup> leu1-32 ura4-D18 slm9 ::ura4 <sup>+</sup>                      |
| MC3768 | h <sup>-</sup> leu1-32 ura4-D18 pcf1 ::kanMX6                                 |
| MC3773 | h <sup>-</sup> leu1-32 ura4-D18 hip3 ::ura4 <sup>+</sup>                      |
| MC3793 | h <sup>-</sup> leu1-32 ura4-D18 slm9-12myc (ura4 <sup>+</sup> )               |
| MC3795 | h <sup>-</sup> leu1-32 ura4-D18 hip1-12myc (ura4 <sup>+</sup> )               |
| MC3797 | h <sup>-</sup> leu1-32 ura4-D18 slm9-GFP (ura4 <sup>+</sup> )                 |
| MC3799 | h <sup>-</sup> leu1-32 ura4-D18 hip4 ::ura4 <sup>+</sup>                      |
| MC3801 | h <sup>-</sup> leu1-32 ura4-D18 spc1 ::ura4 <sup>+</sup>                      |
| MC3849 | h <sup>-</sup> leu1-32 ura4-D18 nap1 ::ura4 <sup>+</sup>                      |
| MC4219 | h <sup>-</sup> leu1-32 ura4-D18 slm9-12myc (ura4 <sup>+</sup> ) atf1 ::hphMX6 |


Table 1 S. pombe strains used in this study

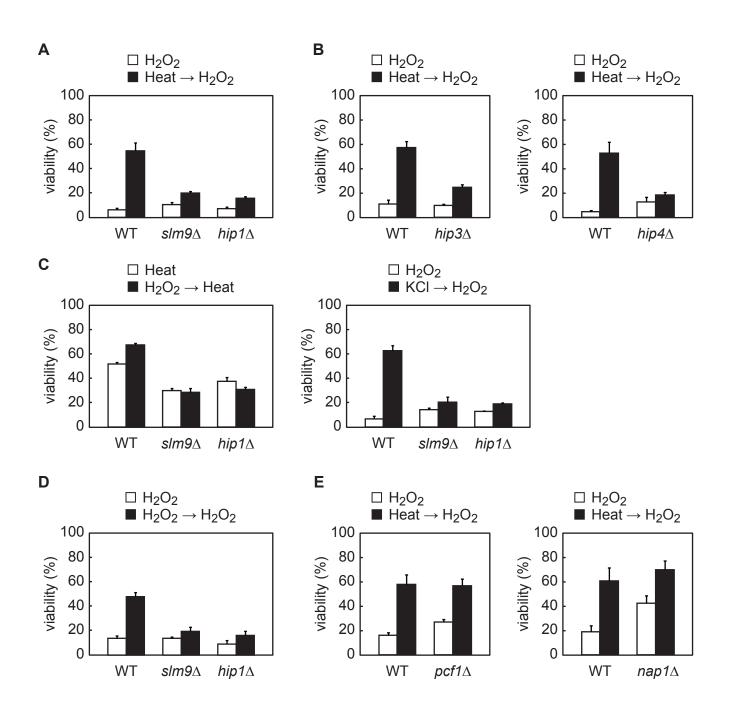
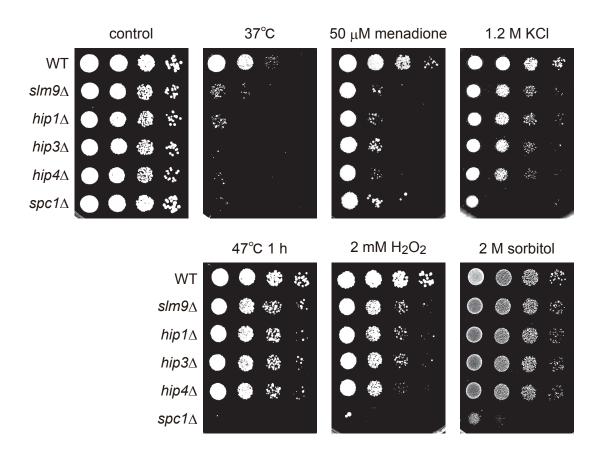
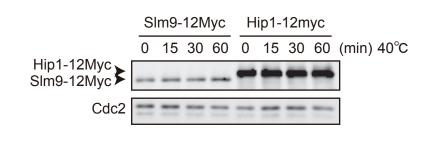
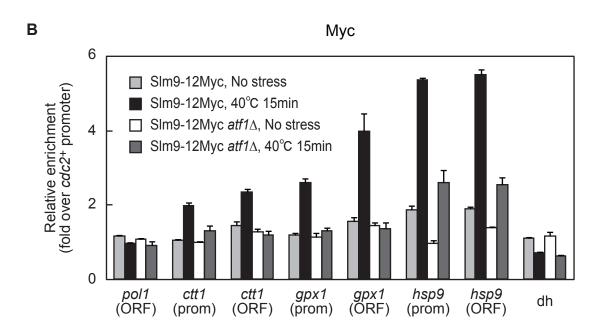

| GO term                              | Number of        |               | Number of total | % of total    | p-value  |
|--------------------------------------|------------------|---------------|-----------------|---------------|----------|
|                                      | induced genes in | genes in term | genes in term   | genes in term | p vulue  |
| WT                                   |                  |               |                 |               |          |
| cellular response to stress          | 115              | 72.8          | 694             | 14.1          | 9.97E-38 |
| meiosis                              | 42               | 26.6          | 353             | 7.2           | 7.26E-05 |
| cellular response to oxidative stres | 16               | 10.1          | 60              | 1.2           | 7.26E-05 |
| oxidoreductase activity              | 37               | 23.4          | 275             | 5.6           | 1.38E-04 |
| M phase                              | 42               | 26.6          | 518             | 10.5          | 2.70E-02 |
| slm9∆                                |                  |               |                 |               |          |
| cellular response to stress          | 80               | 69.0          | 694             | 14.1          | 2.20E-26 |
| meiosis                              | 43               | 37.1          | 353             | 7.2           | 1.02E-06 |
| M phase                              | 43               | 37.1          | 518             | 10.5          | 3.22E-04 |
| hip1 $\Delta$                        |                  |               |                 |               |          |
| cellular response to stress          | 65               | 68.4          | 694             | 14.1          | 4.33E-19 |
| meiosis                              | 35               | 36.8          | 353             | 7.2           | 1.38E-04 |
| M phase                              | 35               | 36.8          | 518             | 10.5          | 1.25E-02 |

 Table 2 Principal gene ontology terms enriched in priming-stress-induced genes


| GO term                                                                         | Number of selected genes in | % of selected | Number of total genes in term | % of total genes in term | p-value  |
|---------------------------------------------------------------------------------|-----------------------------|---------------|-------------------------------|--------------------------|----------|
| WT fold change/slm9 $\Delta$ fold change $\geq 2$                               | serected genes m            | genes in term | genes in term                 | genes in term            |          |
| cellular response to stress                                                     | 47                          | 92.2          | 694                           | 14.1                     | 1.83E-19 |
| cellular response to stimulus                                                   | 47                          | 92.2          | 730                           | 14.9                     | 1.83E-19 |
| response to stress                                                              | 47                          | 92.2          | 733                           | 14.9                     | 1.42E-18 |
| response to stimulus                                                            | 47                          | 92.2          | 819                           | 16.7                     | 1.68E-18 |
| oxidoreductase activity                                                         | 15                          | 29.4          | 275                           | 5.6                      | 3.11E-03 |
| oxidoreductase activity, acting on CH-OH group of donors                        | 2                           | 3.9           | 63                            | 1.3                      | 3.40E-03 |
| response to oxidative stress                                                    | 8                           | 15.7          | 69                            | 1.4                      | 5.84E-03 |
| oxidation reduction                                                             | 14                          | 27.5          | 243                           | 4.9                      | 9.38E-03 |
| oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as accept | 2                           | 3.9           | 58                            | 1.2                      | 1.17E-02 |
| cellular response to oxidative stress                                           | 7                           | 13.7          | 60                            | 1.2                      | 1.33E-02 |
| WT fold change/ <i>hip1</i> $\Delta$ fold change $\geq 2$                       |                             |               |                               |                          |          |
| cellular response to stress                                                     | 52                          | 74.3          | 694                           | 14.1                     | 3.25E-23 |
| cellular response to stimulus                                                   | 52                          | 74.3          | 730                           | 14.9                     | 3.25E-23 |
| response to stress                                                              | 52                          | 74.3          | 733                           | 14.9                     | 3.17E-22 |
| response to stimulus                                                            | 52                          | 74.3          | 819                           | 16.7                     | 5.27E-22 |
| oxidoreductase activity                                                         | 16                          | 22.9          | 275                           | 5.6                      | 1.36E-03 |
| oxidoreductase activity, acting on CH-OH group of donors                        | 2                           | 2.9           | 63                            | 1.3                      | 4.51E-03 |
| oxidation reduction                                                             | 15                          | 21.4          | 243                           | 4.9                      | 4.51E-03 |
| response to oxidative stress                                                    | 8                           | 11.4          | 69                            | 1.4                      | 7.70E-03 |
| oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as accept | 2                           | 2.9           | 58                            | 1.2                      | 1.68E-02 |
| cellular response to oxidative stress                                           | 7                           | 10.0          | 60                            | 1.2                      | 1.91E-02 |

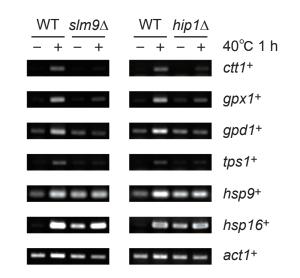
## Table 3 Gene ontology terms enriched in genes that showed WT fold change/mutant fold change≥2 under priming stress condition

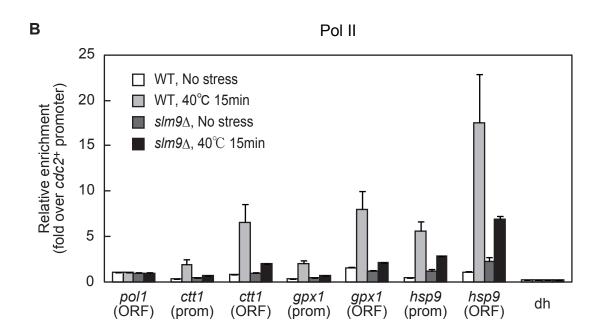


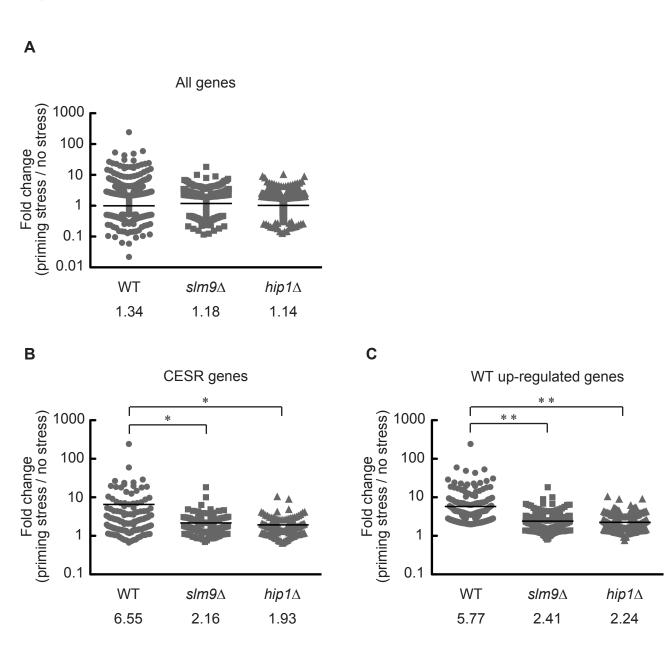



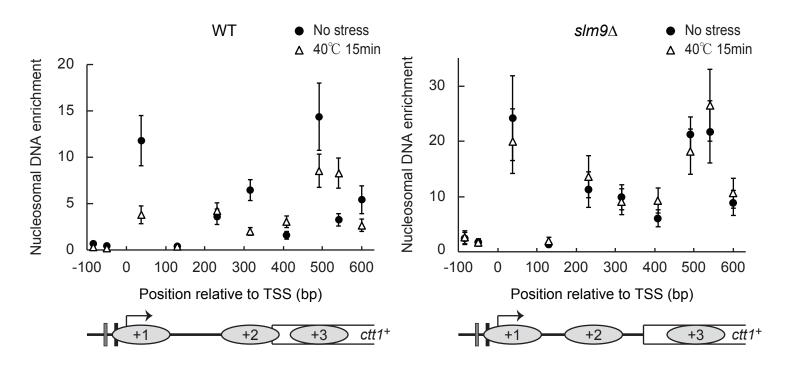

# Figure 3

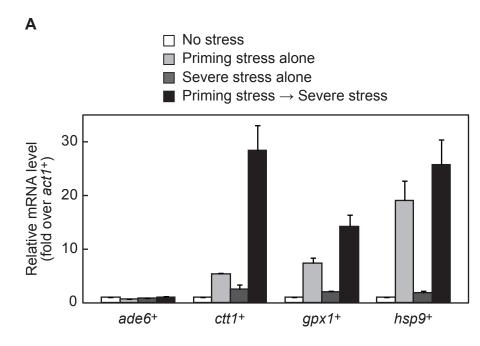



A

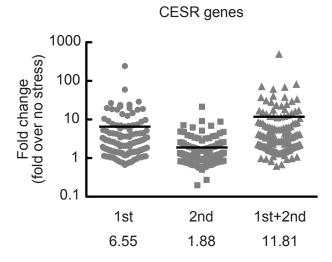




# Figure 5





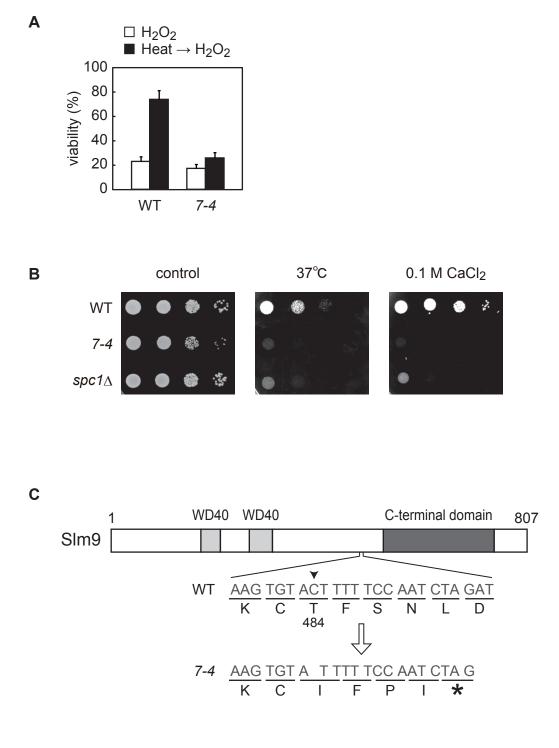






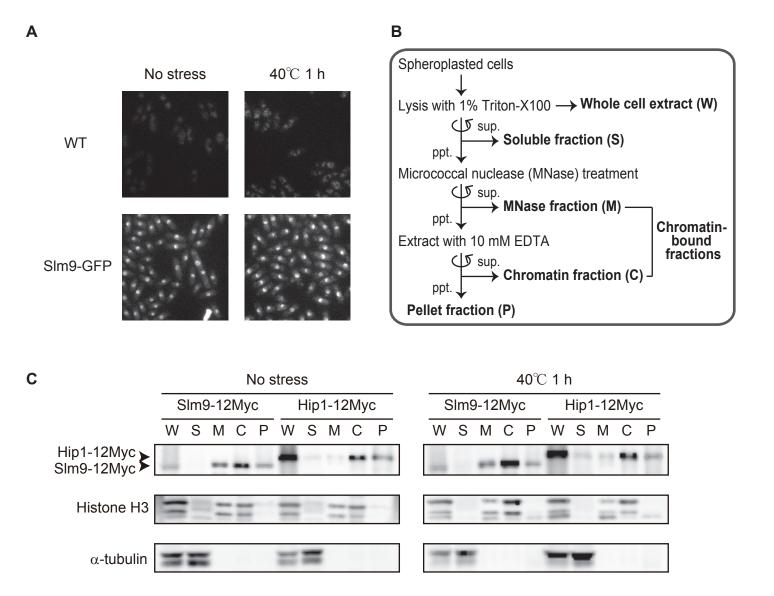

В




## **Supplemental Information**

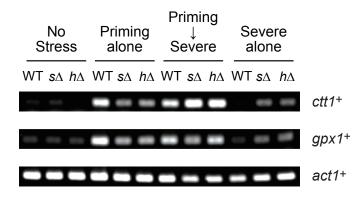
## HIRA, a conserved histone chaperone plays an essential role in low-dose stress response via transcriptional stimulation in fission yeast

Moeko Chujo<sup>1</sup>, Yusuke Tarumoto<sup>1</sup>, Koichi Miyatake<sup>2</sup>, Eisuke Nishida<sup>2</sup>, and Fuyuki Ishikawa<sup>1</sup>


From the Departments of <sup>1</sup>Gene Mechanisms and <sup>2</sup>Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan

## Figure S1

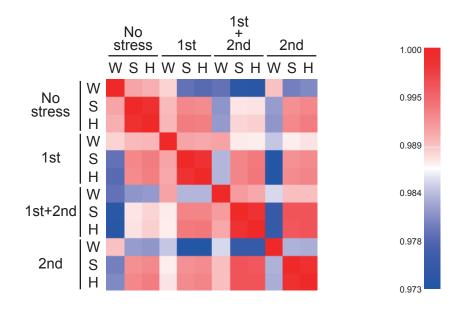



## Figure S1. Characterization of cross-tolerance-defective mutant, 7-4.

(A) Viability of wild-type (JK317) and 7-4 cells following exposure to 40°C for 1 h (priming stress) and 25 mM H<sub>2</sub>O<sub>2</sub> for 1 h (severe stress) is shown. Results are means of six independent experiments and error bars represent standard error. (B) Tenfold serial dilutions of wild-type (JK317), 7-4, and *spc1* $\Delta$  (YT2272) cells were spotted onto YES plates or YES plates containing CaCl<sub>2</sub>. For heat stress, the spotted YES plates were incubated at 37°C. (C) Schematic structure of Slm9 protein. Slm9 has WD40 motifs (light grey) and a C-terminal domain (dark grey) that is well-conserved among HIRA family proteins from many eukaryotes (19,24). A single nucleotide deletion occurred at nucleotide 1451 (arrowhead) in 7-4 mutant, causing the reading frame shift.



# Figure S2. Nuclear localization and chromatin association of HIRA are unaffected by stress treatment.


(A) Wild-type (JK317) and *slm9-GFP* (MC3797) cells were grown in YES medium at 32°C and exposed or not exposed to 40°C for 1 h. Cells were washed with PBS and living cells in PBS were observed without fixation under a DeltaVision microscope (Applied Precision). (B) Procedure for the chromatin fractionation assay used in this study. (C) *slm9-12myc* (MC3793) and *hip1-12myc* (MC3795) cells were exposed or not exposed to 40°C for 1 h. Chromatin fractionation assay was performed as shown in (B). Proteins from each fraction were analyzed by Western blotting with anti-Myc, anti-histone H3, and anti- $\alpha$ -tubulin antibodies. The soluble fraction contains nucleoplasmic and cytoplasmic proteins, and the MNase fraction and the chromatin fraction contain chromatin-bound proteins. Histone H3 and  $\alpha$ -tubulin were used as controls for the chromatin-bound fractions and the soluble fraction, respectively. W, whole cell extract; S, soluble fraction; M, MNase fraction; C, chromatin fraction; P, pellet fraction.



## Figure S3. CESR gene expression is augmented under severe stress in HIRA disruptants.

Wild-type (JK317),  $slm9\Delta$  (MC3749), and  $hip1\Delta$  (MC3725) cells were either not exposed to stress (no stress) or exposed to various stresses: 40°C for 1 h (priming stress alone), 40°C for 1 h followed by 25 mM H<sub>2</sub>O<sub>2</sub> for 1 h (priming stress followed by severe stress), or 25 mM H<sub>2</sub>O<sub>2</sub> for 1 h (severe stress alone). Total RNA was analyzed by RT-PCR using primer sets for stress-responsive genes (*ctt1*<sup>+</sup> and *gpx1*<sup>+</sup>). *act1*<sup>+</sup> is shown as loading control.  $s\Delta$ ,  $slm9\Delta$ ;  $h\Delta$ ,  $hip1\Delta$ .

## Figure S4



## Figure S4. Gene expression in *slm9* $\Delta$ and *hip1* $\Delta$ cells shows strong correlation.

Microarray analysis was performed for wild-type (JK317),  $slm9\Delta$  (MC3749), and  $hip1\Delta$  (MC3725) cells under four conditions: control (No stress), priming stress alone (40°C for 1 h, 1st), priming stress followed by severe stress (40°C for 1 h followed by 25 mM H<sub>2</sub>O<sub>2</sub> for 1 h, 1st+2nd), and severe stress alone (25 mM H<sub>2</sub>O<sub>2</sub> for 1 h, 2nd). Pearson' s correlation coefficient (r<sup>2</sup>) was calculated for each pair of arrays and shown as a heat map. W, wild-type; S,  $slm9\Delta$ ; H,  $hip1\Delta$ .

 Table S1 Primers for real-time PCR

| Locus           | Forward primer                      | Reverse primer                          |
|-----------------|-------------------------------------|-----------------------------------------|
| act1 (ORF)      | 5'-AGCGTGGTTATACTTTCTCTACT-3'       | 5'-GGAGGAAGATTGAGCAGCAG-3'              |
| ade6 (ORF)      | 5'-GAAAGATGCTGCCGTCATTTTAG-3'       | 5'-GCTGCGGTACGAGCATAAGTAAC-3'           |
| cdc2 (promoter) | 5'-ACATGAAGCGCTAGCCCTAAGTT-3'       | 5'-TCAACTAGCGATAGACTAGTGGAAACGCAGAGGA-3 |
| pol1 (ORF)      | 5'-AAGACGGTCTGCAAGAAGAATCTC-3'      | 5'-GCTCAAAAACCAATCCACCTTT-3'            |
| ctt1 (promoter) | 5'-CGCTAATAATGATGCTCTTTGGC-3'       | 5'-CAATAGGAAAACTCTTACCAACGC-3'          |
| ctt1 (ORF)      | 5'-AAGAACGTTGCCGGTCACTT-3'          | 5'-TGGCGTTCACGTACAGGAGAT-3'             |
| gpx1 (promoter) | 5'-TGTTGTAACTAACGCAAACTACTTAATCG-3' | 5'-GGCTGAGACTCATACTTAAACAGTATAGGTATC-3' |
| gpx1 (ORF)      | 5'-AAGATCAATGTTAATGGCGACAAC-3'      | 5'-GATGACTTGACCTTGACGATTGAC-3'          |
| hsp9 (promoter) | 5'-CGAATGGTGCGAAGAAAAGG-3'          | 5'-GCTCGCTATCCAATCAGACAAA-3'            |
| hsp9 (ORF)      | 5'-AAGGTCGCCTCTGCTTTTACC-3'         | 5'-AGCGTTGAGCCTTGTCATGAG-3'             |
| dh              | 5'-AACAAAGCGACAATAGCAGTC-3'         | 5'-TAGCTTGTTGACATAATGAAGACCAA-3'        |
| ctt1-1          | 5'-GATGCTCTTTGGCTCACTAAGC-3'        | 5'-TGTAGAATTACCAACGTCATATTTGC-3'        |
| ctt1-2          | 5'-TGGAATCTCGGCCATTTG-3'            | 5'-TATATTCAAGCAACTTGCAATTG-3'           |
| ctt1-3          | 5'-AATTGCAAGTTGCTTGAATATACAGC-3'    | 5'-GAACAAGGGAATTACAATCACACAC-3'         |
| ctt1-4          | 5'-TGTGTGTGATTGTAATTCCCTTG-3'       | 5'-AAAAAGACAGTCAAAAAATTGTGTT-3'         |
| ctt1-5          | 5'-GACTGTCTTTTTTTTTTCCCCTCC-3'      | 5'-GAGCAAATGATTTTAAACTAGCTTGTC-3'       |
| ctt1-6          | 5'-AGCTAGTTTAAAATCATTTGCTCG-3'      | 5'-TTCGCTGATGTTTGAATCCTTAG-3'           |
| ctt1-7          | 5'-GGATTCAAACATCAGCGAAATG-3'        | 5'-TTACCCACACGAGCCGCA-3'                |
| ctt1-8          | 5'-CTGCGGCTCGTGTGGGTA-3'            | 5'-CAGGAATACGCTCGCGATC-3'               |
| ctt1-9          | 5'-CATTTAATCGACGTCTTTCAACAC-3'      | 5'-CGGTGCATTCGAATTCACC-3'               |
| ctt1-10         | 5'-CATGCAAAGGGTTCCGGT-3'            | 5'-TAGGGGTTTTCTTACCAACCTTAG-3'          |

#### Table S2 Gene ontology terms enriched in stress-induced genes

| iming stress         | GO term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Number of<br>induced genes in                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                      | Number of total<br>genes in term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | % of total<br>genes in term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | p-valu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | WT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| alone                | cellular response to stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 115                                                                                                                                                                                                                                                                                                               | 72.8                                                                                                                                                                                                                 | 694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.97E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | cellular response to stimulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 115                                                                                                                                                                                                                                                                                                               | 72.8                                                                                                                                                                                                                 | 730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.24E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | response to stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 118                                                                                                                                                                                                                                                                                                               | 74.7                                                                                                                                                                                                                 | 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.56E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | response to stimulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 118                                                                                                                                                                                                                                                                                                               | 74.7                                                                                                                                                                                                                 | 819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.90E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | response to oxidative stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17                                                                                                                                                                                                                                                                                                                | 10.8                                                                                                                                                                                                                 | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.08E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | meiosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42                                                                                                                                                                                                                                                                                                                | 26.6                                                                                                                                                                                                                 | 353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.26E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | cellular response to oxidative stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 16                                                                                                                                                                                                                                                                                                                | 10.1                                                                                                                                                                                                                 | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.26E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | M phase of meiotic cell cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42                                                                                                                                                                                                                                                                                                                | 26.6                                                                                                                                                                                                                 | 353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.26E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | meiotic cell cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42                                                                                                                                                                                                                                                                                                                | 26.6                                                                                                                                                                                                                 | 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.49E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | oxidoreductase activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37                                                                                                                                                                                                                                                                                                                | 23.4                                                                                                                                                                                                                 | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.38E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | cellular response to chemical stimulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16                                                                                                                                                                                                                                                                                                                | 10.1                                                                                                                                                                                                                 | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.10E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | oxidation reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34                                                                                                                                                                                                                                                                                                                | 21.5                                                                                                                                                                                                                 | 243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.81E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | oxidoreductase activity, acting on CH-OH group of donors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                 | 1.9                                                                                                                                                                                                                  | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.22E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as accepto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                   | 1.3                                                                                                                                                                                                                  | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.38E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | M phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42                                                                                                                                                                                                                                                                                                                | 26.6                                                                                                                                                                                                                 | 518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.70E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | slm9 $\Delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                   | 20.0                                                                                                                                                                                                                 | 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | response to stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 83                                                                                                                                                                                                                                                                                                                | 71.6                                                                                                                                                                                                                 | 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.20E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80                                                                                                                                                                                                                                                                                                                | 69.0                                                                                                                                                                                                                 | 694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.20E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | cellular response to stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | cellular response to stimulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80                                                                                                                                                                                                                                                                                                                | 69.0                                                                                                                                                                                                                 | 730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.15E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | response to stimulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83                                                                                                                                                                                                                                                                                                                | 71.6                                                                                                                                                                                                                 | 819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.79E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | meiosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43                                                                                                                                                                                                                                                                                                                | 37.1                                                                                                                                                                                                                 | 353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.02E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | M phase of meiotic cell cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43                                                                                                                                                                                                                                                                                                                | 37.1                                                                                                                                                                                                                 | 353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.02E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | meiotic cell cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43                                                                                                                                                                                                                                                                                                                | 37.1                                                                                                                                                                                                                 | 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.06E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | M phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43                                                                                                                                                                                                                                                                                                                | 37.1                                                                                                                                                                                                                 | 518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.22E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | cell cycle phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 43                                                                                                                                                                                                                                                                                                                | 37.1                                                                                                                                                                                                                 | 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.97E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | cell cycle process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43                                                                                                                                                                                                                                                                                                                | 37.1                                                                                                                                                                                                                 | 594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.00E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | hip1 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                   | 51.1                                                                                                                                                                                                                 | <i></i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60                                                                                                                                                                                                                                                                                                                | 71.6                                                                                                                                                                                                                 | 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | response to stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 68<br>65                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.33E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | cellular response to stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 65                                                                                                                                                                                                                                                                                                                | 68.4                                                                                                                                                                                                                 | 694<br>720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4.33E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | cellular response to stimulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65                                                                                                                                                                                                                                                                                                                | 68.4                                                                                                                                                                                                                 | 730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.21E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | response to stimulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 68                                                                                                                                                                                                                                                                                                                | 71.6                                                                                                                                                                                                                 | 819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.60E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | meiosis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                | 36.8                                                                                                                                                                                                                 | 353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.38E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | M phase of meiotic cell cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35                                                                                                                                                                                                                                                                                                                | 36.8                                                                                                                                                                                                                 | 353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.38E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | meiotic cell cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35                                                                                                                                                                                                                                                                                                                | 36.8                                                                                                                                                                                                                 | 355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.38E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | M phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                | 36.8                                                                                                                                                                                                                 | 518                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.25E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | cell cycle phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                | 36.8                                                                                                                                                                                                                 | 550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.45E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | cell cycle process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35                                                                                                                                                                                                                                                                                                                | 36.8                                                                                                                                                                                                                 | 594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.66E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ming stress          | WT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| nd severe            | response to stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 172                                                                                                                                                                                                                                                                                                               | 77.5                                                                                                                                                                                                                 | 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| stress               | cellular response to stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 170                                                                                                                                                                                                                                                                                                               | 76.6                                                                                                                                                                                                                 | 694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| stress               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 170                                                                                                                                                                                                                                                                                                               | 77.5                                                                                                                                                                                                                 | 819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | response to stimulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | cellular response to stimulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 170                                                                                                                                                                                                                                                                                                               | 76.6                                                                                                                                                                                                                 | 730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | oxidoreductase activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51                                                                                                                                                                                                                                                                                                                | 23.0                                                                                                                                                                                                                 | 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.40E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | response to oxidative stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22                                                                                                                                                                                                                                                                                                                | 9.9                                                                                                                                                                                                                  | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.70E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | cellular response to oxidative stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21                                                                                                                                                                                                                                                                                                                | 9.5                                                                                                                                                                                                                  | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.20E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | oxidation reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45                                                                                                                                                                                                                                                                                                                | 20.3                                                                                                                                                                                                                 | 243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.97E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | oxidoreductase activity, acting on CH-OH group of donors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                 | 1.4                                                                                                                                                                                                                  | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.55E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | cellular response to chemical stimulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21                                                                                                                                                                                                                                                                                                                | 9.5                                                                                                                                                                                                                  | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.44E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | response to chemical stimulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22                                                                                                                                                                                                                                                                                                                | 9.9                                                                                                                                                                                                                  | 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.75E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | slm9∆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | response to stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 153                                                                                                                                                                                                                                                                                                               | 90.5                                                                                                                                                                                                                 | 733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                   | 20.5                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                   | 89.0                                                                                                                                                                                                                 | 694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ()()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      | cellular response to stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 152                                                                                                                                                                                                                                                                                                               | 89.9<br>90.5                                                                                                                                                                                                         | 694<br>810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | cellular response to stress<br>response to stimulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 152<br>153                                                                                                                                                                                                                                                                                                        | 90.5                                                                                                                                                                                                                 | 819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.1<br>16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 152<br>153<br>152                                                                                                                                                                                                                                                                                                 | 90.5<br>89.9                                                                                                                                                                                                         | 819<br>730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.1<br>16.7<br>14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00E<br>0.00E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 152<br>153<br>152<br>50                                                                                                                                                                                                                                                                                           | 90.5<br>89.9<br>29.6                                                                                                                                                                                                 | 819<br>730<br>275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.1<br>16.7<br>14.9<br>5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00E<br>0.00E<br>5.09E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity<br>oxidoreductase activity, acting on CH-OH group of donors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 152<br>153<br>152<br>50<br>6                                                                                                                                                                                                                                                                                      | 90.5<br>89.9<br>29.6<br>3.6                                                                                                                                                                                          | 819<br>730<br>275<br>63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 14.1<br>16.7<br>14.9<br>5.6<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00E<br>0.00E<br>5.09E<br>8.76E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 152<br>153<br>152<br>50<br>6<br>45                                                                                                                                                                                                                                                                                | 90.5<br>89.9<br>29.6<br>3.6<br>26.6                                                                                                                                                                                  | 819<br>730<br>275<br>63<br>243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 152<br>153<br>152<br>50<br>6<br>45<br>5                                                                                                                                                                                                                                                                           | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0                                                                                                                                                                           | 819<br>730<br>275<br>63<br>243<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E<br>6.79E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 152<br>153<br>152<br>50<br>6<br>45                                                                                                                                                                                                                                                                                | 90.5<br>89.9<br>29.6<br>3.6<br>26.6                                                                                                                                                                                  | 819<br>730<br>275<br>63<br>243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E<br>6.79E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 152<br>153<br>152<br>50<br>6<br>45<br>5                                                                                                                                                                                                                                                                           | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0                                                                                                                                                                           | 819<br>730<br>275<br>63<br>243<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E<br>6.79E<br>5.42E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 152<br>153<br>152<br>50<br>6<br>45<br>5<br>16                                                                                                                                                                                                                                                                     | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5                                                                                                                                                                    | 819<br>730<br>275<br>63<br>243<br>58<br>69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2<br>1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E<br>6.79E<br>5.42E<br>1.60E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as accepto<br>response to oxidative stress<br>cellular response to oxidative stress<br>carbohydrate catabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 152<br>153<br>152<br>50<br>6<br>45<br>5<br>16<br>16                                                                                                                                                                                                                                                               | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5                                                                                                                                                             | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2<br>1.4<br>1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E<br>6.79E<br>5.42E<br>1.60E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br><i>hip1</i> Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 152     153     152     50     6     45     5     16     16     1                                                                                                                                                                                                                                                 | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6                                                                                                                                                      | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2<br>1.4<br>1.2<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E<br>6.79E<br>5.42E<br>1.60E<br>2.12E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br><i>hipl</i> <b>Δ</b><br>response to stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 152<br>153<br>152<br>50<br>6<br>45<br>5<br>16<br>16<br>16<br>1<br>145                                                                                                                                                                                                                                             | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0                                                                                                                                              | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E<br>6.79E<br>5.42E<br>1.60E<br>2.12E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br>$hip1 \Delta$<br>response to stress<br>cellular response to stress<br>cellular response to stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 152<br>153<br>152<br>50<br>6<br>45<br>5<br>16<br>16<br>16<br>16<br>1<br>145<br>143                                                                                                                                                                                                                                | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7                                                                                                                                      | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9<br>14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E<br>6.79E<br>5.42E<br>1.60E<br>2.12E<br>0.00E<br>0.00E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br>$hip1 \Delta$<br>response to stress<br>cellular response to stress<br>response to stress<br>response to stress<br>response to stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 145\\ 143\\ 145\\ \end{array} $                                                                                                                                                                                                              | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>89.0                                                                                                                              | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9<br>14.1<br>16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E<br>6.79E<br>5.42E<br>1.60E<br>2.12E<br>0.00E<br>0.00E<br>0.00E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br><i>hip1</i> <b>∆</b><br>response to stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>cellular response to stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 145\\ 143\\ 145\\ 143\\ 145\\ 143\\ \end{array} $                                                                                                                                                                                            | 90.5<br>89.9<br>22.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>89.0<br>87.7                                                                                                                      | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819<br>730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2<br>1.4<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9<br>14.1<br>16.7<br>14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E<br>6.79E<br>5.42E<br>1.60E<br>2.12E<br>0.00E<br>0.00E<br>0.00E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br><i>hip1</i> Δ<br>response to stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>response to stimulus<br>oxidoreductase activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{r} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 145\\ 143\\ 145\\ 143\\ 51\\ \end{array} $                                                                                                                                                                                                   | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>89.0<br>87.7<br>31.3                                                                                                              | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819<br>730<br>275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9<br>14.1<br>16.7<br>14.9<br>5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E<br>6.79E<br>5.42E<br>1.60E<br>2.12E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>3.91E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>cellular response to oxidative stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity<br>oxidation reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 145\\ 143\\ 145\\ 143\\ 51\\ 46\\ \end{array} $                                                                                                                                                                                              | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>89.0<br>87.7<br>31.3<br>28.2                                                                                                      | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819<br>730<br>275<br>243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $14.1 \\ 16.7 \\ 14.9 \\ 5.6 \\ 1.3 \\ 4.9 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.5 \\ 14.9 \\ 14.1 \\ 16.7 \\ 14.9 \\ 5.6 \\ 4.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14$                                                              | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E<br>6.79E<br>5.42E<br>1.60E<br>2.12E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>3.91E<br>7.55E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br>$hip1 \Delta$<br>response to stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>response to stimulus<br>cellular as to stimulus<br>oxidoreductase activity<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 145\\ 143\\ 145\\ 143\\ 51\\ 46\\ 6\\ \end{array} $                                                                                                                                                                                          | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>89.0<br>87.7<br>31.3                                                                                                              | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819<br>730<br>275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9<br>14.1<br>16.7<br>14.9<br>5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E<br>6.79E<br>5.42E<br>1.60E<br>2.12E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>3.91E<br>7.55E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>cellular response to oxidative stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity<br>oxidation reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 145\\ 143\\ 145\\ 143\\ 51\\ 46\\ 6\\ \end{array} $                                                                                                                                                                                          | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>89.0<br>87.7<br>31.3<br>28.2                                                                                                      | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819<br>730<br>275<br>243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $14.1 \\ 16.7 \\ 14.9 \\ 5.6 \\ 1.3 \\ 4.9 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.5 \\ 14.9 \\ 14.1 \\ 16.7 \\ 14.9 \\ 5.6 \\ 4.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14.9 \\ 14$                                                              | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E<br>6.79E<br>5.42E<br>1.60E<br>2.12E<br>0.00E<br>0.00E<br>0.00E<br>3.91E<br>7.55E<br>1.58E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br>$hip1 \Delta$<br>response to stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>response to stimulus<br>cellular as to stimulus<br>oxidoreductase activity<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $ \begin{array}{c} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 145\\ 143\\ 145\\ 143\\ 51\\ 46\\ 6\\ \end{array} $                                                                                                                                                                                          | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>89.0<br>87.7<br>31.3<br>28.2<br>3.7                                                                                               | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819<br>730<br>275<br>243<br>63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2<br>1.4<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9<br>14.1<br>16.7<br>14.9<br>5.6<br>4.9<br>1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E<br>6.79E<br>5.42E<br>1.60E<br>2.12E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>3.91E<br>7.55E<br>1.58E<br>1.66E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br>$hip1 \Delta$<br>response to stress<br>cellular response to stress<br>cellular activity<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 145\\ 143\\ 145\\ 143\\ 51\\ 46\\ 6\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\$                                                                                                                                                   | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>89.0<br>87.7<br>31.3<br>28.2<br>3.7<br>3.1<br>9.8                                                                                 | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819<br>730<br>275<br>243<br>63<br>58<br>69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2<br>1.4<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9<br>14.1<br>16.7<br>14.9<br>5.6<br>4.9<br>1.3<br>1.2<br>1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E<br>6.79E<br>5.42E<br>1.60E<br>2.12E<br>0.00E<br>0.00E<br>0.00E<br>3.91E<br>1.58E<br>1.66E<br>1.67E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br><i>hip1</i> $\Delta$<br>response to stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>response to stimulus<br>oxidoreductase activity<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>carbohydrate catabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 145\\ 143\\ 51\\ 46\\ 6\\ 5\\ 16\\ 1\\ 1\\ 1 \end{array} $                                                                                                                                                                                   | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>89.0<br>87.7<br>31.3<br>28.2<br>3.7<br>3.1<br>9.8<br>0.6                                                                          | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819<br>730<br>275<br>243<br>63<br>58<br>69<br>76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $14.1 \\ 16.7 \\ 14.9 \\ 5.6 \\ 1.3 \\ 4.9 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.5 \\ 14.9 \\ 14.1 \\ 16.7 \\ 14.9 \\ 5.6 \\ 4.9 \\ 1.3 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.5 \\ 1.4 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5$                | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E<br>6.79E<br>5.42E<br>1.60E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>1.58E<br>1.66E<br>1.66E<br>1.67E<br>7.36E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br><i>hipl</i> <b>A</b><br>response to stress<br>cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cerbohydrate catabolic process<br>cellular response to oxidative stress<br>cellular response to oxidative stress<br>cellular response to oxidative stress<br>cellular response to oxidative stress<br>cellular response to oxidative stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 145\\ 143\\ 145\\ 143\\ 51\\ 46\\ 6\\ 5\\ 16\\ \end{array} $                                                                                                                                                                                 | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>89.0<br>87.7<br>31.3<br>28.2<br>3.7<br>3.1<br>9.8                                                                                 | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819<br>730<br>275<br>243<br>63<br>58<br>69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2<br>1.4<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9<br>14.1<br>16.7<br>14.9<br>5.6<br>4.9<br>1.3<br>1.2<br>1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E<br>6.79E<br>5.42E<br>1.60E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>1.58E<br>1.66E<br>1.66E<br>1.67E<br>7.36E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br><i>hipl</i> <b>Δ</b><br>response to stress<br>cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>carbohydrate catabolic process<br>carbohydrate catabolic process<br>carbohydrate catabolic process<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br>cellular response to oxidative stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 145\\ 143\\ 145\\ 143\\ 51\\ 46\\ 6\\ 5\\ 16\\ 1\\ 15\\ \end{array} $                                                                                                                                                                        | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>89.0<br>87.7<br>31.3<br>28.2<br>3.7<br>3.1<br>9.8<br>0.6<br>9.2                                                                   | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $14.1 \\ 16.7 \\ 14.9 \\ 5.6 \\ 1.3 \\ 4.9 \\ 1.2 \\ 1.4 \\ 1.2 \\ 1.5 \\ 14.9 \\ 14.1 \\ 16.7 \\ 14.9 \\ 14.1 \\ 16.7 \\ 14.9 \\ 5.6 \\ 4.9 \\ 1.3 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.4 \\ 1.5 \\ 1.4 \\ 1.5 \\ 1.2 \\ 1.4 \\ 1.5 \\ 1.5 \\ 1.4 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ $                | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E<br>6.79E<br>5.42E<br>1.60E<br>2.12E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>3.91E<br>1.58E<br>1.66E<br>1.67E<br>7.36E<br>2.83E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| vere stress<br>alone | cellular response to stress<br>response to stimulus<br>oxidoreductase activity<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>carbohydrate catabolic process<br><i>hip1</i> ▲<br>response to stress<br>cellular response to oxterss<br>response to stress<br>cellular response to stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>response to stress<br>cellular aresponse to stress<br>response to stress<br>cellular aresponse to stress<br>cellular aresponse to stress<br>cellular response to stress<br>coxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>carbohydrate catabolic process<br>cellular response to oxidative stress<br>cellular response to oxidative stress<br>cellular response to oxidative stress<br>cellular response to oxidative stress<br>cellular response to oxidative stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 145\\ 143\\ 145\\ 143\\ 51\\ 46\\ 6\\ 5\\ 16\\ 1\\ 15\\ 35\\ \end{array} $                                                                                                                                                                   | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>89.0<br>87.7<br>31.3<br>28.2<br>3.7<br>3.1<br>9.8<br>0.6<br>9.2<br>97.2                                                           | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>63<br>58<br>69<br>76<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2<br>1.4<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9<br>14.1<br>16.7<br>14.9<br>5.6<br>4.9<br>1.3<br>14.9<br>5.6<br>4.9<br>1.3<br>1.2<br>1.4<br>1.5<br>14.9<br>5.6<br>1.3<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9<br>5.6<br>1.3<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9<br>5.6<br>1.3<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9<br>1.5<br>14.9<br>1.2<br>1.4<br>1.5<br>14.9<br>1.5<br>14.9<br>1.2<br>1.4<br>1.5<br>14.9<br>1.5<br>14.9<br>1.2<br>1.4<br>1.5<br>14.9<br>1.5<br>14.9<br>1.2<br>1.4<br>1.5<br>14.9<br>1.2<br>1.4<br>1.5<br>14.9<br>1.2<br>1.4<br>1.5<br>1.5<br>1.3<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br><i>hip1</i> Δ<br>response to stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>carbohydrate catabolic process<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br>cellular response to stress<br>response to stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 145\\ 143\\ 51\\ 46\\ 6\\ 5\\ 16\\ 1\\ 15\\ 35\\ 36\\ \end{array} $                                                                                                                                                                          | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>31.3<br>28.2<br>3.7<br>3.1<br>9.8<br>0.6<br>9.2<br>97.2<br>100.0                                                                  | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>733<br>694<br>819<br>730<br>275<br>243<br>58<br>69<br>76<br>69<br>76<br>69<br>76<br>76<br>733<br>694<br>819<br>730<br>275<br>243<br>58<br>69<br>76<br>76<br>76<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>69<br>76<br>69<br>76<br>76<br>76<br>76<br>76<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>69<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76                                                                                                                                                                              | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2<br>1.4<br>1.2<br>1.4<br>1.5<br>14.9<br>14.1<br>16.7<br>14.9<br>5.6<br>4.9<br>1.3<br>1.2<br>1.4<br>1.5<br>1.3<br>1.2<br>1.4<br>1.5<br>1.3<br>1.4<br>1.5<br>1.3<br>1.4<br>1.5<br>1.5<br>1.3<br>1.4<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E<br>0.00E<br>5.09E<br>5.42E<br>1.60E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>1.58E<br>0.00E<br>0.00E<br>0.00E<br>1.58E<br>1.68E<br>1.67E<br>1.68E<br>1.67E<br>1.68E<br>1.67E<br>1.68E<br>1.67E<br>1.68E<br>1.67E<br>1.68E<br>1.68E<br>1.67E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.68E<br>1.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                      | cellular response to stress<br>response to stimulus<br>oxidoreductase activity<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>carbohydrate catabolic process<br><i>hip1</i> ▲<br>response to stress<br>cellular response to oxterss<br>response to stress<br>cellular response to stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>response to stress<br>cellular aresponse to stress<br>response to stress<br>cellular aresponse to stress<br>cellular aresponse to stress<br>cellular response to stress<br>coxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>carbohydrate catabolic process<br>cellular response to oxidative stress<br>cellular response to oxidative stress<br>cellular response to oxidative stress<br>cellular response to oxidative stress<br>cellular response to oxidative stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ \begin{array}{c} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 145\\ 143\\ 51\\ 46\\ 6\\ 5\\ 16\\ 1\\ 15\\ 35\\ 36\\ 35\\ \end{array} $                                                                                                                                                                     | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>89.0<br>87.7<br>31.3<br>28.2<br>3.7<br>3.1<br>9.8<br>0.6<br>9.2<br>97.2<br>100.0<br>97.2                                          | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>60<br>694<br>733<br>730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2<br>1.4<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9<br>14.1<br>16.7<br>14.9<br>5.6<br>4.9<br>1.3<br>14.9<br>5.6<br>4.9<br>1.3<br>1.2<br>1.4<br>1.5<br>14.9<br>5.6<br>1.3<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9<br>5.6<br>1.3<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9<br>5.6<br>1.3<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9<br>5.6<br>1.3<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9<br>5.6<br>1.3<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9<br>1.5<br>14.9<br>1.2<br>1.4<br>1.5<br>14.9<br>1.5<br>14.9<br>1.2<br>1.4<br>1.5<br>14.9<br>1.2<br>1.4<br>1.5<br>1.5<br>1.3<br>1.5<br>1.5<br>1.3<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>8.76E<br>3.82E<br>6.79E<br>5.42E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>3.91E<br>7.55E<br>1.68E<br>1.67E<br>7.36E<br>2.83E<br>1.67E<br>3.71E<br>3.71E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br><i>hip1</i> Δ<br>response to stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>carbohydrate catabolic process<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br>cellular response to stress<br>response to stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $ \begin{array}{c} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 145\\ 143\\ 51\\ 46\\ 6\\ 5\\ 16\\ 1\\ 15\\ 35\\ 36\\ \end{array} $                                                                                                                                                                          | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>31.3<br>28.2<br>3.7<br>3.1<br>9.8<br>0.6<br>9.2<br>97.2<br>100.0                                                                  | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>733<br>694<br>819<br>730<br>275<br>243<br>58<br>69<br>76<br>69<br>76<br>69<br>76<br>76<br>733<br>694<br>819<br>730<br>275<br>243<br>58<br>69<br>76<br>76<br>76<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>69<br>76<br>69<br>76<br>76<br>76<br>76<br>76<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>69<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76                                                                                                                                                                              | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2<br>1.4<br>1.2<br>1.4<br>1.5<br>14.9<br>14.1<br>16.7<br>14.9<br>5.6<br>4.9<br>1.3<br>1.2<br>1.4<br>1.5<br>1.3<br>1.2<br>1.4<br>1.5<br>1.3<br>1.4<br>1.5<br>1.3<br>1.4<br>1.5<br>1.5<br>1.3<br>1.4<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>8.76E<br>8.76E<br>5.42E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>3.91E<br>7.55E<br>1.68E<br>1.67E<br>7.36E<br>2.83E<br>1.67E<br>3.71E<br>3.71E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br><i>hip1 Δ</i><br>response to stress<br>cellular response to stress<br>response to stimulus<br>cullular response to stress<br>response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>cellular response to stress<br>cellular response to stress<br>cellular response to stress<br>cellular seponse to stress<br>cellular seponse to stress<br>cellular seponse to stimulus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 145\\ 143\\ 51\\ 46\\ 6\\ 5\\ 16\\ 1\\ 15\\ 35\\ 36\\ 35\\ \end{array} $                                                                                                                                                                     | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>89.0<br>87.7<br>31.3<br>28.2<br>3.7<br>3.1<br>9.8<br>0.6<br>9.2<br>97.2<br>100.0<br>97.2                                          | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>60<br>694<br>733<br>730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} 14.1\\ 16.7\\ 14.9\\ 5.6\\ 1.3\\ 4.9\\ 1.2\\ 1.4\\ 1.2\\ 1.4\\ 1.5\\ 1.5\\ 1.5\\ 14.9\\ 14.1\\ 16.7\\ 14.9\\ 5.6\\ 4.9\\ 1.3\\ 1.2\\ 1.4\\ 1.5\\ 1.2\\ 14.1\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9$ | 0.00E<br>0.00E<br>5.09PE<br>5.42E<br>5.42E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>1.67E<br>1.68E<br>1.67E<br>7.36E<br>2.83E<br>1.28E<br>3.71E<br>3.71E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>carbohydrate catabolic process<br>$hip1 \Delta$<br>response to stress<br>cellular response to otheress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>response to stimulus<br>cellular response to stress<br>response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>carbohydrate catabolic process<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br>cellular response to stress<br>response to stimulus<br>response to stimulus<br>slan9 $\Delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 1\\ 143\\ 145\\ 143\\ 51\\ 143\\ 51\\ 143\\ 51\\ 143\\ 51\\ 143\\ 51\\ 143\\ 51\\ 143\\ 51\\ 143\\ 51\\ 15\\ 35\\ 36\\ 35\\ 36\\ 35\\ 36\\ 35\\ 36\\ 36\\ 35\\ 36\\ 36\\ 36\\ 36\\ 36\\ 35\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36\\ 36$ | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>89.0<br>87.7<br>31.3<br>28.2<br>3.7<br>3.1<br>9.8<br>0.6<br>9.2<br>97.2<br>100.0<br>97.2<br>100.0                                 | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>60<br>694<br>733<br>730<br>819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2<br>1.4<br>1.2<br>1.5<br>14.9<br>14.1<br>16.7<br>14.9<br>5.6<br>4.9<br>1.3<br>1.2<br>1.4<br>1.5<br>1.2<br>1.4<br>1.5<br>1.2<br>1.4<br>1.5<br>1.2<br>1.4<br>1.5<br>1.2<br>1.4<br>1.5<br>1.2<br>1.4<br>1.5<br>1.2<br>1.4<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00E<br>0.00E<br>8.76E<br>8.76E<br>3.82E8<br>5.42E<br>1.60E<br>2.12E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>1.55E<br>1.65E<br>1.65E<br>1.65E<br>1.67E<br>3.91E<br>7.36E<br>3.71E<br>3.71E<br>3.71E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br><i>hip1</i> <b>∆</b><br>response to stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>response to stress<br>cellular response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>carbohydrate catabolic process<br>cellular response to oxidative stress<br>cellular response to oxidative stress<br>cellular response to oxidative stress<br>cellular response to stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $ \begin{array}{c} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 145\\ 143\\ 145\\ 143\\ 51\\ 46\\ 6\\ 5\\ 16\\ 1\\ 15\\ 35\\ 36\\ 35\\ 36\\ 85\\ \end{array} $                                                                                                                                               | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>31.3<br>28.2<br>3.7<br>3.1<br>9.8<br>0.6<br>9.2<br>97.2<br>100.0<br>97.2<br>100.0<br>77.3                                         | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>60<br>69<br>76<br>60<br>69<br>76<br>60<br>69<br>73<br>819<br>69<br>60<br>60<br>76<br>73<br>730<br>819<br>60<br>76<br>60<br>76<br>733<br>730<br>730<br>730<br>730<br>730<br>730<br>730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2<br>1.4<br>1.2<br>1.4<br>1.2<br>1.4<br>1.5<br>14.9<br>14.1<br>16.7<br>14.9<br>5.6<br>4.9<br>1.3<br>1.2<br>1.4<br>1.5<br>1.2<br>1.4<br>1.5<br>1.2<br>1.4<br>1.5<br>1.2<br>1.4<br>1.5<br>1.2<br>1.4<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00E<br>0.00E<br>5.09E<br>3.82E<br>6.79E<br>5.42E<br>1.60E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>1.58E<br>1.67E<br>7.36E<br>3.71E<br>3.71E<br>4.27E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br>$hip1 \Delta$<br>response to stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>carbohydrate catabolic process<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br>cellular response to stress<br>response to stress<br>response to stress<br>cellular response to stress<br>response to stress<br>response to stress<br>response to stress<br>response to stress<br>response to stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 145\\ 143\\ 51\\ 46\\ 6\\ 5\\ 16\\ 1\\ 15\\ 35\\ 36\\ 35\\ 36\\ 85\\ 85\\ 85\\ \end{array} $                                                                                                                                                 | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>31.3<br>28.2<br>3.7<br>3.1<br>9.8<br>0.6<br>9.2<br>97.2<br>100.0<br>97.2<br>100.0<br>97.2<br>100.0<br>77.3<br>77.3<br>77.3        | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>60<br>69<br>76<br>60<br>69<br>76<br>60<br>69<br>76<br>60<br>69<br>76<br>60<br>69<br>76<br>60<br>69<br>76<br>60<br>69<br>76<br>60<br>69<br>76<br>60<br>76<br>60<br>76<br>733<br>730<br>819<br>76<br>60<br>76<br>733<br>730<br>819<br>76<br>60<br>76<br>733<br>730<br>819<br>76<br>60<br>76<br>733<br>69<br>76<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>69<br>76<br>60<br>76<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>69<br>76<br>60<br>76<br>60<br>76<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>60<br>76<br>60<br>76<br>60<br>76<br>60<br>76<br>60<br>76<br>60<br>76<br>60<br>76<br>60<br>76<br>60<br>60<br>76<br>60<br>60<br>76<br>60<br>60<br>76<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>6   | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2<br>1.4<br>1.2<br>1.4<br>1.5<br>14.9<br>14.1<br>16.7<br>14.9<br>5.6<br>4.9<br>1.3<br>1.2<br>1.4<br>1.5<br>14.9<br>1.3<br>1.2<br>1.4<br>1.5<br>1.3<br>14.9<br>14.1<br>16.7<br>14.9<br>1.3<br>1.2<br>1.4<br>1.5<br>1.3<br>1.4<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00E<br>0.00E<br>5.09E<br>3.82E<br>6.79E<br>5.42E<br>1.60E<br>2.12E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>1.58E<br>1.68E<br>1.67E<br>7.36E<br>3.71E<br>3.71E<br>4.27E<br>1.97E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| vere stress<br>alone | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br><i>hip1</i> $\Delta$<br>response to stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity stress<br>carbohydrate catabolic process<br>cellular response to oxidative stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>cellular cellular response to stress<br>cellular cellular | $ \begin{array}{c} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 145\\ 143\\ 145\\ 143\\ 51\\ 46\\ 6\\ 5\\ 16\\ 1\\ 15\\ 35\\ 36\\ 35\\ 36\\ 85\\ 85\\ 85\\ 85\\ 85\\ 85\\ 85\\ 85\\ 85\\ 85$                                                                                                                 | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>89.0<br>87.7<br>31.3<br>28.2<br>3.7<br>3.1<br>9.8<br>0.6<br>9.2<br>97.2<br>100.0<br>97.2<br>100.0<br>77.3<br>77.3<br>77.3<br>77.3 | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>60<br>694<br>733<br>730<br>819<br>694<br>733<br>730<br>819                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 14.1\\ 16.7\\ 14.9\\ 5.6\\ 1.3\\ 4.9\\ 1.2\\ 1.4\\ 1.2\\ 1.4\\ 1.5\\ 1.5\\ 1.5\\ 14.9\\ 14.1\\ 16.7\\ 14.9\\ 5.6\\ 4.9\\ 1.3\\ 1.2\\ 1.4\\ 1.5\\ 1.2\\ 14.1\\ 14.9\\ 14.9\\ 16.7\\ 14.1\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9\\ 14.9$ | 0.00E<br>0.00E<br>5.09E<br>3.82E<br>6.79E<br>5.42E<br>1.60E<br>2.12E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>1.58E<br>1.67E<br>7.36E<br>3.71E<br>3.71E<br>4.27E<br>1.97E<br>7.23E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                      | cellular response to stress<br>response to stimulus<br>cellular response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidation reduction<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br>$hip1 \Delta$<br>response to stress<br>cellular response to stress<br>response to stress<br>cellular response to stress<br>response to stimulus<br>oxidoreductase activity, acting on CH-OH group of donors<br>oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as acceptor<br>response to oxidative stress<br>carbohydrate catabolic process<br>cellular response to oxidative stress<br>carbohydrate catabolic process<br>cellular response to stress<br>response to stress<br>response to stress<br>cellular response to stress<br>response to stress<br>response to stress<br>response to stress<br>response to stress<br>response to stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c} 152\\ 153\\ 152\\ 50\\ 6\\ 45\\ 5\\ 16\\ 16\\ 1\\ 145\\ 143\\ 51\\ 46\\ 6\\ 5\\ 16\\ 1\\ 15\\ 35\\ 36\\ 35\\ 36\\ 85\\ 85\\ 85\\ \end{array} $                                                                                                                                                 | 90.5<br>89.9<br>29.6<br>3.6<br>26.6<br>3.0<br>9.5<br>9.5<br>0.6<br>89.0<br>87.7<br>31.3<br>28.2<br>3.7<br>3.1<br>9.8<br>0.6<br>9.2<br>97.2<br>100.0<br>97.2<br>100.0<br>97.2<br>100.0<br>77.3<br>77.3<br>77.3        | 819<br>730<br>275<br>63<br>243<br>58<br>69<br>60<br>76<br>733<br>694<br>819<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>60<br>69<br>76<br>60<br>69<br>76<br>60<br>69<br>76<br>60<br>69<br>76<br>60<br>69<br>76<br>60<br>69<br>76<br>60<br>69<br>76<br>60<br>69<br>76<br>60<br>76<br>60<br>76<br>733<br>730<br>819<br>76<br>69<br>76<br>69<br>76<br>60<br>76<br>733<br>694<br>819<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>69<br>76<br>60<br>76<br>730<br>275<br>243<br>63<br>58<br>69<br>76<br>69<br>76<br>69<br>76<br>69<br>76<br>60<br>76<br>69<br>76<br>60<br>76<br>60<br>76<br>60<br>76<br>60<br>76<br>60<br>76<br>60<br>76<br>60<br>76<br>60<br>76<br>60<br>76<br>60<br>76<br>60<br>76<br>60<br>76<br>60<br>60<br>76<br>60<br>60<br>76<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>60<br>6 | 14.1<br>16.7<br>14.9<br>5.6<br>1.3<br>4.9<br>1.2<br>1.4<br>1.2<br>1.4<br>1.5<br>14.9<br>14.1<br>16.7<br>14.9<br>5.6<br>4.9<br>1.3<br>1.2<br>1.4<br>1.5<br>14.9<br>1.3<br>1.2<br>1.4<br>1.5<br>1.3<br>14.9<br>14.1<br>16.7<br>14.9<br>1.3<br>1.2<br>1.4<br>1.5<br>1.3<br>1.4<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00E<br>0.00E<br>5.09E<br>8.76E<br>3.82E<br>6.79E<br>5.42E<br>1.60E<br>2.12E<br>0.00E<br>0.00E<br>0.00E<br>0.00E<br>3.91E<br>1.58E<br>1.66E<br>1.67E<br>7.36E<br>2.83E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| oxidation reduction                                                             | 27 | 24.5 | 243 | 4.9  | 2.68E-06 |
|---------------------------------------------------------------------------------|----|------|-----|------|----------|
| oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as accept | 4  | 3.6  | 58  | 1.2  | 1.04E-05 |
| response to oxidative stress                                                    | 11 | 10.0 | 69  | 1.4  | 5.01E-04 |
| cellular response to oxidative stress                                           | 11 | 10.0 | 60  | 1.2  | 7.83E-04 |
| meiosis                                                                         | 25 | 22.7 | 353 | 7.2  | 2.69E-03 |
| M phase of meiotic cell cycle                                                   | 25 | 22.7 | 353 | 7.2  | 2.69E-03 |
| meiotic cell cycle                                                              | 25 | 22.7 | 355 | 7.2  | 2.82E-03 |
| cellular carbohydrate metabolic process                                         | 4  | 3.6  | 216 | 4.4  | 3.05E-02 |
| hip1 ∆                                                                          |    |      |     |      |          |
| cellular response to stress                                                     | 78 | 80.4 | 694 | 14.1 | 1.22E-35 |
| response to stress                                                              | 78 | 80.4 | 733 | 14.9 | 3.08E-34 |
| cellular response to stimulus                                                   | 78 | 80.4 | 730 | 14.9 | 3.08E-34 |
| response to stimulus                                                            | 78 | 80.4 | 819 | 16.7 | 1.34E-31 |
| oxidoreductase activity                                                         | 27 | 27.8 | 275 | 5.6  | 1.01E-08 |
| oxidoreductase activity, acting on CH-OH group of donors                        | 4  | 4.1  | 63  | 1.3  | 5.41E-06 |
| oxidation reduction                                                             | 24 | 24.7 | 243 | 4.9  | 9.43E-06 |
| response to oxidative stress                                                    | 11 | 11.3 | 69  | 1.4  | 9.77E-05 |
| oxidoreductase activity, acting on CH-OH group of donors, NAD or NADP as accept | 4  | 4.1  | 58  | 1.2  | 1.09E-04 |
| cellular response to oxidative stress                                           | 11 | 11.3 | 60  | 1.2  | 1.45E-04 |
| cellular carbohydrate metabolic process                                         | 4  | 4.1  | 216 | 4.4  | 4.37E-03 |
| carbohydrate metabolic process                                                  | 8  | 8.2  | 226 | 4.6  | 7.45E-03 |
| monosaccharide metabolic process                                                | 2  | 2.1  | 68  | 1.4  | 1.93E-02 |
| glucose metabolic process                                                       | 2  | 2.1  | 42  | 0.9  | 2.73E-02 |
| alcohol metabolic process                                                       | 3  | 3.1  | 145 | 3.0  | 2.73E-02 |

| Table 55 Gene ontology terms em teneu in stress-represseu gene | Table S3 Gene ontology terms enriched in stress | -repressed genes |
|----------------------------------------------------------------|-------------------------------------------------|------------------|
|----------------------------------------------------------------|-------------------------------------------------|------------------|

| ress condition | GO term                                                                                | Number of<br>repressed genes in | % of repressed<br>genes in term | Number of total<br>genes in term | % of total genes in term | p-valı           |
|----------------|----------------------------------------------------------------------------------------|---------------------------------|---------------------------------|----------------------------------|--------------------------|------------------|
| riming stress  | WT                                                                                     |                                 |                                 |                                  |                          |                  |
| alone          | extracellular region<br>cell wall                                                      | 15<br>13                        | 33.3<br>28.9                    | 48<br>58                         | 1.0<br>1.2               | 2.69E-<br>2.69E- |
|                | external encapsulating structure                                                       | 13                              | 28.9                            | 58                               | 1.2                      | 2.69E-           |
|                | cell surface                                                                           | 13                              | 31.1                            | 111                              | 2.3                      | 4.54E-           |
|                | cell periphery                                                                         | 25                              | 55.6                            | 390                              | 7.9                      | 9.94E-           |
|                | fungal-type cell wall                                                                  | 10                              | 22.2                            | 36                               | 0.7                      | 4.46E            |
|                | organic acid biosynthetic process                                                      | 10                              | 22.2                            | 134                              | 2.7                      | 1.23E            |
|                | carboxylic acid biosynthetic process                                                   | 10                              | 22.2                            | 134                              | 2.7                      | 1.23E            |
|                | plasma membrane                                                                        | 14                              | 31.1                            | 234                              | 4.8                      | 2.39E            |
|                | cellular nitrogen compound biosynthetic process<br>small molecule biosynthetic process | 10<br>10                        | 22.2<br>22.2                    | 237<br>307                       | 4.8<br>6.2               | 2.68E<br>2.68E   |
|                | cellular amino acid biosynthetic process                                               | 10                              | 22.2                            | 104                              | 2.1                      | 1.42E            |
|                | amine biosynthetic process                                                             | 10                              | 22.2                            | 112                              | 2.3                      | 3.09E            |
|                | hydrolase activity, hydrolyzing O-glycosyl compounds                                   | 4                               | 8.9                             | 48                               | 1.0                      | 3.11E            |
|                | slm9 <b>A</b>                                                                          |                                 |                                 |                                  |                          |                  |
|                | cell wall<br>cell surface                                                              | 10<br>10                        | 38.5<br>38.5                    | 58<br>111                        | 1.2<br>2.3               | 4.39E<br>4.39E   |
|                | external encapsulating structure                                                       | 10                              | 38.5                            | 58                               | 1.2                      | 4.39E            |
|                | extracellular region                                                                   | 10                              | 42.3                            | 48                               | 1.0                      | 5.18H            |
|                | fungal-type cell wall                                                                  | 8                               | 30.8                            | 36                               | 0.7                      | 5.65H            |
|                | cellular amino acid and derivative metabolic process                                   | 6                               | 23.1                            | 223                              | 4.5                      | 1.69E            |
|                | amine metabolic process                                                                | 6                               | 23.1                            | 235                              | 4.8                      | 3.34H            |
|                | cellular amine metabolic process                                                       | 6                               | 23.1                            | 224                              | 4.6                      | 6.931            |
|                | organic acid metabolic process                                                         | 6                               | 23.1                            | 282                              | 5.7                      | 7.58E            |
|                | cellular amino acid metabolic process                                                  | 6                               | 23.1                            | 206                              | 4.2                      | 7.58I            |
|                | carboxylic acid metabolic process                                                      | 6                               | 23.1                            | 282                              | 5.7                      | 7.58E            |
|                | oxoacid metabolic process                                                              | 6                               | 23.1                            | 282                              | 5.7                      | 7.58             |
|                | cellular ketone metabolic process                                                      | 6                               | 23.1                            | 294                              | 6.0                      | 1.351            |
|                | cytokinetic cell separation<br>organic acid biosynthetic process                       | 6<br>5                          | 23.1<br>19.2                    | 31<br>134                        | 0.6<br>2.7               | 1.57I<br>1.04I   |
|                | carboxylic acid biosynthetic process                                                   | 5                               | 19.2                            | 134                              |                          |                  |
|                | pyrimidine nucleoside metabolic process                                                | 5                               | 3.8                             | 134                              | 2.7<br>0.2               | 1.04I<br>1.68I   |
|                | beta-glucosidase activity                                                              | 2                               | 7.7                             | 10                               | 0.2                      | 1.681            |
|                | cell periphery                                                                         | 10                              | 38.5                            | 390                              | 7.9                      | 1.931            |
|                | hydrolase activity, hydrolyzing O-glycosyl compounds                                   | 5                               | 19.2                            | 48                               | 1.0                      | 2.301            |
|                | cytokinetic process                                                                    | 6                               | 23.1                            | 108                              | 2.2                      | 3.08I            |
|                | glucosidase activity                                                                   | 2                               | 7.7                             | 23                               | 0.5                      | 3.631            |
|                | hip1 Δ                                                                                 |                                 | 25.0                            | 50                               |                          |                  |
|                | cell wall                                                                              | 11                              | 37.9                            | 58                               | 1.2                      | 6.391            |
|                | cell surface                                                                           | 16                              | 55.2<br>37.9                    | 111<br>58                        | 2.3<br>1.2               | 6.391            |
|                | external encapsulating structure<br>extracellular region                               | 11<br>11                        | 37.9                            | 58<br>48                         | 1.2                      | 6.39I<br>1.00I   |
|                | cellular amino acid and derivative metabolic process                                   | 7                               | 24.1                            | 223                              | 4.5                      | 8.881            |
|                | fungal-type cell wall                                                                  | 8                               | 27.6                            | 36                               | 0.7                      | 8.881            |
|                | organic acid metabolic process                                                         | 7                               | 24.1                            | 282                              | 5.7                      | 1.311            |
|                | amine metabolic process                                                                | 7                               | 24.1                            | 235                              | 4.8                      | 1.31H            |
|                | carboxylic acid metabolic process                                                      | 7                               | 24.1                            | 282                              | 5.7                      | 1.31E            |
|                | oxoacid metabolic process                                                              | 7                               | 24.1                            | 282                              | 5.7                      | 1.31I            |
|                | cellular ketone metabolic process                                                      | 7                               | 24.1                            | 294                              | 6.0                      | 2.42H            |
|                | cellular amine metabolic process                                                       | 7                               | 24.1                            | 224                              | 4.6                      | 2.421            |
|                | cellular amino acid metabolic process                                                  | 7                               | 24.1                            | 206                              | 4.2                      | 3.06             |
|                | cytokinetic cell separation<br>organic acid biosynthetic process                       | 6<br>6                          | 20.7<br>20.7                    | 31<br>134                        | 0.6<br>2.7               | 2.411<br>3.681   |
|                | carboxylic acid biosynthetic process                                                   | 6                               | 20.7                            | 134                              | 2.7                      | 3.681            |
|                | hydrolase activity, hydrolyzing O-glycosyl compounds                                   | 5                               | 17.2                            | 48                               | 1.0                      | 4.401            |
|                | small molecule metabolic process                                                       | 8                               | 27.6                            | 924                              | 18.8                     | 9.12             |
|                | cell periphery                                                                         | 11                              | 37.9                            | 390                              | 7.9                      | 1.571            |
|                | hydrolase activity, acting on glycosyl bonds                                           | 8                               | 27.6                            | 58                               | 1.2                      | 1.581            |
|                | pyrimidine nucleoside metabolic process                                                | 1                               | 3.4                             | 10                               | 0.2                      | 1.801            |
|                | beta-glucosidase activity                                                              | 2                               | 6.9                             | 10                               | 0.2                      | 1.80I            |
|                | external side of plasma membrane                                                       | 7                               | 24.1                            | 46                               | 0.9                      | 2.271            |
|                | cell wall organization or biogenesis                                                   | 6                               | 20.7                            | 122                              | 2.5                      | 2.621            |
|                | cellular amino acid biosynthetic process                                               | 6                               | 20.7                            | 104                              | 2.1                      | 3.18             |
|                | glucosidase activity<br>small molecule biosynthetic process                            | 2<br>6                          | 6.9<br>20.7                     | 23<br>307                        | 0.5<br>6.2               | 4.06I<br>4.06I   |
| ming stress    | WT                                                                                     | U                               | 20.7                            | 507                              | 0.2                      | 00I              |
| nd severe      | endoplasmic reticulum                                                                  | 103                             | 33.3                            | 589                              | 12.0                     | 6.39I            |
| stress         | cell division                                                                          | 59                              | 19.1                            | 306                              | 6.2                      | 1.821            |
|                | cytokinetic process                                                                    | 12                              | 3.9                             | 108                              | 2.2                      | 2.13I            |
|                | rRNA processing                                                                        | 37                              | 12.0                            | 169                              | 3.4                      | 2.55I            |
|                | rRNA metabolic process                                                                 | 37                              | 12.0                            | 170                              | 3.5                      | 2.55I            |
|                | cellular component biogenesis at cellular level                                        | 46                              | 14.9                            | 338                              | 6.9                      | 2.55             |
|                | ribosome biogenesis                                                                    | 46                              | 14.9                            | 235                              | 4.8                      | 3.20             |
|                | cellular component organization or biogenesis at cellular level                        | 96<br>12                        | 31.1<br>3.9                     | 1346<br>31                       | 27.4                     | 3.37             |
|                | cytokinetic cell separation<br>cell wall organization or biogenesis                    | 12                              | 3.9<br>5.2                      | 31<br>122                        | 0.6<br>2.5               | 3.611<br>3.781   |
|                | cellular component organization or biogenesis                                          | 10<br>97                        | 31.4                            | 1426                             | 2.5                      | 5.151            |
|                | cellular cell wall organization or biogenesis                                          | 16                              | 5.2                             | 120                              | 29.0                     | 5.56I            |
|                | mitotic cell cycle                                                                     | 35                              | 11.3                            | 259                              | 5.3                      | 6.04I            |
|                | cytokinesis                                                                            | 18                              | 5.8                             | 134                              | 2.7                      | 7.331            |
|                | protein glycosylation                                                                  | 6                               | 1.9                             | 68                               | 1.4                      | 7.551            |
|                | glycoprotein biosynthetic process                                                      | 6                               | 1.9                             | 68                               | 1.4                      | 7.551            |
|                | macromolecule glycosylation                                                            | 6                               | 1.9                             | 68                               | 1.4                      | 7.551            |
|                | glycosylation                                                                          | 6                               | 1.9                             | 68                               | 1.4                      | 7.551            |
|                | cellular component biogenesis                                                          | 46                              | 14.9                            | 610                              | 12.4                     | 7.94I            |
|                | cell periphery                                                                         | 7                               | 2.3                             | 390                              | 7.9                      | 8.25H            |
|                | mitosis                                                                                | 34                              | 11.0                            | 182                              | 3.7                      | 1.04H            |
|                | glycoprotein metabolic process                                                         | 6                               | 1.9                             | 70                               | 1.4                      | 1.04H            |
|                | lar a chuir an a                                                                       | 34                              | 11.0                            | 183                              | 3.7                      | 1.14H            |
|                | M phase of mitotic cell cycle                                                          |                                 |                                 |                                  |                          |                  |
|                | M phase of mitotic cell cycle<br>nuclear division<br>intrinsic to membrane             | 34<br>133                       | 11.0<br>43.0                    | 184<br>925                       | 3.7<br>18.8              | 1.25E<br>1.26E   |

|                        | ribonucleoprotein complex biogenesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46                                                                                                                                                             | 14.9                                                                                                                                                                                                                                                                   | 259                                                                                                                                                                                                                                      | 5.3                                                                                                                                                                                                         | 1.54E-02                                                                                                                                                                                                                                                                                                                                     |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | organelle fission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34                                                                                                                                                             | 11.0                                                                                                                                                                                                                                                                   | 188                                                                                                                                                                                                                                      | 3.8                                                                                                                                                                                                         | 1.92E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | cell wall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                                                                                                                                                              | 2.3                                                                                                                                                                                                                                                                    | 58                                                                                                                                                                                                                                       | 1.2                                                                                                                                                                                                         | 2.03E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | external encapsulating structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                                                                                              | 2.3                                                                                                                                                                                                                                                                    | 58                                                                                                                                                                                                                                       | 1.2                                                                                                                                                                                                         | 2.03E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | nucleolus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56                                                                                                                                                             | 18.1                                                                                                                                                                                                                                                                   | 320                                                                                                                                                                                                                                      | 6.5                                                                                                                                                                                                         | 2.28E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | Golgi apparatus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58                                                                                                                                                             | 18.8                                                                                                                                                                                                                                                                   | 349                                                                                                                                                                                                                                      | 7.1                                                                                                                                                                                                         | 2.28E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | cellular cell wall organization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16                                                                                                                                                             | 5.2                                                                                                                                                                                                                                                                    | 75                                                                                                                                                                                                                                       | 1.5                                                                                                                                                                                                         | 2.28E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | cell wall organization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                             | 5.2                                                                                                                                                                                                                                                                    | 75                                                                                                                                                                                                                                       | 1.5                                                                                                                                                                                                         | 2.28E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | integral to membrane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 133                                                                                                                                                            | 43.0                                                                                                                                                                                                                                                                   | 909                                                                                                                                                                                                                                      | 18.5                                                                                                                                                                                                        | 2.34E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | ncRNA processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 37                                                                                                                                                             | 12.0                                                                                                                                                                                                                                                                   | 246                                                                                                                                                                                                                                      | 5.0                                                                                                                                                                                                         | 2.54E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | external encapsulating structure organization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16                                                                                                                                                             | 5.2                                                                                                                                                                                                                                                                    | 76                                                                                                                                                                                                                                       | 1.5                                                                                                                                                                                                         | 2.54E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | cell surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18                                                                                                                                                             | 5.8                                                                                                                                                                                                                                                                    | 111                                                                                                                                                                                                                                      | 2.3                                                                                                                                                                                                         | 2.64E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | nuclear lumen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 56                                                                                                                                                             | 18.1                                                                                                                                                                                                                                                                   | 547                                                                                                                                                                                                                                      | 11.1                                                                                                                                                                                                        | 3.10E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | cell septum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                              | 1.0                                                                                                                                                                                                                                                                    | 239                                                                                                                                                                                                                                      | 4.9                                                                                                                                                                                                         | 4.73E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | slm9 🛆                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                              |
|                        | rRNA processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29                                                                                                                                                             | 19.6                                                                                                                                                                                                                                                                   | 169                                                                                                                                                                                                                                      | 3.4                                                                                                                                                                                                         | 7.55E-06                                                                                                                                                                                                                                                                                                                                     |
|                        | rRNA metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29                                                                                                                                                             | 19.6                                                                                                                                                                                                                                                                   | 170                                                                                                                                                                                                                                      | 3.5                                                                                                                                                                                                         | 7.55E-06                                                                                                                                                                                                                                                                                                                                     |
|                        | ribosome biogenesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                             | 23.6                                                                                                                                                                                                                                                                   | 235                                                                                                                                                                                                                                      | 4.8                                                                                                                                                                                                         | 1.68E-05                                                                                                                                                                                                                                                                                                                                     |
|                        | ncRNA processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29                                                                                                                                                             | 19.6                                                                                                                                                                                                                                                                   | 246                                                                                                                                                                                                                                      | 5.0                                                                                                                                                                                                         | 4.81E-05                                                                                                                                                                                                                                                                                                                                     |
|                        | cell division                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40                                                                                                                                                             | 27.0                                                                                                                                                                                                                                                                   | 306                                                                                                                                                                                                                                      | 6.2                                                                                                                                                                                                         | 8.80E-05                                                                                                                                                                                                                                                                                                                                     |
|                        | ribonucleoprotein complex biogenesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35                                                                                                                                                             | 23.6                                                                                                                                                                                                                                                                   | 259                                                                                                                                                                                                                                      | 5.3                                                                                                                                                                                                         | 1.39E-04                                                                                                                                                                                                                                                                                                                                     |
|                        | nucleolus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42                                                                                                                                                             | 28.4                                                                                                                                                                                                                                                                   | 320                                                                                                                                                                                                                                      | 6.5                                                                                                                                                                                                         | 2.43E-04                                                                                                                                                                                                                                                                                                                                     |
|                        | cellular component biogenesis at cellular level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35                                                                                                                                                             | 23.6                                                                                                                                                                                                                                                                   | 338                                                                                                                                                                                                                                      | 6.9                                                                                                                                                                                                         | 3.95E-04                                                                                                                                                                                                                                                                                                                                     |
|                        | cytokinetic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9                                                                                                                                                              | 6.1                                                                                                                                                                                                                                                                    | 108                                                                                                                                                                                                                                      | 2.2                                                                                                                                                                                                         | 4.45E-04                                                                                                                                                                                                                                                                                                                                     |
|                        | ncRNA metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 29                                                                                                                                                             | 19.6                                                                                                                                                                                                                                                                   | 286                                                                                                                                                                                                                                      | 5.8                                                                                                                                                                                                         | 4.45E-04                                                                                                                                                                                                                                                                                                                                     |
|                        | cellular component biogenesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35                                                                                                                                                             | 23.6                                                                                                                                                                                                                                                                   | 610                                                                                                                                                                                                                                      | 12.4                                                                                                                                                                                                        | 4.64E-04                                                                                                                                                                                                                                                                                                                                     |
|                        | nuclear lumen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42                                                                                                                                                             | 28.4                                                                                                                                                                                                                                                                   | 547                                                                                                                                                                                                                                      | 11.1                                                                                                                                                                                                        | 9.72E-04                                                                                                                                                                                                                                                                                                                                     |
|                        | cytokinesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14                                                                                                                                                             | 9.5                                                                                                                                                                                                                                                                    | 134                                                                                                                                                                                                                                      | 2.7                                                                                                                                                                                                         | 1.19E-03                                                                                                                                                                                                                                                                                                                                     |
|                        | extracellular region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13                                                                                                                                                             | 8.8                                                                                                                                                                                                                                                                    | 48                                                                                                                                                                                                                                       | 1.0                                                                                                                                                                                                         | 3.29E-03                                                                                                                                                                                                                                                                                                                                     |
|                        | cell wall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                                                                                                             | 8.1                                                                                                                                                                                                                                                                    | 58                                                                                                                                                                                                                                       | 1.2                                                                                                                                                                                                         | 5.30E-03                                                                                                                                                                                                                                                                                                                                     |
|                        | external encapsulating structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                                                                                                                             | 8.1                                                                                                                                                                                                                                                                    | 58                                                                                                                                                                                                                                       | 1.2                                                                                                                                                                                                         | 5.30E-03                                                                                                                                                                                                                                                                                                                                     |
|                        | cytokinetic cell separation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                                                                                                                                              | 6.1                                                                                                                                                                                                                                                                    | 31                                                                                                                                                                                                                                       | 0.6                                                                                                                                                                                                         | 6.88E-03                                                                                                                                                                                                                                                                                                                                     |
|                        | cell periphery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12                                                                                                                                                             | 8.1                                                                                                                                                                                                                                                                    | 390                                                                                                                                                                                                                                      | 7.9                                                                                                                                                                                                         | 9.74E-03                                                                                                                                                                                                                                                                                                                                     |
|                        | cell surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14                                                                                                                                                             | 9.5                                                                                                                                                                                                                                                                    | 111                                                                                                                                                                                                                                      | 2.3                                                                                                                                                                                                         | 2.20E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | fungal-type cell wall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9                                                                                                                                                              | 6.1                                                                                                                                                                                                                                                                    | 36                                                                                                                                                                                                                                       | 0.7                                                                                                                                                                                                         | 2.56E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | cellular component organization or biogenesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36                                                                                                                                                             | 24.3                                                                                                                                                                                                                                                                   | 1426                                                                                                                                                                                                                                     | 29.0                                                                                                                                                                                                        | 3.41E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | organelle lumen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42                                                                                                                                                             | 28.4                                                                                                                                                                                                                                                                   | 717                                                                                                                                                                                                                                      | 14.6                                                                                                                                                                                                        | 3.42E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | intracellular organelle lumen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 42                                                                                                                                                             | 28.4                                                                                                                                                                                                                                                                   | 717                                                                                                                                                                                                                                      | 14.6                                                                                                                                                                                                        | 3.42E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | endoplasmic reticulum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56                                                                                                                                                             | 37.8                                                                                                                                                                                                                                                                   | 589                                                                                                                                                                                                                                      | 12.0                                                                                                                                                                                                        | 4.65E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | hip1 <b>∆</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                              |
|                        | cell surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18                                                                                                                                                             | 13.6                                                                                                                                                                                                                                                                   | 111                                                                                                                                                                                                                                      | 2.3                                                                                                                                                                                                         | 1.68E-04                                                                                                                                                                                                                                                                                                                                     |
|                        | cell division                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 36                                                                                                                                                             | 27.3                                                                                                                                                                                                                                                                   | 306                                                                                                                                                                                                                                      | 6.2                                                                                                                                                                                                         | 1.68E-04                                                                                                                                                                                                                                                                                                                                     |
|                        | cell wall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                                                                                                             | 9.1                                                                                                                                                                                                                                                                    | 58                                                                                                                                                                                                                                       | 1.2                                                                                                                                                                                                         | 6.28E-04                                                                                                                                                                                                                                                                                                                                     |
|                        | external encapsulating structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                                                                                                                             | 9.1                                                                                                                                                                                                                                                                    | 58                                                                                                                                                                                                                                       | 1.2                                                                                                                                                                                                         | 6.28E-04                                                                                                                                                                                                                                                                                                                                     |
|                        | cell periphery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28                                                                                                                                                             | 21.2                                                                                                                                                                                                                                                                   | 390                                                                                                                                                                                                                                      | 7.9                                                                                                                                                                                                         | 6.28E-04                                                                                                                                                                                                                                                                                                                                     |
|                        | rRNA processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23                                                                                                                                                             | 17.4                                                                                                                                                                                                                                                                   | 169                                                                                                                                                                                                                                      | 3.4                                                                                                                                                                                                         | 1.37E-03                                                                                                                                                                                                                                                                                                                                     |
|                        | rRNA metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23                                                                                                                                                             | 17.4                                                                                                                                                                                                                                                                   | 170                                                                                                                                                                                                                                      | 3.5                                                                                                                                                                                                         | 1.37E-03                                                                                                                                                                                                                                                                                                                                     |
|                        | cytokinetic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                                                                              | 6.1                                                                                                                                                                                                                                                                    | 108                                                                                                                                                                                                                                      | 2.2                                                                                                                                                                                                         | 1.37E-03                                                                                                                                                                                                                                                                                                                                     |
|                        | ncRNA processing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23                                                                                                                                                             | 17.4                                                                                                                                                                                                                                                                   | 246                                                                                                                                                                                                                                      | 5.0                                                                                                                                                                                                         | 1.37E-03                                                                                                                                                                                                                                                                                                                                     |
|                        | cytokinesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                                                                                                                                                             | 9.1                                                                                                                                                                                                                                                                    | 134                                                                                                                                                                                                                                      | 2.7                                                                                                                                                                                                         | 2.43E-03                                                                                                                                                                                                                                                                                                                                     |
|                        | endoplasmic reticulum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56                                                                                                                                                             | 42.4                                                                                                                                                                                                                                                                   | 589                                                                                                                                                                                                                                      | 12.0                                                                                                                                                                                                        | 2.43E-03                                                                                                                                                                                                                                                                                                                                     |
|                        | extracellular region                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                                                                                                                             | 9.1                                                                                                                                                                                                                                                                    | 48                                                                                                                                                                                                                                       | 1.0                                                                                                                                                                                                         | 6.10E-03                                                                                                                                                                                                                                                                                                                                     |
|                        | ribosome biogenesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27                                                                                                                                                             | 20.5                                                                                                                                                                                                                                                                   | 235                                                                                                                                                                                                                                      | 4.8                                                                                                                                                                                                         | 6.10E-03                                                                                                                                                                                                                                                                                                                                     |
|                        | cell wall organization or biogenesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11                                                                                                                                                             | 8.3                                                                                                                                                                                                                                                                    | 122                                                                                                                                                                                                                                      | 2.5                                                                                                                                                                                                         | 6.10E-03                                                                                                                                                                                                                                                                                                                                     |
|                        | ncRNA metabolic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23                                                                                                                                                             | 17.4                                                                                                                                                                                                                                                                   | 286                                                                                                                                                                                                                                      | 5.8                                                                                                                                                                                                         | 6.54E-03                                                                                                                                                                                                                                                                                                                                     |
|                        | plasma membrane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19                                                                                                                                                             | 14.4                                                                                                                                                                                                                                                                   | 234                                                                                                                                                                                                                                      | 4.8                                                                                                                                                                                                         | 1.38E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | cellular cell wall organization or biogenesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11                                                                                                                                                             | 8.3                                                                                                                                                                                                                                                                    | 120                                                                                                                                                                                                                                      | 2.4                                                                                                                                                                                                         | 1.39E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | cellular component biogenesis at cellular level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27                                                                                                                                                             | 20.5                                                                                                                                                                                                                                                                   | 338                                                                                                                                                                                                                                      | 6.9                                                                                                                                                                                                         | 1.42E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | cytokinetic cell separation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                              | 6.1                                                                                                                                                                                                                                                                    | 31                                                                                                                                                                                                                                       | 0.6                                                                                                                                                                                                         | 1.71E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | cellular cell wall organization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                             | 8.3                                                                                                                                                                                                                                                                    | 75                                                                                                                                                                                                                                       | 1.5                                                                                                                                                                                                         | 2.23E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | cell wall organization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                                                                                             | 8.3                                                                                                                                                                                                                                                                    | 75                                                                                                                                                                                                                                       | 1.5                                                                                                                                                                                                         | 2.23E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | ribonucleoprotein complex biogenesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 27                                                                                                                                                             | 20.5                                                                                                                                                                                                                                                                   | 259                                                                                                                                                                                                                                      | 5.3                                                                                                                                                                                                         | 2.46E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | external encapsulating structure organization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11                                                                                                                                                             | 8.3                                                                                                                                                                                                                                                                    | 76                                                                                                                                                                                                                                       |                                                                                                                                                                                                             | 2.46E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | fungal-type cell wall                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                          | 1.5                                                                                                                                                                                                         | 4 705 00                                                                                                                                                                                                                                                                                                                                     |
|                        | - II-I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                              | 6.1                                                                                                                                                                                                                                                                    | 36                                                                                                                                                                                                                                       | 0.7                                                                                                                                                                                                         | 4.78E-02                                                                                                                                                                                                                                                                                                                                     |
|                        | cellular component biogenesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8<br>27                                                                                                                                                        |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                          |                                                                                                                                                                                                             | 4.78E-02<br>5.24E-02                                                                                                                                                                                                                                                                                                                         |
| severe stress          | WT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27                                                                                                                                                             | 6.1<br>20.5                                                                                                                                                                                                                                                            | 36<br>610                                                                                                                                                                                                                                | 0.7<br>12.4                                                                                                                                                                                                 | 5.24E-02                                                                                                                                                                                                                                                                                                                                     |
| severe stress<br>alone | WT<br>DNA integration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27                                                                                                                                                             | 6.1<br>20.5<br>4.1                                                                                                                                                                                                                                                     | 36<br>610<br>11                                                                                                                                                                                                                          | 0.7<br>12.4<br>0.2                                                                                                                                                                                          | 5.24E-02<br>5.76E-08                                                                                                                                                                                                                                                                                                                         |
|                        | WT<br>DNA integration<br>transposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27<br>11<br>11                                                                                                                                                 | 6.1<br>20.5<br>4.1<br>4.1                                                                                                                                                                                                                                              | 36<br>610<br>11<br>12                                                                                                                                                                                                                    | 0.7<br>12.4<br>0.2<br>0.2                                                                                                                                                                                   | 5.24E-02<br>5.76E-08<br>3.17E-07                                                                                                                                                                                                                                                                                                             |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27<br>11<br>11<br>11                                                                                                                                           | 6.1<br>20.5<br>4.1<br>4.1<br>4.1<br>4.1                                                                                                                                                                                                                                | 36<br>610<br>11<br>12<br>15                                                                                                                                                                                                              | 0.7<br>12.4<br>0.2<br>0.2<br>0.3                                                                                                                                                                            | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07                                                                                                                                                                                                                                                                                                 |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27<br>11<br>11<br>11<br>11                                                                                                                                     | 6.1<br>20.5<br>4.1<br>4.1<br>4.1<br>4.1<br>4.1                                                                                                                                                                                                                         | 36<br>610<br>11<br>12<br>15<br>13                                                                                                                                                                                                        | 0.7<br>12.4<br>0.2<br>0.2<br>0.3<br>0.3                                                                                                                                                                     | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07                                                                                                                                                                                                                                                                                     |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27<br>11<br>11<br>11<br>11<br>61                                                                                                                               | 6.1<br>20.5<br>4.1<br>4.1<br>4.1<br>4.1<br>22.8                                                                                                                                                                                                                        | 36<br>610<br>11<br>12<br>15<br>13<br>727                                                                                                                                                                                                 | 0.7<br>12.4<br>0.2<br>0.2<br>0.3<br>0.3<br>14.8                                                                                                                                                             | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06                                                                                                                                                                                                                                                                         |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27<br>11<br>11<br>11<br>11<br>61<br>11                                                                                                                         | 6.1<br>20.5<br>4.1<br>4.1<br>4.1<br>4.1<br>22.8<br>4.1                                                                                                                                                                                                                 | 36<br>610<br>11<br>12<br>15<br>13<br>727<br>16                                                                                                                                                                                           | 0.7<br>12.4<br>0.2<br>0.2<br>0.3<br>0.3<br>14.8<br>0.3                                                                                                                                                      | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05                                                                                                                                                                                                                                                             |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>aspartic-type peptidase activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27<br>11<br>11<br>11<br>11<br>61<br>11<br>11                                                                                                                   | 6.1<br>20.5<br>4.1<br>4.1<br>4.1<br>4.1<br>22.8<br>4.1<br>4.1                                                                                                                                                                                                          | 36<br>610<br>11<br>12<br>15<br>13<br>727<br>16<br>16                                                                                                                                                                                     | 0.7<br>12.4<br>0.2<br>0.3<br>0.3<br>14.8<br>0.3<br>0.3                                                                                                                                                      | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.34E-05                                                                                                                                                                                                                                                 |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>aspartic-type peptidase activity<br>UDP-glycosyltransferase activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27<br>11<br>11<br>11<br>61<br>11<br>11<br>6                                                                                                                    | 6.1<br>20.5<br>4.1<br>4.1<br>4.1<br>4.1<br>4.1<br>22.8<br>4.1<br>4.1<br>2.2                                                                                                                                                                                            | 36<br>610<br>11<br>12<br>15<br>13<br>727<br>16<br>16<br>16<br>27                                                                                                                                                                         | 0.7<br>12.4<br>0.2<br>0.2<br>0.3<br>0.3<br>14.8<br>0.3<br>0.3<br>0.3<br>0.5                                                                                                                                 | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.34E-05<br>2.96E-05                                                                                                                                                                                                                                     |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>uDP-glycosyltransferase activity<br>cell cycle process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27<br>11<br>11<br>11<br>11<br>61<br>11<br>11                                                                                                                   | 6.1<br>20.5<br>4.1<br>4.1<br>4.1<br>4.1<br>22.8<br>4.1<br>4.1                                                                                                                                                                                                          | 36<br>610<br>11<br>12<br>15<br>13<br>727<br>16<br>16                                                                                                                                                                                     | 0.7<br>12.4<br>0.2<br>0.3<br>0.3<br>14.8<br>0.3<br>0.3                                                                                                                                                      | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.34E-05                                                                                                                                                                                                                                                 |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>uDP-glycosyltransferase activity<br>cell cycle process<br>cell cycle phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27<br>11<br>11<br>11<br>61<br>11<br>6<br>31                                                                                                                    | 6.1<br>20.5<br>4.1<br>4.1<br>4.1<br>22.8<br>4.1<br>4.1<br>2.2<br>11.6                                                                                                                                                                                                  | 36<br>610<br>11<br>12<br>15<br>13<br>727<br>16<br>16<br>27<br>594                                                                                                                                                                        | 0.7<br>12.4<br>0.2<br>0.3<br>0.3<br>14.8<br>0.3<br>0.5<br>12.1<br>11.2                                                                                                                                      | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.34E-05<br>2.96E-05<br>2.96E-05<br>4.90E-05                                                                                                                                                                                                             |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>uDP-glycosyltransferase activity<br>cell cycle process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 27<br>11<br>11<br>11<br>61<br>11<br>11<br>6<br>31<br>31                                                                                                        | 6.1<br>20.5<br>4.1<br>4.1<br>4.1<br>4.1<br>22.8<br>4.1<br>4.1<br>2.2<br>11.6<br>11.6                                                                                                                                                                                   | 36<br>610<br>11<br>12<br>15<br>13<br>727<br>16<br>16<br>16<br>27<br>594<br>550                                                                                                                                                           | 0.7<br>12.4<br>0.2<br>0.3<br>0.3<br>14.8<br>0.3<br>0.3<br>0.5<br>12.1                                                                                                                                       | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.34E-05<br>2.96E-05<br>2.96E-05                                                                                                                                                                                                                         |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>aspartic-type peptidase activity<br>UDP-glycosyltransferase activity<br>cell cycle process<br>cell cycle phase<br>chromosome, centromeric region                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27<br>11<br>11<br>11<br>61<br>11<br>11<br>11<br>6<br>31<br>31<br>31<br>19                                                                                      | 6.1<br>20.5<br>4.1<br>4.1<br>4.1<br>4.1<br>22.8<br>4.1<br>4.1<br>2.2<br>11.6<br>11.6<br>7.1                                                                                                                                                                            | 36<br>610<br>11<br>12<br>15<br>13<br>727<br>16<br>16<br>16<br>27<br>594<br>550<br>94                                                                                                                                                     | 0.7<br>12.4<br>0.2<br>0.3<br>0.3<br>14.8<br>0.3<br>0.3<br>0.3<br>0.5<br>12.1<br>11.2<br>1.9                                                                                                                 | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.34E-05<br>2.96E-05<br>2.96E-05<br>4.90E-05<br>5.35E-05                                                                                                                                                                                                 |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>aspartic-type peptidase activity<br>UDP-glycosyltransferase activity<br>cell cycle phase<br>chromosome, centromeric region<br>cell division<br>microtubule cytoskeleton                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27<br>11<br>11<br>11<br>61<br>11<br>11<br>6<br>31<br>31<br>31<br>19<br>44                                                                                      | 6.1<br>20.5<br>4.1<br>4.1<br>4.1<br>4.1<br>4.1<br>2.2.8<br>4.1<br>4.1<br>2.2<br>11.6<br>11.6<br>7.1<br>16.5                                                                                                                                                            | 36<br>610<br>11<br>12<br>15<br>13<br>727<br>16<br>16<br>16<br>27<br>594<br>550<br>94<br>306                                                                                                                                              | 0.7<br>12.4<br>0.2<br>0.3<br>0.3<br>14.8<br>0.3<br>0.3<br>0.5<br>12.1<br>11.2<br>1.9<br>6.2                                                                                                                 | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.34E-05<br>2.96E-05<br>2.96E-05<br>5.35E-05<br>8.87E-05                                                                                                                                                                                                 |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>aspartic-type peptidase activity<br>UDP-glycosyltransferase activity<br>cell cycle process<br>cell cycle phase<br>chromosome, centromeric region<br>cell division                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27<br>11<br>11<br>11<br>11<br>61<br>11<br>11<br>6<br>31<br>31<br>19<br>44<br>33                                                                                | 6.1<br>20.5<br>4.1<br>4.1<br>4.1<br>22.8<br>4.1<br>4.1<br>2.2<br>11.6<br>11.6<br>11.6<br>11.6<br>5.12.4                                                                                                                                                                | 36<br>610<br>11<br>12<br>15<br>13<br>727<br>16<br>16<br>27<br>594<br>550<br>94<br>306<br>176                                                                                                                                             | $\begin{array}{c} 0.7\\ 12.4\\ \hline 0.2\\ 0.2\\ 0.3\\ 14.8\\ 0.3\\ 0.5\\ 12.1\\ 11.2\\ 1.9\\ 6.2\\ 3.6\\ \end{array}$                                                                                     | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.34E-05<br>2.34E-05<br>2.96E-05<br>2.96E-05<br>4.90E-05<br>5.35E-05<br>8.87E-05<br>1.11E-04                                                                                                                                                             |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>UDP-glycosyltransferase activity<br>UDP-glycosyltransferase activity<br>cell cycle process<br>cell cycle process<br>cell cycle phase<br>chromosome, centromeric region<br>cell division<br>microtubule cytoskeleton<br>transferase activity, transferring phosphorus-containing groups                                                                                                                                                                                                                                                                                                                                     | 27<br>11<br>11<br>11<br>11<br>61<br>11<br>11<br>6<br>31<br>31<br>31<br>19<br>44<br>33<br>50                                                                    | $\begin{array}{r} 6.1 \\ 20.5 \\ \hline \\ 4.1 \\ 4.1 \\ 4.1 \\ 2.2.8 \\ 4.1 \\ 4.1 \\ 2.2 \\ 11.6 \\ 11.6 \\ 11.6 \\ 7.1 \\ 16.5 \\ 12.4 \\ 18.7 \end{array}$                                                                                                         | 36<br>610<br>11<br>12<br>15<br>13<br>727<br>16<br>16<br>16<br>16<br>27<br>594<br>550<br>94<br>306<br>176<br>301                                                                                                                          | $\begin{array}{c} 0.7\\ 12.4\\ \hline 0.2\\ 0.2\\ 0.3\\ 14.8\\ 0.3\\ 0.3\\ 0.5\\ 12.1\\ 11.2\\ 1.9\\ 6.2\\ 3.6\\ 6.1\\ \end{array}$                                                                         | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.34E-05<br>2.96E-05<br>2.96E-05<br>4.90E-05<br>5.35E-05<br>8.87E-05<br>1.11E-04<br>5.61E-04                                                                                                                                                             |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>UDP-glycosyltransferase activity<br>UDP-glycosyltransferase activity<br>cell cycle process<br>cell cycle process<br>cell division<br>microtubule cytoskeleton<br>transferase activity, transferring phosphorus-containing groups<br>cell septum                                                                                                                                                                                                                                                                                                                                                                            | 27<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>6<br>31<br>31<br>19<br>44<br>33<br>50<br>44                                                              | $\begin{array}{r} 6.1 \\ 20.5 \\ \hline \\ 4.1 \\ 4.1 \\ 4.1 \\ 22.8 \\ 4.1 \\ 4.1 \\ 2.2 \\ 11.6 \\ 11.6 \\ 11.6 \\ 7.1 \\ 16.5 \\ 12.4 \\ 18.7 \\ 16.5 \end{array}$                                                                                                  | 36<br>610<br>11<br>12<br>15<br>13<br>727<br>16<br>16<br>16<br>27<br>594<br>550<br>94<br>306<br>176<br>301<br>239                                                                                                                         | $\begin{array}{c} 0.7 \\ 12.4 \\ \hline 0.2 \\ 0.2 \\ 0.3 \\ 14.8 \\ 0.3 \\ 0.3 \\ 0.5 \\ 12.1 \\ 11.2 \\ 1.9 \\ 6.2 \\ 3.6 \\ 6.1 \\ 4.9 \\ \end{array}$                                                   | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.34E-05<br>2.96E-05<br>2.96E-05<br>5.35E-05<br>8.87E-05<br>1.11E-04<br>5.61E-04<br>5.61E-04                                                                                                                                                             |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>uDP-glycosyltransferase activity<br>uDP-glycosyltransferase activity<br>cell cycle phase<br>cell cycle phase<br>cell cycle phase<br>cerromosome, centromeric region<br>cell division<br>microtubule cytoskeleton<br>transferase activity, transferring phosphorus-containing groups<br>cell sputm<br>DNA polymerase activity                                                                                                                                                                                                                                                                                               | 27<br>11<br>11<br>11<br>11<br>61<br>11<br>11<br>6<br>31<br>19<br>44<br>33<br>50<br>44<br>11                                                                    | $\begin{array}{r} 6.1 \\ 20.5 \\ \hline \\ 4.1 \\ 4.1 \\ 4.1 \\ 22.8 \\ 4.1 \\ 4.1 \\ 2.2 \\ 11.6 \\ 11.6 \\ 11.6 \\ 7.1 \\ 16.5 \\ 12.4 \\ 18.7 \\ 16.5 \\ 4.1 \end{array}$                                                                                           | 36<br>610<br>11<br>12<br>15<br>13<br>727<br>16<br>16<br>16<br>27<br>594<br>550<br>94<br>306<br>176<br>301<br>239<br>30                                                                                                                   | $\begin{array}{c} 0.7\\ 12.4\\ \hline 0.2\\ 0.2\\ 0.3\\ 0.3\\ 14.8\\ 0.3\\ 0.3\\ 0.5\\ 12.1\\ 11.2\\ 1.9\\ 6.2\\ 3.6\\ 6.1\\ 4.9\\ 0.6\\ \end{array}$                                                       | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.34E-05<br>2.96E-05<br>2.96E-05<br>2.96E-05<br>5.35E-05<br>8.87E-05<br>1.11E-04<br>5.61E-04<br>6.70E-04                                                                                                                                                 |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>uDP-glycosyltransferase activity<br>UDP-glycosyltransferase activity<br>cell cycle phase<br>chromosome, centromeric region<br>cell division<br>microtubule cytoskeleton<br>transferase activity, transferring phosphorus-containing groups<br>cell septum<br>DNA polymerase activity<br>interphase                                                                                                                                                                                                                                                                                                                         | 27<br>11<br>11<br>11<br>11<br>61<br>11<br>11<br>6<br>31<br>31<br>19<br>44<br>33<br>50<br>44<br>11<br>5                                                         | $\begin{array}{c} 6.1 \\ 20.5 \\ \hline \\ 4.1 \\ 4.1 \\ 4.1 \\ 22.8 \\ 4.1 \\ 4.1 \\ 2.2 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.9 \\ \end{array}$                                                              | 36<br>610<br>11<br>12<br>15<br>13<br>727<br>16<br>16<br>16<br>27<br>594<br>550<br>94<br>306<br>176<br>301<br>239<br>30<br>60                                                                                                             | $\begin{array}{c} 0.7\\ 12.4\\ \hline 0.2\\ 0.2\\ 0.3\\ 14.8\\ 0.3\\ 0.3\\ 0.5\\ 12.1\\ 11.2\\ 1.9\\ 6.2\\ 3.6\\ 6.1\\ 4.9\\ 0.6\\ 1.2\\ \end{array}$                                                       | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.34E-05<br>2.34E-05<br>2.96E-05<br>5.35E-05<br>8.87E-05<br>1.11E-04<br>5.61E-04<br>5.61E-04<br>6.70E-04                                                                                                                                                 |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>UDP-glycosyltransferase activity<br>UDP-glycosyltransferase activity<br>cell cycle process<br>cell cycle phase<br>chromosome, centromeric region<br>cell division<br>microtubule cytoskeleton<br>transferase activity, transferring phosphorus-containing groups<br>cell septum<br>DNA polymerase activity<br>interphase<br>DNA binding                                                                                                                                                                                                                                                                                    | 27<br>11<br>11<br>11<br>11<br>11<br>61<br>11<br>11<br>6<br>31<br>31<br>31<br>19<br>44<br>33<br>50<br>44<br>11<br>5<br>58                                       | $\begin{array}{c} 6.1 \\ 20.5 \\ \hline \\ 4.1 \\ 4.1 \\ 4.1 \\ 22.8 \\ 4.1 \\ 4.1 \\ 2.2 \\ 11.6 \\ 11.6 \\ 11.6 \\ 7.1 \\ 16.5 \\ 12.4 \\ 18.7 \\ 16.5 \\ 4.1 \\ 1.9 \\ 21.7 \end{array}$                                                                            | 36<br>610<br>11<br>12<br>15<br>13<br>727<br>16<br>16<br>16<br>16<br>27<br>594<br>550<br>94<br>306<br>176<br>301<br>239<br>30<br>60<br>361                                                                                                | $\begin{array}{c} 0.7\\ 12.4\\ \hline 0.2\\ 0.2\\ 0.3\\ 14.8\\ 0.3\\ 0.3\\ 0.5\\ 12.1\\ 11.2\\ 1.9\\ 6.2\\ 3.6\\ 6.1\\ 4.9\\ 0.6\\ 1.2\\ 7.3\\ \end{array}$                                                 | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.34E-05<br>2.96E-05<br>2.96E-05<br>5.35E-05<br>8.87E-05<br>5.35E-05<br>8.87E-05<br>1.11E-04<br>5.61E-04<br>5.61E-04<br>6.70E-04<br>7.20E-04                                                                                                             |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>UDP-glycosyltransferase activity<br>UDP-glycosyltransferase activity<br>cell cycle process<br>cell cycle process<br>cell cycle phase<br>chromosome, centromeric region<br>cell division<br>microtubule cytoskeleton<br>transferase activity, transferring phosphorus-containing groups<br>cell septum<br>DNA polymerase activity<br>interphase<br>DNA binding<br>biological regulation                                                                                                                                                                                                                                     | $\begin{array}{c} 27\\ 11\\ 11\\ 11\\ 11\\ 61\\ 11\\ 11\\ 6\\ 31\\ 31\\ 31\\ 19\\ 44\\ 33\\ 50\\ 44\\ 11\\ 5\\ 58\\ 39\end{array}$                             | $\begin{array}{c} 6.1 \\ 20.5 \\ \hline \\ 4.1 \\ 4.1 \\ 4.1 \\ 22.8 \\ 4.1 \\ 4.1 \\ 22.8 \\ 4.1 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.6 \\ 12.4 \\ 18.7 \\ 16.5 \\ 4.1 \\ 1.9 \\ 21.7 \\ 14.6 \end{array}$                                                           | 36<br>610<br>11<br>12<br>15<br>13<br>727<br>16<br>16<br>16<br>27<br>594<br>550<br>94<br>306<br>176<br>301<br>239<br>30<br>60<br>361<br>1299                                                                                              | $\begin{array}{c} 0.7\\ 12.4\\ \\ 0.2\\ 0.3\\ 0.3\\ 14.8\\ 0.3\\ 0.3\\ 0.5\\ 12.1\\ 11.2\\ 1.9\\ 6.2\\ 3.6\\ 6.1\\ 4.9\\ 0.6\\ 1.2\\ 7.3\\ 26.4\\ \end{array}$                                              | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.96E-05<br>2.96E-05<br>2.96E-05<br>5.35E-05<br>8.87E-05<br>1.11E-04<br>5.61E-04<br>5.61E-04<br>6.70E-04<br>7.20E-04<br>1.18E-03                                                                                                                         |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>UDP-glycosyltransferase activity<br>uDP-glycosyltransferase activity<br>cell cycle phase<br>cell cycle phase<br>chromosome, centromeric region<br>cell division<br>microtubule cytoskeleton<br>transferase activity, transferring phosphorus-containing groups<br>cell setum<br>DNA polymerase activity<br>interphase<br>DNA binding<br>biological regulation<br>mitotic cell cycle                                                                                                                                                                                                                                        | $\begin{array}{c} 27 \\ 11 \\ 11 \\ 11 \\ 11 \\ 61 \\ 11 \\ 11 \\ 6 \\ 31 \\ 19 \\ 44 \\ 33 \\ 50 \\ 44 \\ 11 \\ 5 \\ 58 \\ 39 \\ 31 \end{array}$              | $\begin{array}{c} 6.1\\ 20.5\\ \\ 4.1\\ 4.1\\ 4.1\\ 22.8\\ 4.1\\ 2.2\\ 11.6\\ 11.6\\ 11.6\\ 11.6\\ 11.6\\ 12.4\\ 18.7\\ 16.5\\ 12.4\\ 18.7\\ 16.5\\ 4.1\\ 1.9\\ 21.7\\ 14.6\\ 11.6\\ \end{array}$                                                                      | 36<br>610<br>11<br>12<br>15<br>13<br>727<br>16<br>16<br>27<br>594<br>550<br>94<br>306<br>176<br>301<br>239<br>30<br>60<br>361<br>1299<br>259                                                                                             | $\begin{array}{c} 0.7\\ 12.4\\ \\ 0.2\\ 0.2\\ 0.3\\ 14.8\\ 0.3\\ 0.5\\ 12.1\\ 11.2\\ 1.9\\ 6.2\\ 3.6\\ 6.1\\ 4.9\\ 0.6\\ 1.2\\ 7.3\\ 26.4\\ 5.3\\ \end{array}$                                              | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.34E-05<br>2.96E-05<br>2.96E-05<br>2.96E-05<br>5.35E-05<br>8.87E-05<br>1.11E-04<br>5.61E-04<br>6.70E-04<br>6.70E-04<br>6.70E-04<br>1.18E-03<br>1.73E-03                                                                                                 |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>uDP-glycosyltransferase activity<br>cell cycle process<br>cell cycle phase<br>chromosome, centromeric region<br>cell division<br>microtubule cytoskeleton<br>transferase activity, transferring phosphorus-containing groups<br>cell septum<br>DNA polymerase activity<br>interphase<br>DNA binding<br>biological regulation<br>mitotic cell cycle<br>kinetochore                                                                                                                                                                                                                                                          | $\begin{array}{c} 27\\ 11\\ 11\\ 11\\ 61\\ 11\\ 11\\ 61\\ 31\\ 31\\ 19\\ 44\\ 33\\ 50\\ 44\\ 11\\ 5\\ 58\\ 39\\ 31\\ 12\\ \end{array}$                         | $\begin{array}{c} 6.1 \\ 20.5 \\ \hline \\ 4.1 \\ 4.1 \\ 4.1 \\ 2.2.8 \\ 4.1 \\ 4.1 \\ 2.2 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.6 \\ 7.1 \\ 16.5 \\ 12.4 \\ 18.7 \\ 16.5 \\ 4.1 \\ 1.9 \\ 21.7 \\ 14.6 \\ 11.6 \\ 4.5 \end{array}$                                            | 36<br>610<br>11<br>12<br>15<br>13<br>727<br>16<br>16<br>16<br>27<br>594<br>550<br>94<br>306<br>176<br>301<br>239<br>30<br>60<br>361<br>1299<br>259<br>65                                                                                 | $\begin{array}{c} 0.7\\ 12.4\\ \\ 0.2\\ 0.3\\ 0.3\\ 14.8\\ 0.3\\ 0.3\\ 0.5\\ 12.1\\ 11.2\\ 1.9\\ 6.2\\ 3.6\\ 6.1\\ 4.9\\ 0.6\\ 1.2\\ 7.3\\ 26.4\\ 5.3\\ 1.3\\ \end{array}$                                  | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.34E-05<br>2.96E-05<br>2.96E-05<br>5.35E-05<br>8.87E-05<br>1.11E-04<br>5.61E-04<br>6.70E-04<br>6.70E-04<br>7.20E-04<br>1.18E-03<br>1.73E-03<br>1.95E-03                                                                                                 |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>UDP-glycosyltransferase activity<br>UDP-glycosyltransferase activity<br>cell cycle phase<br>chromosome, centromeric region<br>cell division<br>microtubule cytoskeleton<br>transferase activity, transferring phosphorus-containing groups<br>cell septum<br>DNA polymerase activity<br>interphase<br>DNA binding<br>biological regulation<br>mitotic cell cycle<br>kinetochore<br>signaling                                                                                                                                                                                                                               | $\begin{array}{c} 27 \\ 11 \\ 11 \\ 11 \\ 11 \\ 61 \\ 11 \\ 11 \\ 6 \\ 31 \\ 31$                                                                               | $\begin{array}{c} 6.1 \\ 20.5 \\ \\ 4.1 \\ 4.1 \\ 4.1 \\ 2.2.8 \\ 4.1 \\ 4.1 \\ 2.2 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.6 \\ 7.1 \\ 16.5 \\ 12.4 \\ 18.7 \\ 16.5 \\ 4.1 \\ 1.9 \\ 21.7 \\ 14.6 \\ 11.6 \\ 4.5 \\ 9.0 \end{array}$                                            | 36<br>610<br>11<br>12<br>15<br>13<br>727<br>16<br>16<br>16<br>16<br>27<br>594<br>550<br>94<br>306<br>176<br>301<br>239<br>30<br>60<br>361<br>1299<br>259<br>65<br>383                                                                    | $\begin{array}{c} 0.7\\ 12.4\\ \hline 0.2\\ 0.2\\ 0.3\\ 14.8\\ 0.3\\ 0.3\\ 0.5\\ 12.1\\ 11.2\\ 1.9\\ 6.2\\ 3.6\\ 6.1\\ 4.9\\ 0.6\\ 1.2\\ 7.3\\ 26.4\\ 5.3\\ 1.3\\ 7.8\\ \end{array}$                        | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.96E-05<br>2.96E-05<br>2.96E-05<br>5.35E-05<br>8.87E-05<br>1.11E-04<br>5.61E-04<br>5.61E-04<br>6.70E-04<br>6.70E-04<br>1.18E-03<br>1.95E-03<br>1.95E-03                                                                                                 |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>UDP-glycosyltransferase activity<br>UDP-glycosyltransferase activity<br>cell cycle process<br>cell cycle process<br>cell cycle phase<br>chromosome, centromeric region<br>cell division<br>microtubule cytoskeleton<br>transferase activity, transferring phosphorus-containing groups<br>cell septum<br>DNA polymerase activity<br>interphase<br>DNA binding<br>biological regulation<br>mitotic cell cycle<br>kinetochore<br>signaling<br>cell wall organization or biogenesis                                                                                                                                           | $\begin{array}{c} 27 \\ 11 \\ 11 \\ 11 \\ 11 \\ 61 \\ 11 \\ 11 \\ 6 \\ 31 \\ 31$                                                                               | $\begin{array}{c} 6.1\\ 20.5\\ \\ 4.1\\ 4.1\\ 4.1\\ 22.8\\ 4.1\\ 4.1\\ 22.8\\ 4.1\\ 1.6\\ 11.6\\ 7.1\\ 16.5\\ 12.4\\ 18.7\\ 16.5\\ 4.1\\ 1.9\\ 21.7\\ 14.6\\ 11.6\\ 4.5\\ 9.0\\ 9.4\\ \end{array}$                                                                     | 36<br>610<br>11<br>12<br>15<br>13<br>727<br>16<br>16<br>16<br>27<br>594<br>550<br>94<br>306<br>176<br>301<br>239<br>30<br>60<br>361<br>1299<br>259<br>65<br>383<br>122                                                                   | $\begin{array}{c} 0.7\\ 12.4\\ \\ 0.2\\ 0.3\\ 0.3\\ 14.8\\ 0.3\\ 0.3\\ 0.5\\ 12.1\\ 11.2\\ 1.9\\ 6.2\\ 3.6\\ 6.1\\ 4.9\\ 0.6\\ 1.2\\ 7.3\\ 26.4\\ 5.3\\ 1.3\\ 7.8\\ 2.5\\ \end{array}$                      | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.96E-05<br>2.96E-05<br>2.96E-05<br>5.35E-05<br>8.87E-05<br>1.11E-04<br>5.61E-04<br>5.61E-04<br>6.70E-04<br>6.70E-04<br>1.18E-03<br>1.73E-03<br>1.95E-03<br>1.95E-03                                                                                     |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>UDP-glycosyltransferase activity<br>uDP-glycosyltransferase activity<br>cell cycle phase<br>chromosome, centromeric region<br>cell division<br>microtubule cytoskeleton<br>transferase activity, transferring phosphorus-containing groups<br>cell settum<br>DNA polymerase activity<br>interphase<br>DNA binding<br>biological regulation<br>mitotic cell cycle<br>kinetochore<br>signaling<br>cell wall organization or biogenesis<br>cellular component organization or biogenesis                                                                                                                                      | $\begin{array}{c} 27 \\ 11 \\ 11 \\ 11 \\ 11 \\ 61 \\ 11 \\ 11 \\ 61 \\ 11 \\ 11 \\ 11 \\ 6 \\ 31 \\ 31$                                                       | $\begin{array}{c} 6.1 \\ 20.5 \\ \\ 4.1 \\ 4.1 \\ 4.1 \\ 22.8 \\ 4.1 \\ 4.1 \\ 22.8 \\ 4.1 \\ 4.1 \\ 2.2 \\ 11.6 \\ 11.6 \\ 11.6 \\ 7.1 \\ 16.5 \\ 12.4 \\ 18.7 \\ 16.5 \\ 4.1 \\ 1.9 \\ 21.7 \\ 14.6 \\ 11.6 \\ 4.5 \\ 9.0 \\ 9.4 \\ 20.2 \\ 19.9 \\ 7.1 \end{array}$ | $\begin{array}{c} 36 \\ 610 \\ \\ 11 \\ 12 \\ 15 \\ 13 \\ 727 \\ 16 \\ 16 \\ 16 \\ 27 \\ 594 \\ 550 \\ 94 \\ 306 \\ 176 \\ 301 \\ 239 \\ 30 \\ 60 \\ 361 \\ 1299 \\ 259 \\ 65 \\ 383 \\ 122 \\ 1426 \\ 1346 \\ 137 \\ \end{array}$       | $\begin{array}{c} 0.7\\ 12.4\\ \\ 0.2\\ 0.2\\ 0.3\\ 14.8\\ 0.3\\ 0.5\\ 12.1\\ 11.2\\ 1.9\\ 6.2\\ 3.6\\ 6.1\\ 4.9\\ 0.6\\ 1.2\\ 7.3\\ 26.4\\ 5.3\\ 1.3\\ 7.8\\ 2.5\\ 29.0\\ \end{array}$                     | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.96E-05<br>2.96E-05<br>2.96E-05<br>5.35E-05<br>8.87E-05<br>1.11E-04<br>5.61E-04<br>5.61E-04<br>6.70E-04<br>6.70E-04<br>6.70E-04<br>1.18E-03<br>1.73E-03<br>1.95E-03<br>1.95E-03<br>2.12E-03                                                             |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>UDP-glycosyltransferase activity<br>UDP-glycosyltransferase activity<br>cell cycle process<br>cell cycle phase<br>chromosome, centromeric region<br>cell division<br>microtubule cytoskeleton<br>transferase activity, transferring phosphorus-containing groups<br>cell septum<br>DNA polymerase activity<br>interphase<br>DNA binding<br>biological regulation<br>mitotic cell cycle<br>kinetochore<br>signaling<br>cell wall organization or biogenesis<br>cellular component organization or biogenesis<br>cellular component organization or biogenesis                                                               | $\begin{array}{c} 27\\ 11\\ 11\\ 11\\ 11\\ 61\\ 11\\ 11\\ 6\\ 31\\ 31\\ 19\\ 44\\ 33\\ 50\\ 44\\ 11\\ 5\\ 58\\ 39\\ 31\\ 12\\ 24\\ 25\\ 54\\ 53\\ \end{array}$ | $\begin{array}{c} 6.1 \\ 20.5 \\ \\ 4.1 \\ 4.1 \\ 4.1 \\ 2.2 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.6 \\ 11.6 \\ 4.1 \\ 1.9 \\ 21.7 \\ 14.6 \\ 11.6 \\ 11.6 \\ 4.5 \\ 9.0 \\ 9.4 \\ 20.2 \\ 19.9 \end{array}$                           | $\begin{array}{c} 36 \\ 610 \\ \\ 11 \\ 12 \\ 15 \\ 13 \\ 727 \\ 16 \\ 16 \\ 16 \\ 27 \\ 594 \\ 550 \\ 94 \\ 550 \\ 94 \\ 306 \\ 176 \\ 301 \\ 239 \\ 30 \\ 60 \\ 361 \\ 1299 \\ 259 \\ 65 \\ 383 \\ 122 \\ 1426 \\ 1346 \\ \end{array}$ | $\begin{array}{c} 0.7\\ 12.4\\ \\ 0.2\\ 0.3\\ 0.3\\ 14.8\\ 0.3\\ 0.3\\ 0.5\\ 12.1\\ 11.2\\ 1.9\\ 6.2\\ 3.6\\ 6.1\\ 4.9\\ 0.6\\ 1.2\\ 7.3\\ 26.4\\ 5.3\\ 1.3\\ 7.8\\ 2.5\\ 29.0\\ 27.4\\ \end{array}$        | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.34E-05<br>2.96E-05<br>2.96E-05<br>4.90E-05<br>5.35E-05<br>8.87E-05<br>1.11E-04<br>5.61E-04<br>6.70E-04<br>6.70E-04<br>1.73E-03<br>1.95E-03<br>1.95E-03<br>1.95E-03<br>2.12E-03<br>2.12E-03<br>2.12E-03                                                 |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>UDP-glycosyltransferase activity<br>UDP-glycosyltransferase activity<br>cell cycle phase<br>chromosome, centromeric region<br>cell division<br>microtubule cytoskeleton<br>transferase activity, transferring phosphorus-containing groups<br>cell septum<br>DNA polymerase activity<br>interphase<br>DNA polymerase activity<br>interphase<br>DNA binding<br>biological regulation<br>mitotic cell cycle<br>kinetochore<br>signaling<br>cell wall organization or biogenesis<br>cellular component organization or biogenesis<br>at cellular level<br>spindle                                                             | $\begin{array}{c} 27 \\ 11 \\ 11 \\ 11 \\ 11 \\ 61 \\ 11 \\ 11 \\ 61 \\ 11 \\ 11 \\ 11 \\ 6 \\ 31 \\ 31$                                                       | $\begin{array}{c} 6.1 \\ 20.5 \\ \\ 4.1 \\ 4.1 \\ 4.1 \\ 22.8 \\ 4.1 \\ 4.1 \\ 22.8 \\ 4.1 \\ 4.1 \\ 2.2 \\ 11.6 \\ 11.6 \\ 11.6 \\ 7.1 \\ 16.5 \\ 12.4 \\ 18.7 \\ 16.5 \\ 4.1 \\ 1.9 \\ 21.7 \\ 14.6 \\ 11.6 \\ 4.5 \\ 9.0 \\ 9.4 \\ 20.2 \\ 19.9 \\ 7.1 \end{array}$ | $\begin{array}{c} 36 \\ 610 \\ \\ 11 \\ 12 \\ 15 \\ 13 \\ 727 \\ 16 \\ 16 \\ 16 \\ 27 \\ 594 \\ 550 \\ 94 \\ 306 \\ 176 \\ 301 \\ 239 \\ 30 \\ 60 \\ 361 \\ 1299 \\ 259 \\ 65 \\ 383 \\ 122 \\ 1426 \\ 1346 \\ 137 \\ \end{array}$       | $\begin{array}{c} 0.7\\ 12.4\\ \\ 0.2\\ 0.3\\ 0.3\\ 14.8\\ 0.3\\ 0.3\\ 0.5\\ 12.1\\ 11.2\\ 1.9\\ 6.2\\ 3.6\\ 6.1\\ 4.9\\ 0.6\\ 1.2\\ 7.3\\ 26.4\\ 5.3\\ 1.3\\ 7.8\\ 2.5\\ 29.0\\ 27.4\\ 2.8\\ \end{array}$  | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.96E-05<br>2.96E-05<br>2.96E-05<br>5.35E-05<br>8.87E-05<br>1.11E-04<br>5.61E-04<br>5.61E-04<br>5.61E-04<br>6.70E-04<br>1.18E-03<br>1.95E-03<br>1.95E-03<br>1.95E-03<br>2.12E-03<br>2.12E-03<br>2.12E-03<br>2.12E-03<br>2.18E-03                         |
|                        | WT<br>DNA integration<br>transposition<br>RNA-dependent DNA replication<br>RNA-directed DNA polymerase activity<br>cell cycle<br>aspartic-type endopeptidase activity<br>UDP-glycosyltransferase activity<br>UDP-glycosyltransferase activity<br>cell cycle process<br>cell cycle process<br>cell cycle phase<br>chromosome, centromeric region<br>cell division<br>microtubule cytoskeleton<br>transferase activity, transferring phosphorus-containing groups<br>cell septum<br>DNA polymerase activity<br>interphase<br>DNA binding<br>biological regulation<br>mitotic cell cycle<br>kinetochore<br>signaling<br>cell wall organization or biogenesis<br>cellular component organization or biogenesis<br>cellular component organization or biogenesis at cellular level<br>spindle<br>M phase | $\begin{array}{c} 27 \\ 11 \\ 11 \\ 11 \\ 11 \\ 11 \\ 61 \\ 11 \\ 1$                                                                                           | $\begin{array}{c} 6.1\\ 20.5\\ \\ 4.1\\ 4.1\\ 4.1\\ 22.8\\ 4.1\\ 4.1\\ 22.8\\ 4.1\\ 1.6\\ 11.6\\ 11.6\\ 11.6\\ 7.1\\ 16.5\\ 12.4\\ 18.7\\ 16.5\\ 4.1\\ 1.9\\ 21.7\\ 14.6\\ 11.6\\ 4.5\\ 9.0\\ 9.4\\ 20.2\\ 19.9\\ 7.1\\ 10.5\\ \end{array}$                            | 36<br>610<br>11<br>12<br>15<br>13<br>727<br>16<br>16<br>16<br>27<br>594<br>550<br>94<br>306<br>176<br>301<br>239<br>30<br>60<br>361<br>1299<br>259<br>65<br>383<br>122<br>1426<br>1346<br>137<br>518                                     | $\begin{array}{c} 0.7\\ 12.4\\ \\ 0.2\\ 0.3\\ 0.3\\ 14.8\\ 0.3\\ 0.5\\ 12.1\\ 11.2\\ 1.9\\ 6.2\\ 3.6\\ 6.1\\ 4.9\\ 0.6\\ 1.2\\ 7.3\\ 26.4\\ 5.3\\ 1.3\\ 7.8\\ 2.5\\ 29.0\\ 27.4\\ 2.8\\ 10.5\\ \end{array}$ | 5.24E-02<br>5.76E-08<br>3.17E-07<br>6.03E-07<br>9.46E-07<br>6.77E-06<br>2.34E-05<br>2.96E-05<br>2.96E-05<br>2.96E-05<br>4.90E-05<br>5.35E-05<br>8.87E-05<br>1.11E-04<br>5.61E-04<br>5.61E-04<br>5.61E-04<br>6.70E-04<br>1.73E-03<br>1.95E-03<br>1.95E-03<br>1.95E-03<br>2.12E-03<br>2.12E-03<br>2.12E-03<br>2.12E-03<br>2.12E-03<br>2.53E-03 |

| regulation of cell size                                                                                                                                                                                                      | 1                                     | 0.4                                                 | 30                                    | 0.6                              | 2.65E-03                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------|---------------------------------------|----------------------------------|----------------------------------------------------------|
| cellular cell wall organization or biogenesis                                                                                                                                                                                | 25                                    | 9.4                                                 | 120                                   | 2.4                              | 3.19E-03                                                 |
| signal transduction                                                                                                                                                                                                          | 24                                    | 9.0                                                 | 362                                   | 7.4                              | 4.06E-03                                                 |
| signaling process                                                                                                                                                                                                            | 24                                    | 9.0                                                 | 363                                   | 7.4                              | 4.21E-03                                                 |
| signal transmission                                                                                                                                                                                                          | 24                                    | 9.0                                                 | 363                                   | 7.4                              | 4.21E-03                                                 |
| regulation of nitrogen compound metabolic process                                                                                                                                                                            | 1                                     | 0.4                                                 | 537                                   | 10.9                             | 4.42E-03                                                 |
| regulation of cellular process                                                                                                                                                                                               | 36                                    | 13.5                                                | 1053                                  | 21.4                             | 4.55E-03                                                 |
| mitosis                                                                                                                                                                                                                      | 28                                    | 10.5                                                | 182                                   | 3.7                              | 4.97E-03                                                 |
| regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolic process                                                                                                                                          | 1                                     | 0.4                                                 | 531                                   | 10.8                             | 4.97E-03                                                 |
| chromosome                                                                                                                                                                                                                   | 25                                    | 9.4                                                 | 409                                   | 8.3                              | 4.97E-03                                                 |
| M phase of mitotic cell cycle                                                                                                                                                                                                | 28                                    | 10.5                                                | 183                                   | 3.7                              | 5.20E-03                                                 |
| condensed chromosome, centromeric region                                                                                                                                                                                     | 13                                    | 4.9                                                 | 66                                    | 1.3                              | 5.20E-03                                                 |
| fungal-type cell wall organization or biogenesis                                                                                                                                                                             | 11                                    | 4.1                                                 | 72                                    | 1.5                              | 5.20E-03                                                 |
| barrier septum                                                                                                                                                                                                               | 41                                    | 15.4                                                | 230                                   | 4.7                              | 5.52E-03                                                 |
| nuclear division                                                                                                                                                                                                             | 28                                    | 10.5                                                | 184                                   | 3.7                              | 5.53E-03                                                 |
| protein serine/threonine kinase activity                                                                                                                                                                                     | 25                                    | 9.4                                                 | 113                                   | 2.3                              | 6.56E-03                                                 |
| chromosomal part                                                                                                                                                                                                             | 19                                    | 7.1                                                 | 391                                   | 8.0                              | 7.88E-03                                                 |
| cytoskeletal part                                                                                                                                                                                                            | 31                                    | 11.6                                                | 242                                   | 4.9                              | 7.91E-03                                                 |
| organelle fission                                                                                                                                                                                                            | 28                                    | 10.5                                                | 188                                   | 3.8                              | 8.32E-03                                                 |
| cytoskeleton                                                                                                                                                                                                                 | 36                                    | 13.5                                                | 267                                   | 5.4                              | 8.35E-03                                                 |
| DNA replication                                                                                                                                                                                                              | 20                                    | 7.5                                                 | 130                                   | 2.6                              | 9.45E-03                                                 |
| regulation of biological process                                                                                                                                                                                             | 39                                    | 14.6                                                | 1134                                  | 23.1                             | 9.91E-03                                                 |
| phosphotransferase activity, alcohol group as acceptor                                                                                                                                                                       | 28                                    | 10.5                                                | 169                                   | 3.4                              | 1.22E-02                                                 |
| regulation of cellular metabolic process                                                                                                                                                                                     | 1                                     | 0.4                                                 | 661                                   | 13.5                             | 1.40E-02                                                 |
| fungal-type cell wall biogenesis                                                                                                                                                                                             | 11                                    | 4.1                                                 | 60                                    | 13.5                             | 1.40E-02<br>1.67E-02                                     |
|                                                                                                                                                                                                                              |                                       |                                                     |                                       |                                  |                                                          |
| ATP binding                                                                                                                                                                                                                  | 69                                    | 25.8                                                | 483                                   | 9.8                              | 1.75E-02                                                 |
| nucleotidyltransferase activity                                                                                                                                                                                              | 18                                    | 6.7                                                 | 93                                    | 1.9                              | 1.80E-02                                                 |
| adenyl ribonucleotide binding                                                                                                                                                                                                | 69                                    | 25.8                                                | 485                                   | 9.9                              | 1.94E-02                                                 |
| interphase of mitotic cell cycle                                                                                                                                                                                             | 5                                     | 1.9                                                 | 55                                    | 1.1                              | 2.01E-02                                                 |
| cellular component organization                                                                                                                                                                                              | 45                                    | 16.9                                                | 1196                                  | 24.3                             | 2.36E-02                                                 |
| cellular cell wall organization                                                                                                                                                                                              | 15                                    | 5.6                                                 | 75                                    | 1.5                              | 2.39E-02                                                 |
| cell wall organization                                                                                                                                                                                                       | 15                                    | 5.6                                                 | 75                                    | 1.5                              | 2.39E-02                                                 |
| ATP-dependent helicase activity                                                                                                                                                                                              | 15                                    | 5.6                                                 | 76                                    | 1.5                              | 2.76E-02                                                 |
| external encapsulating structure organization                                                                                                                                                                                | 15                                    | 5.6                                                 | 76                                    | 1.5                              | 2.76E-02                                                 |
| purine NTP-dependent helicase activity                                                                                                                                                                                       | 15                                    | 5.6                                                 | 76                                    | 1.5                              | 2.76E-02                                                 |
| transferase activity                                                                                                                                                                                                         | 76                                    | 28.5                                                | 659                                   | 13.4                             | 2.98E-02                                                 |
| cell wall biogenesis                                                                                                                                                                                                         | 12                                    | 4.5                                                 | 70                                    | 1.4                              | 2.98E-02                                                 |
| nucleic acid binding                                                                                                                                                                                                         | 76                                    | 28.5                                                | 792                                   | 16.1                             | 2.99E-02                                                 |
| ATP-dependent DNA helicase activity                                                                                                                                                                                          | 7                                     | 28.5                                                | 34                                    | 0.7                              | 2.99E-02<br>2.99E-02                                     |
|                                                                                                                                                                                                                              |                                       |                                                     |                                       |                                  |                                                          |
| chromosome segregation                                                                                                                                                                                                       | 25                                    | 9.4                                                 | 187                                   | 3.8                              | 3.05E-02                                                 |
| condensed chromosome                                                                                                                                                                                                         | 13                                    | 4.9                                                 | 91                                    | 1.9                              | 3.25E-02                                                 |
| regulation of metabolic process                                                                                                                                                                                              | 3                                     | 1.1                                                 | 767                                   | 15.6                             | 3.39E-02                                                 |
| nucleoside binding                                                                                                                                                                                                           | 70                                    | 26.2                                                | 526                                   | 10.7                             | 3.77E-02                                                 |
| microtubule                                                                                                                                                                                                                  | 15                                    | 5.6                                                 | 59                                    | 1.2                              | 3.86E-02                                                 |
| transferase activity, transferring hexosyl groups                                                                                                                                                                            | 6                                     | 2.2                                                 | 72                                    | 1.5                              | 3.86E-02                                                 |
| condensed chromosome kinetochore                                                                                                                                                                                             | 8                                     | 3.0                                                 | 60                                    | 1.2                              | 4.62E-02                                                 |
| DNA helicase activity                                                                                                                                                                                                        | 7                                     | 2.6                                                 | 36                                    | 0.7                              | 4.70E-02                                                 |
| regulation of DNA-dependent DNA replication initiation                                                                                                                                                                       | 1                                     | 0.4                                                 | 36                                    | 0.7                              | 4.70E-02                                                 |
| DNA-dependent ATPase activity                                                                                                                                                                                                | 7                                     | 2.6                                                 | 54                                    | 1.1                              | 4.77E-02                                                 |
| hydrolase activity, hydrolyzing O-glycosyl compounds                                                                                                                                                                         | 3                                     | 1.1                                                 | 48                                    | 1.0                              | 4.89E-02                                                 |
| slm9 <b>∆</b>                                                                                                                                                                                                                |                                       |                                                     |                                       |                                  |                                                          |
| ribosome biogenesis                                                                                                                                                                                                          | 40                                    | 48.2                                                | 235                                   | 4.8                              | 7.37E-11                                                 |
| cellular component biogenesis at cellular level                                                                                                                                                                              | 40                                    | 48.2                                                | 338                                   | 6.9                              | 4.25E-10                                                 |
| ribonucleoprotein complex biogenesis                                                                                                                                                                                         | 40                                    | 48.2                                                | 259                                   | 5.3                              | 9.56E-10                                                 |
| ncRNA processing                                                                                                                                                                                                             | 29                                    | 34.9                                                | 246                                   | 5.0                              | 2.30E-09                                                 |
| RNA processing                                                                                                                                                                                                               | 29<br>29                              | 34.9                                                | 169                                   | 3.0                              | 2.30E-09<br>3.02E-09                                     |
|                                                                                                                                                                                                                              |                                       |                                                     |                                       |                                  |                                                          |
| rRNA metabolic process                                                                                                                                                                                                       | 29                                    | 34.9                                                | 170                                   | 3.5                              | 3.02E-09                                                 |
| cellular component biogenesis                                                                                                                                                                                                | 40                                    | 48.2                                                | 610                                   | 12.4                             | 2.73E-08                                                 |
| ncRNA metabolic process                                                                                                                                                                                                      | 29                                    | 34.9                                                | 286                                   | 5.8                              | 1.93E-07                                                 |
| cellular component organization or biogenesis                                                                                                                                                                                | 60                                    | 72.3                                                | 1426                                  | 29.0                             | 1.37E-06                                                 |
| nucleolus                                                                                                                                                                                                                    | 42                                    | 50.6                                                | 320                                   | 6.5                              | 1.64E-06                                                 |
| nuclear lumen                                                                                                                                                                                                                | 42                                    | 50.6                                                | 547                                   | 11.1                             | 5.50E-06                                                 |
| cellular component organization or biogenesis at cellular level                                                                                                                                                              | 60                                    | 72.3                                                | 1346                                  | 27.4                             | 7.23E-06                                                 |
| cell division                                                                                                                                                                                                                | 29                                    | 34.9                                                | 306                                   | 6.2                              | 3.49E-04                                                 |
| RNA processing                                                                                                                                                                                                               | 30                                    | 36.1                                                | 441                                   | 9.0                              | 2.12E-03                                                 |
| nuclear part                                                                                                                                                                                                                 | 42                                    | 50.6                                                | 1084                                  | 22.1                             | 3.41E-03                                                 |
| organelle lumen                                                                                                                                                                                                              | 42                                    | 50.6                                                | 717                                   | 14.6                             | 2.04E-02                                                 |
| ntracellular organelle lumen                                                                                                                                                                                                 | 42                                    | 50.6                                                | 717                                   | 14.6                             | 2.04E-02                                                 |
| RNA metabolic process                                                                                                                                                                                                        | 30                                    | 36.1                                                | 786                                   | 16.0                             | 2.30E-02                                                 |
| mitosis                                                                                                                                                                                                                      | 20                                    | 24.1                                                | 182                                   | 3.7                              | 2.31E-02                                                 |
| M phase of mitotic cell cycle                                                                                                                                                                                                | 20                                    | 24.1                                                | 182                                   | 3.7                              | 2.31E-02<br>2.40E-02                                     |
| nuclear division                                                                                                                                                                                                             | 20<br>20                              | 24.1 24.1                                           | 185                                   | 3.7                              |                                                          |
|                                                                                                                                                                                                                              |                                       |                                                     |                                       |                                  | 2.50E-02                                                 |
| cell septum                                                                                                                                                                                                                  | 2                                     | 2.4                                                 | 239                                   | 4.9                              | 3.14E-02                                                 |
| organelle fission                                                                                                                                                                                                            | 20                                    | 24.1                                                | 188                                   | 3.8                              | 3.21E-02                                                 |
| nembrane-enclosed lumen                                                                                                                                                                                                      | 42                                    | 50.6                                                | 740                                   | 15.1                             | 3.77E-02                                                 |
| hip1 $\Delta$                                                                                                                                                                                                                | _                                     |                                                     |                                       |                                  |                                                          |
| RNA processing                                                                                                                                                                                                               | 21                                    | 40.4                                                | 169                                   | 3.4                              | 9.28E-05                                                 |
|                                                                                                                                                                                                                              | 21                                    | 40.4                                                | 170                                   | 3.5                              | 9.28E-05                                                 |
| rkNA metabolic process                                                                                                                                                                                                       |                                       | 40.4                                                | 246                                   | 5.0                              | 9.28E-05                                                 |
|                                                                                                                                                                                                                              | 21                                    |                                                     | 225                                   | 4.8                              | 9.28E-05                                                 |
| ncRNA processing                                                                                                                                                                                                             | 21<br>27                              | 51.9                                                | 235                                   |                                  | 9.28E-05                                                 |
| ncRNA processing ibosome biogenesis                                                                                                                                                                                          |                                       | 51.9                                                | 338                                   | 6.9                              |                                                          |
| ncRNA processing<br>ibosome biogenesis<br>sellular component biogenesis at cellular level                                                                                                                                    | 27<br>27                              | 51.9<br>51.9                                        | 338                                   | 6.9<br>5.3                       |                                                          |
| rRNA metabolic process<br>ncRNA processing<br>ribosome biogenesis<br>cellular component biogenesis at cellular level<br>ribonucleoprotein complex biogenesis<br>ncRNA metabolic process                                      | 27<br>27<br>27                        | 51.9<br>51.9<br>51.9                                | 338<br>259                            | 5.3                              | 7.00E-04                                                 |
| ncRNA processing<br>ibosome biogenesis<br>cellular component biogenesis at cellular level<br>ibonucleoprotein complex biogenesis<br>ncRNA metabolic process                                                                  | 27<br>27<br>27<br>21                  | 51.9<br>51.9<br>51.9<br>40.4                        | 338<br>259<br>286                     | 5.3<br>5.8                       | 7.00E-04<br>1.65E-03                                     |
| ncRNA processing<br>ribosome biogenesis<br>cellular component biogenesis at cellular level<br>ribonucleoprotein complex biogenesis<br>ncRNA metabolic process<br>cellular component biogenesis                               | 27<br>27<br>27<br>21<br>27            | 51.9<br>51.9<br>51.9<br>40.4<br>51.9                | 338<br>259<br>286<br>610              | 5.3<br>5.8<br>12.4               | 7.00E-04<br>1.65E-03<br>7.76E-03                         |
| ncRNA processing<br>ribosome biogenesis<br>cellular component biogenesis at cellular level<br>ribonucleoprotein complex biogenesis<br>ncRNA metabolic process<br>cellular component biogenesis<br>cell division              | 27<br>27<br>21<br>27<br>22            | 51.9<br>51.9<br>51.9<br>40.4<br>51.9<br>42.3        | 338<br>259<br>286<br>610<br>306       | 5.3<br>5.8<br>12.4<br>6.2        | 7.00E-04<br>1.65E-03<br>7.76E-03<br>1.56E-02             |
| ncRNA processing<br>ribosome biogenesis<br>cellular component biogenesis at cellular level<br>ribonucleoprotein complex biogenesis<br>ncRNA metabolic process<br>cellular component biogenesis<br>cell division<br>cell wall | 27<br>27<br>27<br>21<br>27<br>22<br>4 | 51.9<br>51.9<br>51.9<br>40.4<br>51.9<br>42.3<br>7.7 | 338<br>259<br>286<br>610<br>306<br>58 | 5.3<br>5.8<br>12.4<br>6.2<br>1.2 | 7.00E-04<br>1.65E-03<br>7.76E-03<br>1.56E-02<br>2.50E-02 |
| ncRNA processing<br>ribosome biogenesis<br>cellular component biogenesis at cellular level<br>ribonucleoprotein complex biogenesis<br>ncRNA metabolic process<br>cellular component biogenesis<br>cell division              | 27<br>27<br>21<br>27<br>22            | 51.9<br>51.9<br>51.9<br>40.4<br>51.9<br>42.3        | 338<br>259<br>286<br>610<br>306       | 5.3<br>5.8<br>12.4<br>6.2        | 7.00E-04<br>1.65E-03<br>7.76E-03<br>1.56E-02             |

#### SUPPLEMENTAL EXPERIMENTAL PROCEDURES

#### Chromatin fractionation assay

The chromatin fractionation assay was performed as described previously (S1,S2) with some modifications. Cells ( $5 \times 10^8$  cells) were harvested, suspended in ice-cold STOP buffer (150 mM NaCl, 50 mM NaF, 10 mM EDTA, 1 mM NaN<sub>3</sub>), and placed on ice for 5 min. The cell suspension was spun at 800 g for 1 min at 4°C, and the resulting cell pellet was resuspended in PEMS (100 mM PIPES [pH 6.9], 1 mM EGTA, 1 mM MgSO<sub>4</sub>, 1 M sorbitol) containing 1 mg/ml Lysing enzymes (Sigma) and 1 mg/ml Zymolyase 100T (Seikagaku Corporation). The suspension was incubated at 37°C until almost all the cells were spheroplasted (60-90 min). The cell suspension was spun at 2,300 g for 1 min at 4°C, and the resulting cell pellet was washed three times with ice-cold wash buffer (1 M sorbitol, 25 mM MOPS [pH 7.2]). Then, the cells were resuspended in HBS buffer (25 mM MOPS [pH 7.2], 15 mM MgCl<sub>2</sub>, 15 mM EGTA, 0.4 M sorbitol) containing 1 mM PMSF, 1×Complete (Roche), and 1% Triton X-100, and placed on ice for 5 min. The resulting whole-cell extract was spun at 20,400 g for 15 min at 4°C to obtain the supernatant (soluble fraction) and the pellet. The pellet was washed three times and resuspended in ice-cold digestion buffer (25 mM MOPS [pH 7.2], 15 mM MgCl<sub>2</sub>, 2.5 mM CaCl<sub>2</sub>, 0.4 M sorbitol) containing 1×Complete (Roche), and the suspension was incubated with 1 U/µl MNase for 2 min at 37°C. After centrifugation at 20,400 g for 5 min at 4°C, the pellet was digested once more with MNase as described above and the supernatants were combined (MNase fraction). The pellet was washed once with ice-cold digestion buffer and resuspended in ice-cold extraction buffer (25 mM MOPS [pH 7.2], 10 mM EDTA, 0.4 M sorbitol) containing  $1 \times$ Complete (Roche), and placed on ice for 5 min. Then, the suspension was spun at 20,400 g for 15 min at 4°C to obtain the supernatant (chromatin fraction) and the pellet. The pellet was washed two times with extraction buffer (pellet fraction). Proteins from each fraction were separated by SDS-PAGE and detected by Western blotting.

#### SUPPLEMENTAL REFERENCES

- S1. Ogawa, Y., Takahashi, T., and Masukata, H. (1999) *Mol Cell Biol* 19, 7228-7236
- S2. Sadaie, M., Kawaguchi, R., Ohtani, Y., Arisaka, F., Tanaka, K., Shirahige, K., and Nakayama, J. (2008) *Mol Cell Biol* **28**, 6973-6988