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2 ATSUSHI MORIWAKI

INTRODUCTION

0.1. Classical Dirichlet’s unit theorem. Let K be a number field and let Ok be the
ring of integers in K. Let K(C) be the set of all embeddings K into C, and let Ex
and EY be real vector spaces given by

Z 50 = O}

Bk ={£ e RO | & =&, forallo € K(C)] and By = {5 € By
oeK(C)

respectively. The classical Dirichlet’s unit theorem asserts that the unit group Oy
of Ok is a finitely generated abelian group of rank s = dimg Z%. The most essential
part of the proof of Dirichlet’s unit theorem is to show that Z) is generated by the
image of the map L : O — Eg given by L(u), = log|o(u)| (1 € Of) over RR, that is,
forany ¢ € E?(, there are uy,...,u, € Ogand ay, ..., a, € R such that

(0.1.1) & =mloglo(uy)f + - +a, log|o(u,))

for all o € K(C).

Let us consider this problem in flavor of Arakelov theory. Let X = Spec(Ok) and
let ﬁi;(X)]R be the real vector space consisting of pairs (D, &) of D € Div(X)R :=
Div(X) ®z R and & € Eg. An element of BRI(X)]R is called an arithmetic R-divisor
on X. ForD = (Y papP, &) € SRI(X)R, the arithmetic degree cTeTg(E) of Dis given by

— 1
deg(D) := ZP" aplog #(Ox/P) + 5 Z g,

The arithmetic principal divisor (,x\) for x € K* is defined to be

() = (Z ordp(x)P, cs(x>) :

P
where &(x), = —log|o(x)* for 0 € K(C). As the map (A) KX — ]SR/(X)]R given by
x > (x) is a group homomorphism, we have the natural extension

O 1 K3t = (K*,x) ®2 R > Div(X)g,
that is,

—

PP = ag () + e+ a(x)

—
1 ...x}’

(x

for xi,...,x, € K*and ay,...,a, € R. In particular, deg((x)g) = 0 for all x € K by
the product formula.
If we set 5,5 =(0,¢) for & € E%, then the assertion (0.1.1) is equivalent to show

that o

D + (u)g = (0,0)
for some u € (O¥)r := (Og, X) ®z R. For this purpose, it is actually sufficient to
show that .

D + (¥)g 2 (0,0)
for some x € Ki. Indeed, we choose xi,...,x, € K* and ay,...,a, € R such

that x = x7"---x7" and @, ...,a, are linearly independent over Q. Then, as

5,5 + (/x\)IR > (0,0) and a;g(ﬁg + (/x\)]R) = 0, we have 55 + (/x\)]R = (0,0), and hence
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Y. _ya;ordp(x;) = 0 for all P. Therefore, ordp(x;) = 0 for all i and P, which means
that x; € O for all i. In this way, the classical Dirichlet’s unit theorem can be
formulated in the following way:

Theorem 0.1.2 (cf. Propos1t10n 3.4.5). If deg(D) > 0 for D e DIV(X)]R, then there
exists x € Ki such that D+ (x)]R >(0,0).

This is an application of the compactness theorem (cf. Corollary 3.3.2) and the
arithmetic Riemann-Roch theorem on arithmetic curves, which indicates that the
theory of arithmetic IR-divisors is not an artificial material, but it actually provides
realistic tools for arithmetic problems.

In this paper, we would like to consider a higher dimensional analogue of the
above theorem on arithmetic varieties.

0.2. Arithmetic Cartier divisors. Let X be an arithmetic variety, that is, X is a flat
and quasi-projective integral scheme over Z. We say X is generically smooth if the
generic fiber Xq of X — Spec(Z) is smooth over Q. We assume that X is projective,
generically smooth, normal and d-dimensional (i.e. the Krull dimension of X is d,
so that dim Xg =d - 1).

We denote the group of Cartier divisors on X by Div(X). Let C be a class of real
valued continuous functions. As examples of C, we can consider

C® = the class of continuous functions,
C™ = the class of C™-functions,

C° N PSH = the class of continuous plurisubharmonic functions,

which have good properties as in [20, SubSection 2.3]. Let K be either Z or Q or R.
A pair D = (D, g) is called an arithmetic K-Cartier divisor of C-type if the following
conditions are satisfied:
(i) D is a K-Cartier divisor on X, that is, D = }'_; a;D; for some Dy,...,D, €
Div(X)and ay,...,a, € K.
(ii) g : X(€C) —» R U {+o0} is a locally integrable function and g o F, = g (a.e.),
where Fo, : X(C) — X(C) is the complex conjugation map.
(iii) For any point x € X(C), there are an open neighborhood U, of x and a
function u, on U, such that u, belongs to the class C and

§=Uxt Z(—ﬂi) log|fi* (a.e.)
i=1

on U,, where f; is a local equation of D; over U, for each i.

Let D1VC(X)1K be the set of all arithmetic IK-Cartier divisors of C-type. For sim-

plicity, Divc(X)z is denoted by Dive(X). Note that there are natural surjective
homomorphisms

Divee(X) ®2 R — Diveo(X)g  and  Dives(X) ®2 R — Dives(X)r

and that they are not isomorphisms respectively. For details, see [20].
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Let Rat(X) be the function field of X. The group of arithmetic principal divisors
on X is denoted by @(X), that is,

PDiv(X) = {(¢) = ((¢), — log |¢[*) € Dive=(X) | ¢ € Rat(X)"}.

The homomorphism () : Rat(X)* — Dives(X) given by ¢ — @ has the natural
extension _ .
( )JK . Rat(X);( e Dchoo(X)]K,
that is,
(3" - <P?al) = 611(<P1) + -+ ()

for ¢1,..., ¢ € Rat(X)* and ay,...,a € K. For simplicity, (A)]K is occasionally
denoted by ( ). We define PDIV(X)]K to be

PDiv(X)k = {((p)]K | p € Rat(X)x}.

Note that
PDiv(X)k = <ﬁ)i\v(X)>]K C Dives(X)k.

An element of PDiv(X)x is called an arithmetic K-principal divisor on X.

Let D = (D, g) and D = (D', ¢’) be arithmetic R-Cartier divisors of C’-type on
X. We defineD =D and D < D’ to be

— =

D=D &= D=Dandg=g (ae.)
and

D<D e D<Dandg<g (ae).

Let C be a reduced and irreducible 1-dimensional closed subschemes of X. The
arithmetic degree deg(D| ) of D along C is characterized by the following properties
(for details, see [20, SubSectlon 5.3]):

(1) cTe\g(5| C) is linear with respect to D.
(ii) If p € Rat(X)%, then deg((¢)g )=0.
(iii) If C € Supp(D) and C is vertical, then cTéTg(B| o) = log(p) deg(Dl|c), where C
is contained in the fiber over a prime p.
(iv) If C € Supp(D) and C is horizontal, then deg D| o= deg (DIC, glc) where

C is the normalization of C and deg on the right hand side is the arithmetic

degree in the sense of SubSection 0.1. (Note that C = Spec(Ok) for some
number field K.)

The current dd([g]) + 6p on X(C) is denoted by c; (D). Note that ¢;(D) is locally

equal to dd°([u,]) by the Poincaré-Lelong formula. If Dis of C*-type, then c1(D) is
represented by a C*-form. By abuse of notation, we also denote the C*-form by

c1(D).
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0.3. Arithmetic volume function. Let D = (D, g) be an arithmetic R-Cartier divi-
sor of C-type on X. We define H(X, D) and H(X, D) to be

HY(X, D) := {¢ € Rat(X)* | D + (¢) = 0} U {0}
and

A°(X, D) = {¢ € Rat(X)* | D+ (¢)) > (0,0)} U {0

respectively. Note that H(X, D) is a finitely generated Z-module and H°(X, D)
is a finite set. It is easy to see that |p|exp(—g/2) is represented by a continuous
function 7, for ¢ € H(X, D) (cf. [20, SubSection 2.5] or Lemma 3.1.1), so that we
can define |||, to be
Ipllg == max {ns,4(x) | x € X(C)}.

Then o

A°(X, D) = {¢ € H'(X, D) | Ipll; < 1,
that is, H°(X, D) is the set of small sections.

The arithmetic volume ;(;1(5) of D is defined to be

— ' log #H°(X, nD)
vol(D) := lim sup 7l

As fundamental properties of vol, the following are known (for details, see [20]):
(1) vol(D) < oo ([17], [18]).  _
— — . log(#H°(X,nD))
(2) vol(D) = hmcr}o ) ([5], [18]).
(3) Vol(aD) =a Vol(D) fora € Ry ([17], [18])
(4) The function DIVCO (X)R - R glven by D - Vol(D) is continuous in the

following sense: Let Di,...,D, A;,..., A be arithmetic R-divisors of C°-
type on X. For a compact subset Bin IRr and a positive number ¢, there are
positive numbers 6 and 6’ such that

- Vol (Z )

@[Za[) +26A +(0, )
i=1

i=1

<e€

for all al,...,ar,él,...,és € Rand ¢ € CO(X) with (a1,...,a,) €B, |01+ +
105 < 6 and [|Pllswp < 0" ([17], [18]).
(6) If f : Y — X is a birational morphism of generically smooth, normal and

projective arithmetic varieties, then vol(f *(D)) = vol(D) ([17]).

0.4. Positivity of arithmetic Cartier divisors. Let D = (D, g) be an arithmetic
R-Cartier divisor of C’-type on X. Here we would like to introduce several kinds

of positivity of D, that is, the effectivity, bigness, pseudo-effectivity, nefness and
relative nefness of D:

e D is effective & D> 0,0).
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o Dis big <% vol(D) > 0.

o D is pseudo-effective & D+ Ais big for any big arithmetic R-divisor A of
C-type.

o D is nef &L

(1) deg(D| ) = 0 for all reduced and irreducible 1-dimensional closed sub-

schemes C of X.
(2) c1(D) is a positive current.

e Dis relatively nef &L

sub_schemes C of X, where “vertical” means “not flat over Z”.
(2) c1(D) is a positive current.

The set of all nef arithmetic R-Cartier divisors of C’-type on X is denoted by
Nefco (X)r- Note that Nefco (X)r forms a cone in DIVCO (X)r-

0.5. Arithmetic intersection number in terms of the arithmetic volume. An
arithmetic R-Cartier divisor D of C'-type on X is said to be integrable if there exist

nef arithmetic R-Cartier divisors D; and D, of C%-type such that D = D; — D,.
The subspace Consisting of integrable arithmetic R-Cartier divisors of C’-type on
X is denoted by DIVCO (X)]R Note that DIVCO (X)R is the subspace generated by
Nefco (X)r in DIVCO (X)Rr.

By [20, Claim 6.4.2.2], if P is a nef arithmetic R-Cartier divisor of C*-type, then
the arithmetic Hilbert-Samuel formula

(0.5.1) vol(P) = deg(P)
holds. Note that
dXi-Xg= ) (=1 #(D(ZX)
O£IC(1,....d) iel

in the polynomial ring Z[X;, ..., X,]. Thus, for nef arithmetic IR-Cartier divisors
Py,...,P;of C*-type, we have

— 1 — —
deg(Pr---P) =2 Y. (<1"vol (Z pi],
" 0#IC(l,...d) iel
so that, for Dy, ...,D; € 1\/Ie\fco (X)R, it is very natural to define (Te?g(ﬁl .--Dy) to be
— 1 — —
deg(Dy -+ D) = ~ Z (1) Dol (Z Dl-) :
" p£ICi,...d) iel

Using the regularity of quasiplurisubharmonic f functions and the continuity of

Vol we can see that the above map deg( ) Nefco (X)Rr X -+ X Nefco (X)r = Ris
R o-multilinear, that is,

deg(D; ---(aD; + &’'D,)---Dy) = adeg(D; -+ D; -+ Dy) + o’deg(D; - D, - -- D)
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for a, a’ € Ry (for details, see [20, Claim 6.4.2.4]). Therefore, the map
deg(- ) : Nefoo(X)g X - - - X Nefoo (X)r — R

extends uniquely to an R-multilinear map

—_— ——Nef ——Nef
deg(---) : Dive (X)r X+ X Diva (X)r = R.

In SubSection 2.1, we will see that the above arithmetic intersection number

deg(ﬁl e 5d) for integrable arithmetic IR-Cartier divisors Dy,...,Dyof C%-type on
X coincides with one due to Zhang ([24, Lemma 6.5], [25, §1]) and Maillot ([13,

§5]).

0.6. Zariski decomposition. Let D = (D, g) be an arithmetic R-Cartier divisor of
C%-type on X. Let us consider the following set:

Y(D) := {M € Nefw(X)x | M < D}.

If T(D) # 0 and Y(D) has the greatest element P (that is, P € Y(D) and M < P
for all M € Y(D)), then D = P + N is called the Zariski decomposition of D, where
N := D — P. This decomposition has the following properties:

(1) Pis nef and N is effective.
(2) The natural map H°(X,nP) — H°(X,nD) is bijective for every n > 0. In
particular, \751(5) = \751(?) = ae\g(l_’d).
In [20, Theorem 9.2.1], we prove that if X is a regular projective arithmetic surface
and Y(D) # 0, then Y(D) has the greatest element. Moreover, if we set

X =Pl = Proj(Z[T, ..., T,)) (n>2),
D :={T, =0},
=log(1 +|T1/Tol* + -+ +|Tu/Tol?) —€ (0 < e <log(n+1)),

then, in [21, Theorem 2.3, Theorem 5.6], we prove that D is big and f*(D) does
not admit the Zariski decomposition for any birational morphism f : ¥ — X of
generically smooth, normal and projective arithmetic varieties. More generally, a
criterion for the existence of the Zariski decomposition on arithmetic toric varieties
is known (for details, see [3]).

It is easy to see that if Y(D) # 0, then D is pseudo-effective. The converse is a
very interesting question and it is closely related to the fundamental question in
the next subsection.

0.7. Fundamental question. Let D = (D, g) be an arithmetic R-Cartier divisor of
C%-type on X. In this paper, we would like to propose the following fundamental
question:

Fundamental question. Are the following conditions (1) and (2) equivalent ?

(1) Dis pseudo -effective.
) D + ((p)]R is effective for some ¢ € Rat(X)y.
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Obviously (2) implies (1). Moreover, if H°(X, aD) # {0} for some a € R, then
(2) holds. Indeed, as we can choose ¢ € Rat(X)* with aD + (¢) = 0, we have

¢'/" € Rat(X)y and D + (W)]R > 0. In the geometric case, (1) does not necessarily
imply (2). For example, let 9 be a divisor on a compact Riemann surface M such
that deg(9) = 0 and the class of 9 in Pic(M) is not a torsion element. Then it is
easy to see that 9 is pseudo-effective and there is no element y» of Rat(M)* ®z R
such that 3 + (y)r is effective (cf. Remark 3.1.4). In this sense, the above question
is a purely arithmetic problem.

Note that Theorem 0.1.2 yields the answer in the case where d = 1 because
the pseudo-effectivity of D implies deg(D) > 0. Moreover, as we remarked in

SubSection 0.6, if thereis ¢ € Rat(X)y such that D+ ((?)112 > (0,0), then —((?)]R e Y(D).

0.8. Partial answer to the fundamental question. One of the main purpose of this
paper is to give the following partial answer to the above fundamental question:

Theorem 0.8.1. If D is pseudo-effective and D is numerically trivial on Xq, then there
exists ¢ € Rat(X)y such that D+ (@)g is effective.

Here we would like to give a sketch of the proof of the above theorem. For
simplicity, we restrict ourself to the case where X is regular and d = 2, thatis, X is
a regular projective arithmetic surface. In this case, we can give a simpler proof
than the original one by using the recent result on the existence of relative Zariski

decomposition. Let D = Q + N be the relative Zariski decomposition of D (for
details , see [22, Section 1]). In particular, we have the following properties:
(i) N is effective and N is vertical.
(i) Qis relatively nef.
(iii) If D is pseudo-effective, then Q is also pseudo-effective (cf. [22, Proposi-
tion A.1]). This part corresponds to Lemma 2.3.5 in the original proof.

Therefore, we may assume that D is relatively nef. By the Hodge index theorem
(cf. Theorem 2.2.3), we have deg(ﬁz) < 0. Here we assume that deg(ﬁz) < 0. Let

Abe an ample arithmetic R-divisor of C*-type on X. Then cTe\g(B +€eA-D) < 0 for
a sufficiently small positive number €. As D + €A is ample, we can find a positive

number ¢ such that D + €A + (0, ¢) is nef. In particular,
deg(D + €A + (0,c)- D) > 0
because D is pseudo-effective. On the other hand, as deg(Dg) = 0,

deg(D + €A + (0,c) - D) = deg(D + €A - D) + %deg(DQ) = deg(D + €A - D) < 0.

This is a contradiction, so that (Te\g(52) = 0, and hence, by the equality condition
of the Hodge index theorem (cf. Remark 2.2.4), there are ¢» € Rat(X); and a locally
constant function A on X(C) such that D = (p)g + (0,A). Let X — Spec(Ok) be
the Stein factorization of X — Spec(Z), where K is a number field and Ok is the
ring of integers in K. Let X;; be the connected component of X(C) corresponding
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to 0 € K(C) (cf. Conventions and terminology 3). We set A, = Alx . As D is
pseudo-effective,

A
0< deg(A D) eg( ) Z As,
so that }. A, > 0. If we set

, 1
Y= e g

for each o0 and we consider a locally constant function A’ : X(C) — R given by
M, = AL, then A’ < A on X(C) and ), A, = 0. Thus, by the classical Dirichlet’s

unit theorem, there exists u € (O¥)r such that (0, ") = (/u\)]R. Thus

D= @R+(O,/\) > @R+(O,A’) = (/@IR+(/J)]R = (@)]R,

as required.

0.9. Further discussions. Theorem 0.8.1 treats only the case where D is scanty.
For example, if D is ample, the problem seems to be difficult to get a solution.
For this purpose, we would like introduce a notion of multiplicative generators
of approximately smallest sections.

Here we define I'3 (X, D) to be

Tx(X, D) := {p € Rat(X)5 | D + () 2 0.

Let £ : Rat(X)* — L, (X(C)) be a homomorphism given by ¢ - log |¢|. It extends
to a linear map (g : Rat(X)$ — LI (X(C)). For ¢ € Rat(X)y, we denote exp({r(¢))

loc

by |p|. If ¢ € I'x(X, D), then |¢| exp(—g/2) is represented by a continuous function
Ng,g (cf. Lemma 3.1.1), so that we define [|¢||ysup to be
pllgup = max {1p,5(x) | x € X(C)}.

Let ¢y, ..., @, be elements of Rat(X)y. We say ¢, ..., @, are multiplicative genera-
tors of approximately smallest sections for D if, for a given € > 0, there is 1y € Z.., such
that, for any integer n with n > ny and H°(X,nD) # {0}, we can find ay,...,4; € R
satisfying @7" --- @ € I'i(X,nD) and

13 - @ llng sup < € min {lIllngeup | ¢ € H(X, nD) \ {0}}.

The advantage of the existence of multiplicative generators of approximately
smallest sections is the following theorem.

Theorem 0.9.1 (cf. Theorem 3.6.3). If we admit the existence of multiplicative genera-
tors of approximately smallest sections, then we can find ¢ € I'y(X, D) such that

1@llgsup = inf {I[¢llgsup | ¢ € TR(X, D)}

For the proof, we need the following compactness theorem.

Theorem 0.9.2. Let H be an ample arithmetic R-Cartier divisor on X. Let A be a finite set
and let {BA}AEA be a family of arithmetic R-Cartier divisors of C*-type with the following
properties:
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(i) deg(@ ' -Dy) =0 forall A € A.
(i) For each A € A, there is an Fu-invariant locally constant function p, on X(C)
such that
c1(Dy) A er(H)M* = paer(H)"

(iii) {BA}MA is linearly independent in ISi;CM (X)R-

Then the set
{a eR” D+ ZaAﬁA > 0}

AEA
is convex and compact for D € Diveo(X)r.

As a consequence, we have the following partial answer to the fundamental
question.

Theorem 0.9.3. If D is pseudo-effective, D is big on the generic fiber of X — Spec(Z)
and D possesses multiplicative generators of approximately smallest sections, then there
exists ¢ € Rat(X)y such that D+ (@) = 0.

Here we would like to give the following question:

Question 0.9.4. If D is big on the generic fiber of X — Spec(Z), then does D have
multiplicative generators of approximately smallest sections ?

For example, if d = 0, then D has multiplicative generators of approximately
smallest sections (cf. Corollary 3.4.6). Moreover, if

X =P =Proj(Z[Ty,..., T,]) (n=1),
D :={To =0},
g:= lOg(ﬁlo + allTl/Tolz + e+ Elann/Tolz) ((10,611, oo, 0, € ]R>0),

then D has also multiplicative generators of approximately smallest sections (cf.
Example 3.6.8). More generally, a toric arithmetic R-Cartier divisor on an arith-
metic toric variety has multiplicative generators of approximately smallest sec-
tions (for details, see [3]).

Finally I would like to express thanks to the referee for giving me several
comments and remarks.

0.10. Conventions and terminology. We basically use the same notation as in
[20]. Here we fix several conventions and the terminology of this paper. Let K be
either Q or R. Moreover, in the following 3 and 4, X is a d-dimensional, generically
smooth, normal and projective arithmetic variety.

1. Let M be a k-equidimensional complex manifold. The space of real valued
continuous functions (reps C*-functions) on M is denoted by C°(M) (resp C*(M)).
Moreover, the space of currents of bidegree (p, q) is denoted by D*7(M). Let N*1(M)
be the space of currents T of bidegree (p, q) such that T(n) = 0 for all d-closed C*
(k — p, k — g)-forms with compact support.
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2. Let S be a normal and integral noetherian scheme. We denote the group of
Cartier divisors (resp. Weil divisors) on S by Div(S) (resp. WDiv(5)). We set

Div(S)k := Div(S) ®2 K and WDiv(S)k := WDiv(S) ®z K.

An element of Div(S)k (resp. WDiv(S)k) is called a KK-Cartier divisor (resp. K-Weil
divisor) on S. We denote the group of principal divisors on S by PDiv(S). Let
Rat(S)g := Rat(S5)* ®z K, that is,
Rat(S)x = { o --(j)‘lg’”l | p1,..., ¢ € Rat(S)* and ay, ..., a; € ]K}.
The homomorphism Rat(S)* — Div(S) given by ¢ +— (¢) naturally extends to a
homomorphism
()x : Rat(S)g — Div(S)k,

ie. (ql)éf’“1 e q);@“l ) = a1(¢p1) + - - - +ai(¢r). By abuse of notation, we sometimes denote

()k by (). We define PDiv(S)k to be

PDiv(S)x = {(¢)x | ¢ € Rat(S)}-

Note that
PDiv(S)k := (PDiv(S))x € Div(S)k.

An element of PDiv(S)x is called a K-principal divisor on S.

3. Let X 5 Spec(Ox) — Spec(Z) be the Stein factorization of X — Spec(Z),
where K is a number field and Ok is the ring of integers in K. We denote by K(C)
the set of all embedding of K into C. For ¢ € K(C), we set X,; := X XgpeC(OK) Spec(C),
pec(0) MNEANS the fiber product over Spec(Ok) with respect to 0. Then
{Xs}sek(c) gives rise to the set of all connected components of X(C). For a locally
constant function A on X(C) and ¢ € K(C), the value of A on the connected
component X, is denoted by A,. Clearly the set of all locally constant real valued
functions on X(C) can be identified with RX©. The complex conjugation map
X(C) — X(C) is denoted by F.. Note that Fo.(X,) = X;.

where X¢

4. An arithmetic IK-Weil divisor of CO-type (resp. C®-type) on X is a pair D = (D, g)
consisting of a IK-Weil divisor D on X and a D-Green function g of C’-type (resp.
C*-type). We denote the group of arithmetic K-Weil divisors of C’-type (resp. of

C®-type) on X by WDive (X)k (resp. WDives(X)k). It is easy to see that there is a
unique multi-linear form

— d-1
a: (Dives(X)x)  x WDiv(X)x > R

such that a(Bl, .. .,Bd_l,T) = (Te\g(ﬁlif- . Bd_1|f) for Dy,..., Dy € [/)i;cm(X) and
a prime divisor I' with I' ¢ Supp(D;) U --- U Supp(D,-1), where T is the nor-
malization of . We denote a(Bl, . ..,Bd_l,D) by cTe\g(Bl e Dy_q - (D, 0)). Fur-
ther, for 51,---,5;1—1 € ISi\VCm(X)]K and D = (D,g) € V\TI)\iVCO(X)lK, we define
cTe\g(Bl c+Dyq - 5) to be

— 1 _ _
deg(D; -+ D41 - D) := deg(D1 -+~ Da-1 - (D, 0)) + 5 f gc1(D1) A+ -+ A c1(Dg-1).
X(©)
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5. Foraset A, let R* be the set of all maps from A to IR. The vector space generated
by A over R is denoted by R(A), that is,

R(A) = {a € R* | a(1) = 0 except finitely many A € A}.
Fora € R* and A € A, we often denote a(1) by a;.

6. Let V be a vector space over R and let {(, ) be an inner product on V. For a
tinite subset {x1, ..., x,} of V, we define vol({xy, ..., x,}) to be the square root of the
Gramian of xy, ..., x, with respect to (, ), that s,

(i, x1) (x1,x2) -0+ {x1,Xp)
vol(lx, ..., x)) = | det| 17 (X))
<xr1x1> <xr1x2> <xr1xr>

For convenience, we set vol()) = 1. Note that if V = R" and (, ) is the standard
inner product, then vol({xy, ..., x,}) is the volume of the parallelotope given by
a1+ +a,x,10<a;<1,...,0<a, <1}.

1. PRELIMINARIES

In this section, we prepare several materials for later sections. In SubSection 1.1,
we consider elementary results on linear algebra. In Subsection 1.2, we introduce
the notion of proper currents and investigate several properties, which will be
used to see that the arithmetic intersection number treated in [20, SubSection 6.4]
coincides with the classical one due to Zhang and Maillot (cf. [24], [25], [13]).
They will be also used to establish the equality condition of the arithmetic Hodge
index theorem in a general context. SubSection 1.3 is devoted to the proof of a
variant of Gromov’s inequality for R-Cartier divisors.

1.1. Lemmas of linear algebra. Here we would like to provide the following four
lemmas of linear algebra.

Lemma 1.1.1. Let M be a Z-module. Then we have the following:

(1) Forx e M®z R, there are x1,...,x, € M and ay,...,a; € R such that a4, ...,aq
are linearly independent over Qand x = x1 ®a; +--- + x;®a.

(2) Let x1,...,x € Mand ay,...,a € Rsuch that ay, ..., a; are linearly independent
over Q. If x1®a1+---+x®a, = 0in M®z R, then x4, ..., x; are torsion elements
in M.

(3) If N is a submodule of M, then (M ®z Q) N (N ®z R) = N ®z Q.

Proof. (1) As x € M ®z R, there are a,...,a, € R and x/,...,x; € M such that
x =x;®a;+ - +x,®a,. Letay,..., a be a basis of a3,...,a;)q over Q. Then
there are ¢; € Q such that 2] = Z;Zl cija;. Replacing a; by a;/n (n € Z.) if
necessarily, we may assume thatc;; € Z. If wesetx; = Yo cijx;, thenxy, ..., x; € M,
X=x1®a;+---+x®as;and ay, ..., as are linearly independent over Q.

(2) We set M’ = Zxy + --- + Zx;. Then, since R is flat over Z, the natural ho-
momorphism M’ ® R — M ® R is injective, and hence we may assume that M is
finitely generated. Let M, be the set of all torsion elements in M. Considering
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M/M,,,, we may further assume that M is free. Note that the natural homomor-
phism Za;, @ - -- ® Za; — R is injective. Thus M ®z (Za; © - -- © Za;)) - M ®z R is
also injective because M is flat over Z. Namely,

M@z Za)®--- &Mz Za) > M®z R

is injective. Therefore, x; ®a; = --- = x;®a; = 0. Thus x; = --- = x; = 0 because the
homomorphism M — M ® R given by x = x ® g; is also injective for each i.

(3) It actually follows from [19, Lemma 1.1.3]. For reader’s convenience, we con-
tinue its proof in an elementary way. Let us consider the following commutative
diagram:

0 — N®zQ —> M®z,Q —— (M/N)®;Q —> 0

o Jeo
0 —> NezR —%5 M@z R —=5 (M/N)®z R —— 0

Note that horizontal sequences are exact and vertical homomorphisms are injec-
tive. Therefore, we have

(M®z Q) N (N &z R) = Ker(gg o tn) = Ker(tyyy 0 00) = Ker(gg) = N ®2 Q.
O

Lemma 1.1.2. Let V be a finite dimensional vector space over R and let {, ) be an inner
product on V. Let ¥. be a non-empty finite subset of V and x € X. Let h be the distance
between x and (X \ {x})r (note that (D)r = {0}). Then we have the following (for the
definition of vol(X), see Conventions and terminology 6):
(1) vol(X) = vol(X \ {x})h.
(2) vol(X) < vol(X \ {x}) V(x,x). In the case where ¥. \ {x} consists of linearly
independent vectors, the equality holds if and only if x is orthogonal to (X \ {x})r.
(3) We assume that L.\ {x} consists of linearly independent vectors and x # 0. If O is
the angle between x and (. \ {x})r, then

vol(X)
V{x, x) vol(Z\ {x})

Proof. (1) If #(£) = 1, then the assertion is obvious, so that we may set X =
{x1,...,x,}, where x; = x and n = #(X) > 2. If x,,...,x, are linearly dependent,
then vol(X) = vol(X \ {x1}) = 0. Thus the assertion is also obvious for this case.
Moreover, if x; € (xp,...,x,)r, then h = vol(£) = 0. Thus we may assume that
X1,X2,...,X, are linearly independent. Let {e;, e, ..., e} be an orthonormal basis
of (x1,xz,...,x,)r such that {e,, ..., e} yields an orthonormal basis of (x,...,x)r.
We set x; = Z;zl aiej. Then h = |ay;| and ay = 0 for i = 2,...,r. Further, if we set
A = @)rzijer and A’ = (@)2i =, then vol(Z) = | det(A)] and vol(£\ fx1}) = | det(A").
Thus the assertion follows.

(2) and (3) follow from (1). O

= sin(0).

Lemma 1.1.3. Let V be a vector space over R and let {, ) : VXV — IR be a negative
semi-definite symmetric bi-linear form, that is, (v,v) < 0 for allv € V. For x € V, the
following are equivalent:

(1) {x,x)=0.
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(2) <x,y)=0forallye V.

Proof. Clearly (2) implies (1). We assume (x,x) = 0 and (x, y) # 0 for some y € V.
First of all,

0>(y+tx,y+tx)y =y, y)+2t{x, y)
for all t € R. Thus, if we set t = —(y, y)/{x, y), then the above implies (y,y) > 0,
and hence (y, y) = 0. Therefore, if we set t = (x, y)/2, then we have (x,y)* < 0,
which is a contradiction because (x, y) # 0. O

Lemma 1.1.4 (Zariski’s lemma for vector spaces). Let K be either Q or R. Let V be a
finite dimensional vector space over K, and let Q : V X V — R be a symmetric bi-linear
form. We assume that there are e € V and generators ey, ..., e, of V with the following
properties:
(i) e =ame; +--- +aye, for someay, ..., a, € K.
(i) Q(e,e;) <0 for all i.
(iii) Q(ei,e;) =0 foralli# j.
(iv) Ifweset S = {(i, j) | i # j and Q(e;, e;) > 0}, then, for any i # j, there is a sequence
i1,..., g suchthatiy =1i,i = j,and (i, ip11) € S forall 1 <t < 1.
Then we have the following:
(1) If Q(e,e;) < O for some i, then Q is negative definite, that is, Q(x,x) < 0 for all
x € V,and Q(x,x) = 0 if and only if x = 0.
(2) If Q(e, e;) = 0 for all i, then Q is negative semi-definite and its kernel is Ke, that
is, Q(x,x) < 0 forall x € V, and Q(x,x) = 0 if and only if x € Ke.

Proof. Replacing e; by ae;, we may assume that a; = --- = g, = 1. If we set
X = x161 + -+ + x,e, for some xy,...,x, € K, then we can show
Qe x) =Y Qe 0) = Y (xi - x)Qleise)).
i i<j

Thus our assertions follow from easy observations. m|

1.2. Proper currents and admissible continuous functions. Throughout this
subsection, we fix a k-equidimensional complex manifold M. A current of bidegree
(I, 1) on M is said to be proper if, for any x € M, there are an open neighborhood U, of
x and d-closed positive currents Ty, T, of bidegree (/,I) on U, such that T = T; - T;
over U,. We denote the space of proper currents of bidegree (/,]) by Di;lr(M). Asa
proper current is of order 0, for f € C°/(M) and T € Di;lr(M), we define the wedge
product dd°([f]) A T of dd°([f]) and T to be

dd([f) AT := dd“(FT),
thatis, (dd°([f]) A T)(n) = T(fdd“(n)) for a C*-form n of bidegree (k—1-1,k—1-1).
It is easy to see that the map

CO(M) % Di;lr(M) BN Dl+1,l+1(M)

given by (f, T) = dd°([f]) A T is multi-linear.

A continuous function f : M — IR is said to be admissible if, for any point
x € M, there are an open neighborhood U, of x and continuous plurisubharmonic
functions ¢1, ¢, on U, such that f = ¢; — ¢, over U,. Note that dd([f]) is a proper
current of bidegree (1,1). The space of admissible continuous functions on M is
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denoted by Cg 4(M). It is easy to see that C*(M) C Cg 4(M) (cf. the proof of (3) in

Lemma 1.2.1). Moreover, let B;g (M) be the space of currents T of bidegree (1,1)
such that T = dd“([¢]) locally for some admissible continuous function ¢ on each
local open neighborhood. As a d-closed positive C*-form of bidegree (1,1) can
be locally written as dd°(C*-function) (cf. [7, Chapter 3, (1.18)]), any d-closed real
C*-form of bidegree (1,1) on M belongs to Bi’dl(M).

An upper semicontinuous function f : M — R U {—c0} is called a quasiplurisub-
harmonic function on M if f is locally a sum of a plurisubharmonic function and a
C*-function. We denote the space of all continuous quasiplurisubharmonic func-
tions on M by (C° N QPSH)(M). Clearly (C® N QPSH)(M) < C?, (M). The subspace
generated by (C° N QPSH)(M) in C?, (M) is denoted by ((C° N QPSH)(M))g. For a
real continuous form «a of bidegree (1, 1), we define Cg 4 a) to be

CO(M;a) = {f € COy(M) | dd*([f]) + o 2 0}

Note that C?,(M; a) € (C° N QPSH)(M) (cf. the proof of (3) in Lemma 1.2.1). Let
us begin with the following lemma.

Lemma121. (1) IfA € BY(X) and T € Dy(X), then AN T € D" (X). More-
over, if A and T are positive, then A A T is also positive.
(2) For Ay,..., A, € BX1(M) and T € Dy (M), the wedge product

ad
Al/\"'/\Ar/\T

of currents Ay, ..., A, and T is defined inductively as an element of D;J;I’HZ(M) by
using (1), that is,

/11 AN "/\14¢ AT = /41 f\(ZQZ JANEE /\14¢ ﬁ\]h)
Then the map BY (M) — D" (M) given by
(A A) > Ay A AAAT

is multi-linear and symmetric.
(3) Let a be a real continuous form of bidegree (1,1). Let {f1,}2, ..., {frn}e, be

n=1’/
sequences in C? (M;a) such that {f;,}, converges locally uniformly to f; €

Cg M @) for each i. Then, for T € Di;lr(M), a sequence
{fradd (Lfonl) A+ Add([fru]) ATH

converges weakly to
Add (LD A - Add [/ AT.

Proof. (1) This is a local question, so that we may assume that there are continuous
plurisubharmonic functions ¢, ¢, and d-closed positive currents T3, T, such that
A =dd([¢1]) — dd*([¢p2]) and T = Ty — T». Therefore,

ANT = (dd(($]) A Ty + dd* (o)) A To) — (dd“([p1]) A T + dd* () A T:),
as required. The second assertion is obvious.

(2) The multi-linearity of Bij(M)r - D;l’”l (M) is obvious. For symmetry, it is
sufficient to see that following claim:
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Claim 1.2.1.1. Let f and g be continuous plurisubharmonic functions on M and let T be
a proper current on M. Then dd*([f]) A dd°([g]) A T = dd°([g]) A dd°([f]) A T.

Proof. If f is C*, then, for a C*-form 1),

(dd*(f) A dd“([g]) A T)(n) = (dd“([g]) A T)(dd"(f) A n) = T(gdd"(dd*(f) A 1))
= T(gdd"(f) A dd“(n)) = (dd"(f) A T)(gdd"(m)) = (dd*([g]) A dd"(f) A T)(n).
Otherwise, as the question is a local problem, we can find a sequence of C*
plurisubharmonic functions {f,} such that {f,} converges locally uniformly to
f. Then {dd°(f,) A dd°([g]) A T} and {dd°([g]) A dd°(f.) A T} converge weakly to
ad*([f1) A dd°([g]) A T and dd°([g]) A dd°([f]) A T respectively (cf. [7, Corollary 3.6
in Chapter 3]), and hence the assertion follows. m|

(3) This is also a local question. For x € M, let us consider a local coordinate
(z1,...,2) over an open neighborhood U, of x. As dd“(log(1 + |z1]* + - - - + |z[?)) is
a positive form, shrinking U, if necessarily, we can find A > 0 such that

Add (log(1 + P+ + zd?) > a

over U,. Thus, if we set ) = Alog(1+|z1*+- - - +|z[?), then fi+, g+, fin +1 and
Qin + P are continuous and plurisubharmonic over U, for all i and n. Therefore,
(3) is a consequence of the convergence theorem for plurisubharmonic functions
(cf. [7, Corollary 3.6 in Chapter 3]). |

Next we consider the following lemma.

Lemma 1.2.2. We assume that M is compact.
(1) Let a be a positive continuous form of bidegree (1,1). If f € (C° N QPSH)(M),
then there is a positive number to such that f € C°(M; ta) for all t > t,.
(2) For f, g € ((C° N QPSH)(M))g and T € Dy (M),

fdd([g) AT = gdd*([f) AT mod N1 (M)

(for the definition of N*VI*1(M), see Conventions and terminology 1).
(3) Let T be a d-closed positive current of bidegree (k — 1,k — 1). Then

fM Q) AT <0
for f € {(C° N QPSH)(M)).

Proof. (1) For each point x € M, there are an open neighborhood U, of x, a plurisub-
harmonic function p, on U, and a C*-function g, on U, such that f = p, + g, over
U,. If we consider a smaller U,, then we can write a and dd*(g,) as follows:

a = \/—_12 ai]‘dZi AN dZ]' and ddc(qx) = \/—_12‘31‘]'6121' A de,
ij ij

where (zy,...,2) is a local coordinate on U,. As (a;;(x)) is a positive definite
hermitian matrix, we can find a positive number s, such that s.(8;;(x)) + (a;;(x))
is positive. Note that s.(8;;) + (@;;) is continuous on U,. Thus, shrinking U, if
necessarily, sy(B;j) + (a;j) is positive on Uy, and hence, for t > t, := 1/s,,

dde(g,) + ta = (t — ty)a + t(s,dd(q,) + @) = 0
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on U,. Because of the compactness of X, there are finitely many x;, ..., x, € X with
X =U, U---UlU,,. If wesetty=maxity,..., Xy}, then, fort > t,,

dd*([f]) + ta = dd“([px]) + (dd"(qx,) + tev)
is positive over U,,, as required.

(2) By our assumption, there are fi, f>, g1, g2 € (C° N QPSH)(M) such that f =
fi — foand ¢ = g1 — g». Therefore, we may assume that f, ¢ € (C° N QPSH)(M). If
f is C*, then, for a d-closed C*-form 1) of bidegree (k =1 -1,k —-1-1),

(fdd“([g]) A T)(n) = T(gdd"(fn)) = T(gdd"(f) A n) = (gdd*(f) A T)(n).
Otherwise, by (1), we can take a positive C*-form a of bidegree (1,1) with f €
Cg 4(X;a). Thus, by [1] or [20, Lemma 4.2], we can find a sequence of C*-functions
{fu} in Cg 4(M; a) such that {f,} converges uniformly to f. Therefore, by (3) in
Lemma 1.2.1,

fudd([SD AT and gdd“(f,)) AT
converges weakly to fdd‘([g]) A T and gdd“([f]) A T respectively. Thus (2) follows
from the case where f is C™.

(3) First we assume f is C*. Then, as
(S sa00) = Lhatp ndep + s

i
and T is d-closed, we have
=0 =0 N= C
0 = ~on| S50 = (oS00 ) = T[S e0 n a0 + T
i 21 27
Note that
N= T
T(78(f) A 8(f)) > 0.
Thus we have the assertion in the case where f is C*.
In general, by using (1), we can find continuous functions g,# on M and a
positive C*-form a such that g,h € Cg 4M;a) and f = ¢ — h. Thus, by [1] or [20,

Lemma 4.2], there are sequences {g,}>", and {h,} ", of C*-functions on M such
that g, h, € C0,(M; ) for all n > 1 and

111—{?0 ”gn - g”sup = 7111_)]3; ”hn - h”sup =0.

Then, by (3) in Lemma 1.2.1, a sequence {(g, — h,)dd°(g, — h,) A T} of currents
converge weakly to (g — h)dd([g — h]) AT = fdd°([f]) A T. Thus, (3) follows from
the previous case. |

From now on, we assume that M is compact and Kéahler. Let T be a d-closed
positive current of bidegree (k—1,k—1). For f, g € Cg 4(M), we define Ir(f, g) to be

I(f,g) = fM FAEQE) AT,

which will be used to see the equality condition of the Hodge index theorem (cf.
Theorem 2.2.3 and Theorem 2.2.5). Then we have the following proposition.
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Proposition 1.2.3. Ir is a symmetric and negative semidefinite bi-linear form on
((C° N QPSH)(M))w,

that is, the following properties are satisfied:

(1) Ir(af +bf’, g) = alr(f, g) + bIr(f’, §) and Ir(f,ag + bg’') = alr(f, g) + bIr(f, &)

hold for all f, f',g,8 € C (M) and a,b € R.

(2) Ir(f,) = Ir(3, f) for all £, g € (C° N QPSH)(M))x.

(3) Ir(f, f) < 0 for all f € {(C° N QPSH)(M))x.
Moreover, let Ay, ..., A1 € B;Q(M) and let w be a Kihler form of M. We assume that,
foreachi=1,...,k—1, thereis €; € Rog with A; > €iw . If T = Ay A -+ N Ax—q, then

Ir(f,f)=0 <= fisaconstant.

Proof. (1) is obvious. (2) follows from (2) in Lemma 1.2.2. (3) is a consequence
of (3) in Lemma 1.2.2. Finally we consider the last assertion. Clearly if f is a
constant, then Ir(f, f) = 0. We set

T = (e]'A) A+ A€ A1) = (€1 €)'

Then, as ei‘lAi — w is positive, by (1) in Lemma 1.2.1, there is a d-closed positive
current T” of bidegree (k — 1,k — 1) such that T" = @*"! + T”. In particular, by (3),

IT’(flf) < Ia)k’l(f/f) <0
for f € ((C° N QPSH)(M))r. Note that we can define a Laplacian O, by the
equation:
—dd°(f) A = O, (f)*  (f € CO(M)).

Let us see that O, is elliptic. This is a local question. Let 03, ..., 6k be a local
orthonormal frame of the holomorphic cotangent bundle (), with respect to the
metric arising from the Kghler form w so that w = V-1Y,;01 A 0;. If we set
ddc(f) = v-1 Zi,j az-]@z- A é]', then

On the other hand, we set dz; = } ;c;0; fors = 1,...,k, where (zy, ..., z) is a local
coordinate. Then

Vv 20
2n 02,0z,

st

1 ]2
Bl =~z 2 [Z csicﬁ) o

1

V-1 v ()

ANdz; =
' 21 Stijazsazt

dd*(f) =

csictj0; A 0,
so that
Thus it is sufficient to show that a matrix D = (}; csiC1), <, <, 18 positive-definite.

This is obvious because D = C - (the transpose of C) and det(C) # 0, where C =
(Csi)lss,isk-
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Therefore,
Ir(f, ) =0 = Ip(f,f)=0 = Ix(f,f)=0
= [,1(g f)=0forall g € C*(M) (. Lemma 1.1.3)
= dd([f]) A @*1 = 0as a current
= (/D=0
=  fis harmonic (" the regularity of elliptic operators)
= fisaconstant,
as required. m|

1.3. A variant of Gromov’s inequality for R-Cartier divisors. In this subsection,
we would like to consider a generalization of [17, Lemma 1.1.4] to R-Cartier
divisors.

Lemma 1.3.1. Let X be a d-dimensional compact Kihler manifold and let w be a Kihler
form on X. Let Dy, ...,D; be R-Cartier divisors on X. Foreachi=1,...,1, let gi bea
D;-Green function of C*-type. Let U be an open set of X such that U is not empty on each
connected component of X. Then there are constants Cy, ..., C; > 1 such that C; depends
only on g; and U, and that

SUP S|y gy 4 +myg (0} < CY* -+ - C SUP{[S|yry g 441y, (X))
xeX xel

forall my,...,m; € Rygand all s € H*(X,m;D; + - - + mD;). Moreover, if D; = 0 and
i is a constant function, then C; = 1.

Proof. Clearly we may assume that X is connected. Shrinking U if necessarily, we
may identify U with {x € C?||x| <1). Weset W={xeC?||x| <1/2}. In this
proof, we define a Laplacian [, by the formula:

——2_189(g) AN = I:Iw(g)a)/\d.

Tt

Let w; be a C*-form of (1,1)-type given by dd°([gi]) + 6p, = [wi]. Let a; be a C*-
function given by w; A @@ = g;0". We choose a C*-function ¢; on X such

that
faiwAd:f¢iwAd
X X

and that ¢; is identically zero on X \ W. Thus we can find a C*-function F; with
0. (F)) = a; — ¢;. Note that 1, (F;) = a; on X \ W.
Lets € HY(X,m;D; + - -- + myD;). We set
f = |S|%11g1+~-~+m1gl exp(_(mlFl +eet mlPl))-
Note that f is continuous over X and log(f) is C* over X \ Z,, where
Zs = Supp((s) + m1Dy + - -- + mDy).

Claim 1.3.1.1. maxyex\wif(x)} = maxyeoom)lf(x)}.
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If f is a constant over X \ W, then our assertion is obvious, so that we assume
that f is not a constant over X \ W. In particular, s # 0. Since

VAR
—?88(log(lsIﬁqlgﬁ,,.mlgl)) =mw; + -+ +mw; over X\ Z,,

we have O, (log(f)) = 0 on X \ (WU Z;). Let us choose xy € X \ W such that the
continuous function f over X \ W takes the maximum value at x;. Note that

X € X\ (WU Z).

For, if Z; = 0, then our assertion is obvious. Otherwise, f is zero at any point of
Z. Since log(f) is harmonic over X \ (W U Z;), log(f) takes the maximum value
at xp and log(f) is not a constant, we have x, € d(W) by virtue of the maximum

principle of harmonic functions. Thus the claim follows. O
We set
b = xg(l\rl}v{eXp(_Fi)}’ B; = xrgf%{exp(—lfi)} and C; = B;/b;.
Then
R A C R |

over X \ W and
m mpy 12
f<B"--B"sl

m1g1+-~~+m1g;

over d(W). Hence

2 ml R ml 2 ml Y ml 2
g}g)vil{lslimgl+m+ngz} s Cl Cl yg(av)\/(){lslmlgﬁ”*mlgl} < C1 Cl Iil%)({lslmlgﬁ"*ngl}'

which implies that

2 my mi 2
r?e%(x{lslmlgﬁ'"*'ngl} = Cl o Cl meﬁ({lslmlg1+-"+mlgz}’
xeW
as required. The last assertion is obvious by our construction because F; = 0 in
this case. ]

2. HODGE INDEX THEOREM FOR ARITHMETIC IR-CARTIER DIVISORS

In this section, we would like to observe the Hodge index theorem for arithmetic
R-Cartier divisors and apply it to the pseudo-effectivity of arithmetic divisors. A
negative definite quadric form over Q does not necessarily extend to a negative

definite quadric form over R. For example, the quadric form g(x, y) = —(x + \/Ey)z
on Q? is negative definite, but it is not negative definite on R?. In this sense, the
equality condition of the Hodge index theorem for arithmetic IR-Cartier divisors
is not an obvious generalization. In addition, the equality condition is crucial to
consider the pseudo-effectivity of R-Cartier divisors.

In SubSection 2.1, we compare the arithmetic intersection number in [20, Sub-
Section 6.4] with the classical one due to Zhang and Maillot (cf. [24], [25], [13]).
SubSection 2.2 is devoted to the Hodge index theorem for arithmetic R-Cartier di-
visors. Especially its equality condition is treated carefully. In SubSection 2.3, we
consider a necessary condition for the pseudo-effectivity of arithmetic R-Cartier
divisors as an application of the equality condition of the arithmetic Hodge index
theorem.



TOWARD DIRICHLET’S UNIT THEOREM ON ARITHMETIC VARIETIES 21

Throughout this section, X will be a d-dimensional, generically smooth, normal
projective arithmetic variety. Moreover, let

X5 Spec(Ox) — Spec(Z)

be the Stein factorization of X — Spec(Z), where K is a number field and Ok is
the ring of integers in K.

——Nef
2.1. Generalized intersection pairing on arithmetic varieties. Let Div (X)r be
the subspace of Divo(X)r consisting of integrable arithmetic IR-Cartier divisors

——Nef —
of C'-type on X, that is, Div (X)r is the subspace generated by Nefc(X)g. For

——Ne —_—

Dy,...,D; € Div (X)r, we can define the intersection number deg(ﬁl .- -Bd) as
follows: If Dy, ..., Dy € Nefw (X)Rr, then it is given by

deg(D; ---Dy) = % Z (~1)#Dyol (Z Di].
0#IC(L,....d) iel
In general, we extend the above by multi-linearity (for details, see [20, SubSec-
tion 6.4]). Note that if D;,...,D,; € Dives(X)R, then deg(D; - - - Dy) coincides with
the usual arithmetic intersection number because the self intersection number
of a nef arithmetic R-Cartier divisor of C*-type in the usual sense is equal to
its arithmetic volume (cf. [20, Claim 6.4.2.2]). The following proposition is the
main result of this subsection. Especially, (3) means that the above intersection
number coincides with other definitions [24, Lemma 6.5], [25, §1] and [13, §5].
In this sense, this subsection provides a quick introduction to the generalized

intersection pairing on arithmetic varieties.
Here we need to fix a notation. Let uy,...,u, € {((C° N QPSH)(X(C)))r and

By,...,B, € Big(X(C)). Let I be anon-empty subsetof{1,...,p}and ] = {1,...,p}\L.
If wesetl={i,...,ix}and ] = {ji,..., ji}, then, by Lemma 1.2.1, the class of

i dd (1) A - A dd([u]) A By, A+ AB;
in DP-1P71(X(C))/NF-17-1(X(C)) does not depend on the choice of iy, ..., i and

Jj1,-- -, Ji, so that it is denoted by udd‘(u;) A By.

J— —— —_— ——Nef
Proposition 2.1.1. (1) If D=D +(0,n) for D,D € Divgo (X)r and n € C°(X),
then 1 € {(C° N QPSH)(X(C)))r.

— —  —Nef — S
(2) Let Dq,...,Dy E DiVCO (X)]R, Al, Ce ,Ad S DiVCoo(X)]R and Ui, ..., Ug € CO(X)
such that D; = A; + (0,u;) fori =1, ...,d. Then the quantity

—_— _ 1 .
deg(d A +5 ) f udd(ur) A c1(A))
2 0£ICl,...d) ¥ X(©)

does not depend on the choice onb L Agand u, ... ug. If we denote the above
number by deg (D; - -- D), then the map
— d
(Diveo (X)) — R

given by (Dy,...,D,) ae\g’(ﬁl .- D) is symmetric and multi-linear.
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—_— — —_— — — — ——Nef
(3) deg(D;---Dy) = deg (D1 -+ D) for Dy, ...,D4 € Dive (X)g.

— —  —Nef _
(4) Let Dy,+++ ,Dy4,Dq,+++ ,D, € Dive (X)r and 1y,...,1m4 € CO(X) such that D; =
5:- +(O,m)fori=1,...,d. Then

—_— _ —_— — 1 —
deg(D;---Dy) = deg(D;---Dy) + = Z f ndd“(n1) A c1(D)).
2 X(C
0#IC(1,...d) ¥ X(©)
Proof. (1) We can find EF, E,,f/ € l\/Tszo (X)r such that D = E — F and D =F-F.
Then, as E + F=E+F+ (0,1), the assertion of (1) is obvious if we compare two
local equations of the Green functions in E + FandE +F.

(2) In order to proceed with arguments, we need several notations. Let Z”(X)R
be the set of all pairs (Z,T) such that Z is a codimension p R-cycle on X (i.e.
Z=mZi+---+a,Z, forsomeay,...,a, € Rand codimension p integral subschemes

Zy,...,Z,of X) and T is a real current of bidegree (p —1,p — 1) on X(C). Let f{\"’(X)]’R
be the vector subspace generated by the following elements:

(@) ((f), —[log|fI*]), where f is a rational function on some integral closed
subscheme Y of codimension p — 1 and [log|f|*] is the current defined by

llog F21) = fy loslfPy

(b) (0,T), where T is a real current in NP"'771(X(C)). (for the definition of
NP-1771(X(C)), see Conventions and terminology 1).

We set
Ap 7’ = Y 7’
CH (X)g == ZP(X)r/RP(X)R-

Let A be an arithmetic R-Cartier divisor of C*-type. Then we can define a homo-
morphism

a@) : CH () — CH (X
given by c1(A) - (Z,T) = ¢1(A) - (Z,0) + (0, c1(A) A T). Note that
a(A) a(B) = (B) (A
for arithmetic R-Cartier divisors A and B of C*-type.
Claim 2.1.1.1. The class of

Z(Ay, . Ay, w) = TA) T+ Y (O udd () A ci(A))
0+IC(1,...p}

in EP\IV(X)]’R does not depend on the choice ole, .. .,Zp and uy, ..., u, forp=1,...,d.

Proof. Let By, ... ,Ep be arithmetic R-Cartier divisors of C*-type and v,...,0v, €
Cg 4(X) such that D; = B; + (0,v;) fori = 1,...,p. Then we can find C*-function
¢1,...,¢p such that u; = v; + ¢; and B = A, + (0,¢;) fori=1,...,p. We need to see
that

Z(Zl,...,Zp,ul,...,up) = Z(E,...,Ep,vl,...,vp)
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in CH (X)g- We prove it by induction on p. If p = 1, then the assertion is obvious,
so that we assume p > 1. By the hypothesis of induction, we have

Z(Zz,...,zp,uz,...,up) = Z(Ez,...,gp,vz,...,vp)
——p-1
in CH (X)g, which implies
/C\l(Zl) : Z(ZZI .. -/Zp/ Up, ... Iup) = @(El) _a(ol (Pl)) ’ Z(EZI R IEPI U2y. .. /Up)

—p-1
in CH' (X)g- The left hand side is equal to

ZAs, . Apin, i) =Y (O,udd () A ci(A))

1elc(l,..p)

=2y, Ayt ) = Y (0, mdd (up) Aci(Ap)),
rei2,...p)

where ' = {2,...,p} \ I'. Moreover, the right hand side is equal to

Z(By,...,B,01,...,0,) — Z (0, 01dd"(vp) A c1(Bp))

I'c{2,..p}
_a(EZ) o a(Ep) a(OI ¢)1) - Z a(O, (P1) . (O, Uddc(v[/) A C1(§]/))
0+I'Cl2,...p}
=ZBy,...,Bpor,..., o)=Y, Ooidd@)AaBr)- ) (0, ¢rdd@r)Aci(By))
I'c{2,..p} I'c{2,...p}
= Z(B,...,B,01,...,0,) — Z (0, trdd“(vp) A c1(Bp)).

rci2,..p)
=
inCH (X)g. Therefore, we can see that

Z(Zl,...,Zp,ul,...,uP)—Z(E,...,Ep,vl,...,vr,)

is equal to
0, Z (dd<(ur) A c1(Ay) = dd(vp) A r(Bp)) |,
ri2,..p)
which is zero by the following Lemma 2.1.2. O

Applying the above claim to the case where p = d, the first assertion follows.
The second assertion can be easily checked by using its definition.

(3) For this purpose, it is sufficient to show that cTe\g/(Bd) = \751(5) for D =
(D, g) € Nefco(X)r. Let Abe an ample arithmetic Cartier divisor of C*-type. We
assume

deg (D + (1/mAY™") = vol(D + (1/m)A)

—_— — —( —_
for all n > 0. Then, using the continuity of vol, we can see deg (D ) = vol(D).
Thus we may assume D is ample, so that there is a D-Green function / such that

a := c1(D, h) is positive. We set D = (D,h)and ¢ = g—h. Then ¢ is continuous and
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dd“([¢])+a > 0. Therefore, by [1] or [20, Lemma 4.2], we can take a sequence of C*-
functions {¢,} such that lim,, . [|¢, — Pllsup = 0, and that ¢ < ¢, and ¢, € Cg {(Xa)
for all n. We set D,, = D+ (O qbn) Then D, is a nef arithmetic R-Cartier divisor

of C*-type, and hence deg (D ) = Vol(D ) for all n by [20, Claim 6.4.2.2]. As
lim, e Vol(D ) = vol(D) by the continuity of Vol it is sufficient to see that

lim deg (Dn) = deg (D )-

Note that

d
deg (D)) = deg (D + 0.9 = deg @)+ Y () [ guio o
i=1

X(0)

In addition, by (3) in Lemma 1.2.1, {¢,dd“(¢,)"" A a?~} converges weakly to
Gdd“ ([P A o

for each i. Thus we have the assertion.

(3) By using the symmetry and multi-linearity of a(;g(ﬁl -+ Dy), it is sufficient
to see that

_— _ 1 —
deg(©n)Da- D=3 Y, [ m(u) neu(D),
1c2,....dy ¥ X(©)

which is a straightforward calculation by using the definition in (2). O

Lemma 2.1.2. Let V and W be vector spaces over R and let f : V° — W be a symmetric
multi-linear map. Let aq,...,a5,by,...,bs be elements of V. For a subset I of {1,...,s},
weset] ={iy,...,5}and | ={j1,..., ji}, where ] ={1,...,s}\Iand k+ 1 =s. Then

f(ail,...,aik,bjl,...,bjl)

does not depend on the choice of iy, ..., i and jy,. .., ji, so that it is denoted by f(ay, by).
Letay,...,a5,b1,...,bs,¢1,...,C5,d1,...,ds be elements of V. We assume that there are
uy,...,us € Vsuchthata; =ci+ujand b =d; —u; foralli=1,...,s. Then

Z flay, by) = Z fer, dy).
Ic{1,...,s} Icf1,...,s}
Proof. We prove the lemma by induction on s. If s = 1, then
Y f@by) = fl@)+ 1) = fler+un)+ fd—w) = fle)+ fd) = Y fle,dy).

Ic{1,....s} Ic{1,....s}
Thus we assume s > 1. By the hypothesis of induction, we have

Z f(allal’/ b]’) = Z f(all CI’/d]')

Ic{2,...s} I'c{2,...s}

and

Z f(bl,ﬂ[/,b]/): Z f(blzcl’/d]’)/

I'ci2,...s} I'c{2,...s}
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where | = {2,...,s} \ I. The first equation and the second equation imply that

Z flar, by) = Z f(c[,d])+ Z Fuy, cr, dy)

1lelc{l,...,s} lelc|l,.. Ici2,...s}
and
Y faby= Y. fled)- Y. fancrdy)
1¢IC(L,...5) 1¢IC(1,...5) Ief2,...s)
respectively. Thus the lemma follows. O

2.2. Hodge index theorem for arithmetic R-Cartier divisors. First of all, let us
fix notation. Let K be either Q or R. Let H be an ample KK-Cartier divisor on X.
Let D be a K-Cartier divisor on X and let E be a vertical K-Weil divisor on X.
We set E = 2521 a;l';, whereay,...,a; € Kand Iy, ..., I are vertical prime divisors.
Then a quantity

!

d-2

Y- aideg(Hil) (DI

i=1
is denoted by deg, (D - E). Note that if X is regular and D and E are vertical,
then deg, (D - E) = deg(E - D). We say D is divisorially mt-nef with respect to H if
deg, (D -T) > 0 for all vertical prime divisors I' on X. Moreover, D is said to be
divisorially m-numerically trivial with respect to H if D and —D is divisorially m-nef
with respect to H, that is, deg,,(D - I') = 0 for all vertical prime divisors I' on X.

Lemma 2.2.1. We assume that X is reqular. Let P € Spec(Ox) and let 7 1(P) =
aiI'y + - - - +a,I,, be the irreducible decomposition as a cycle, that is, a1, . .. ,a, € Zo and
I'1,..., T, are prime divisors. Let us consider a linear map Tp : K" — K" given by

X1 degH(rl rl) e degH(Fl : rn) X1

Xy deg, (', -T1) --- degy, (I, -T))\x,
Then Ker(Tp) = {(a1,...,a,))k and Tp(K") = {(y1, ..., yn) € K" | a1y1 +---+a,y, = O}
Proof. This is a consequence of Zariski’s lemma (cf. Lemma 1.1.4). |

Lemma 2.2.2. We assume that X is reqular. Let D be a IK-Cartier divisor on X with
deg(HfQ‘2 Dq) = 0. Then there is a vertical effective IK-Cartier divisor E such that D + E
is divisorially -numerically trivial with respect to H.

Proof. We can choose Pj,...,P, € Spec(Ok) such that deg, (D -T) = 0 for all
vertical prime divisors I' with (') ¢ {P4,...,P,}. We set n (Py) = Z?:kl aiili for
eachk=1,...,n, whereay € Z., and I'y; is a vertical prime divisor over Py. Since

My

Z ajdeg,, (D . ij) = deg,, (D . n'l(Pk)) =

j=1
by virtue of Lemma 2.2.1, we can find x;; € K

Tk

Z xy; degy, (I’ki . I"k]-) = —deg, (D - Ty))

i=1



26 ATSUSHI MORIWAKI

for all k. Moreover, replacing xi; by xi; + nay; (n > 1), we may assume that x;; > 0.

Here we set
n ny
E=) ) wli

k=1 i=1
Then D + E is divisorially -numerically trivial. O

First let us consider the Hodge index theorem for IR-Cartier divisors on an
arithmetic surface. It was actually treated in [2, Theorem 5.5]. Here we would
like to present a slightly different version.

Theorem 2.2.3. We assume d = 2. Let Divy(Xgq)r be a vector subspace of Div(Xg)r
given by
DiVO(XQ)]R = {\9 S DiV(XQ)]R | deg(S) = 0}

— ——Nef
Let D = (D, g) be an arithmetic R-Cartier divisor in Div?o (X)r with Dg € Divy(Xq)r-
Then
—
deg(D ) < =2[K : QKDq, Dgo)nr,
where {, )nr is the Néron-Tate pairing on Divy(Xq)r (cf. Remark 2.2.4). Moreover, the
equality holds if and only if the following conditions (a), (b) and (c) hold:
(a) D is divisorially m-numerically trivial.
(b) g is of C*-type.
(¢) c1(D) = 0.

Proof. Let u : X’ — X be a resolution of singularities of X (cf. [12]). Then, since
the arithmetic volume function is invariant under birational morphisms (cf. [17,

Theorem 4.3]), we can see deg(D2) = deg(u*(D)?). Thus we may assume that X is
regular.

Let ¢’ be an F.-invariant D-Green function of C*-type with ¢;(D, g’) = 0. Let n
be an F..-invariant continuous function on X(C) with ¢ = ¢’ + 1. Then, by (1) in
Proposition 2.1.1, 17 € ((C° N QPSH)(X(C)))r

By Lemma 2.2.2, we can find an effective and vertical R-Cartier divisor E such

that D + E is divisorially m-numerically trivial. If we set D = (D +E, g'), then D
satisfies the above conditions (a), (b) and (c). Moreover, as D = D - (E,0)+(0,n),
deg(D) = deg(D) + deg(E,0P) + 5 [ ndiG)

X(C)

Thus, by Proposition 1.2.3 and Zariski’s lemma (cf. Lemma 1.1.4), in order to
prove the assertions of the theorem, it is sufficient to see

deg(D’) = —2[K : QKDx, Di)nr.

under the assumptions (a), (b) and (c).

By (1) in Lemma 1.1.1, we can choose Dy, ..., D; € Div(X) and a4, ...,4; € Rsuch
that D = 41Dy + -+ + @Dy and a3, .. ., q; are linearly independent over Q. Let C be
a 1-dimensional vertical closed integral subscheme. Since

0 = deg(Dlc) = a1 deg(D1lc) + - - - + a, deg(Dylc),

we have deg(D;|c) = 0 for all i, and hence D; is divisorially m-numerically trivial
for every i, so that we can also choose a D;-Green function h; of C*-type such that
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D =a;D; + -+ +a@D; and cl(ﬁ) = 0 for all i, where D; = (Dj, b)) fori=1,...,1. We
need to show

cTeTg ((alﬁl + -+ alﬁl)z) = —2[K : Q](ﬂlDl + -+ ﬂlDl, a1D1 +---+ alDl>NT~

Note that it holds for ay, ...,4; € Q by Faltings-Hriljac ([8], [10]). Moreover, each
hand side is continuous with respect to ay,...,4.. Thus the equality follows in
general. |

Remark 2.2.4. (1) Let Div((Xg) be the group of divisors 9 on Xq with deg($8) = 0.
By using (1) in Lemma 1.1.1, we can see Div((Xg) ®z R = Divo(Xg)r. Let

<, >NT : DiVO(XQ) X DiVO(XQ) - R
be the Néron-Tate height pairing on Div((Xg), which extends to
DiVo(XQ)]R X DiVo(XQ)]R - R

in the natural way. By abuse of notation, the above bi-linear map is also denoted
by (, )nr. By virtue of [9, Proposition B.5.3], we can see that

PDiv(Xg)r = {9 € Divo(Xo)r | (3, 9)nr = 0}

(2) Let D = (D, g) be an integrable arithmetic R-Cartier divisor of C*-type on X.
If Dg € Divy(Xg)r and deg(ﬁz) = 0, there are ¢ € Rat(X); and an F.-invariant
locally constant function 1 on X(C) such that D = (p)g + (0,m). Indeed, by
Theorem 2.2.3 and the above (1), D is divisorially m-numerically trivial, g is of
C>-type, a(D) = 0 and Dq € PDiv(Xg)r. Therefore, there exist ¢ € Rat(X)y, a
vertical R-Cartier divisor E and an F-invariant continuous function 1 on X(C)
such that D = (@)g + (E,n). As D and (@)r is divisorially m-numerically trivial,
by using Zariski’s lemma, we can find 9 € Div(Spec(Ox))r such that E = 7*(9).
Note that the class group of Ok is finite, so that 3 € PDiv(Spec(Ok))r, and hence
E € PDiv(X)r. Therefore, we may assume that E = 0. Thus

— = 1
0=deg(D )= Ef ndd<(n),

X(©

which implies that 1) is locally constant by Proposition 1.2.3.

Finally let us consider the Hodge index theorem on a higher dimensional arith-
metic variety. The proof is almost same as [16], but we need a careful treatment
at the final step.

— —— Nef
Theorem 2.2.5. Let D = (D, ) be an arithmetic R-Cartier divisor in DiVCoe (X)r and let
H = (H, h) be an ample arithmetic Q-Cartier divisor on X. If deg(Dg - Hé‘z) = 0, then

degD -H ) <0.
Moreover, if the equality holds, then Dg € PDiv(Xq)r.
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Proof. By (1) in Lemma 1.1.1, we can choose Dy, ...,D; € Div(X) and ay,...,4, € R
such thatay, ..., q; are linearly independent over Q and D = a;D; +- - - +4;D;. Since

!
0 = deg(Dq -Hff) = a;deg(Djq -Hé‘z)

i=1

and deg(Diq - Hy,?) € Q for all i, we have deg(Diq - H,?) = 0 for all i. Let us
also choose an F.-invariant D;-Green function g; of C*-type such that c1(D;, i) A
ci(H)*2 = 0. If we set g =mg + - +ag, then, by (1) in Proposition 2.1.1, there
is n € ((C° N QPSH)(X(C)))r such that g = ¢’ + 1. By (4) in Proposition 2.1.1,

—_— —2 —d-2 — —d-2 1 —
deg(D -H )=deg((D, g’)2 -H )+ > nddc(n)cl(H)d‘2
X(C)

because c1(D, §') A ¢ (H)d‘2 = (. Therefore, by Proposition 1.2.3,

degD -H ) <deg((D,¢)-H )

and the equality holds if and only if 7 is a constant. Thus we may assume that n
is a constant, that is, ¢ = ¢’ by replacing g, by ¢ + n/a;.
By virtue of [16, Theorem 1.1],

PN —d-2
deg ((041(D1,g1) +--+ Dy, g)) - H ) <0

forall ay,...,a; € Q, and hence deg(D2 . Hd 2) <0.

We need to check the equality condition. We prove it by induction ond. If d = 2,
then the asie\rtiggl fgl%gzws from Theorem 2.2.3 and Remark 2.2.4. We assume that
d>2anddeg(D -H ) =0. By using arithmetic Bertini’s theorem (cf. [15]), we
can find m € Z and f € Rat(X)* with the following properties:

(i) If we set H = (H',h") = mH + (f), then (H', ") € Dive-(X), H' is effective,
' > 0 and H’ is smooth over Q.

(i) tH =Y +cF1 + -+ + ¢.F, is the irreducible decomposition such that Y’
is horizontal and F;’s are vertical, then F;’s are connected components of
smooth fibers over Z.

(iii) D and H” have no common irreducible component.

Let Y be the normalization of Y’. Then

- - =2 —d-2 _A—Z —rd-2 T —2 —y| d-3

0=m"2deg(D -H )=deg(D -H )—deg(D|Y-HY )
+ Zci deg(D[% - H'|#) 2 f 1 ey (D)2, (H )2

' 2 Jxw©

—_p —y 43
Therefore, by using [16, Lemma 1.1.2], we can see that deg(DK/ -H ‘Y ) =0and

c1(D) = 0. In particular, by hypothesis of induction, DQ|Y € PDiv(Yo)r. Let C be
a closed and integral curve of Xq. Then, since

0= fc o c1(D) = deg(Dg - C) = Z a;deg(Diq - C)
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and ay, ...,a; are linearly independent over Q, we have deg(D;q - C) = 0 for all i.
Therefore, if we set L; = Ox,(D;), then L; is numerically trivial, and hence (L;)c is
also numerically trivial on X(C). This means that (L;)c comes from a representation
pi : 11(X(C)) — C*. Let ( be the natural homomorphism ¢ : 711 (Y(C)) — m1(X(C))
and let _
pi = piot: m(Y(C)) —> m(X(C)) — C*.
Then p; yields (Li)clyc)- Let
p:mX(C) > C*®R and p':m(Y(C) - C*®zR

be homomorphisms given by p = p7™ --- p and p’ = p;®" - - p;*". Since

((Ll)dﬂ@)@ul ®® ((Ll)clwo)@ul =1

in Pic(Yq) ® R, we have p” = 1. Note that ( is surjective (cf. [14, Theorem 7.4] and
the homotopy exact sequence). Thus p = 1 because p’ = p o 1. Therefore, by (2) in
Lemma 1.1.1, the image of p; is finite for all i. This means that there is a positive
integer n such that (L;)g" =~ O for all i. If we fix 0 € K(C), then

dimg H(Xg, L®") = dime H(Xg XS pec(i) SPEC(C), L &% €) = 1,
and hence Llf@” ~ Ox, because deg(L; -Hff) = 0. Therefore,
Lélbm ® - ® L<IX>111 — (L?n)@zl/n ®R - ® (szm)eaal/n =1
in Pic(Xg)r. Thus Dg € PDiv(Xg)r. O
Remark 2.2.6. There is a typo in [16, Lemma 1.1.2]. The form @ should be real,
thatis, @ = w.

2.3. Hodge index theorem and pseudo-effectivity. In this subsection, let us ob-
serve the pseudo-effectivity of arithmetic R-Cartier divisors as an application of
Hodge index theorem. Let us begin with the following lemma:

Lemma 2.3.1. We assume that X is reqular. Let D = (D, g) be an arithmetic R-Cartier
divisor of CO-type. If D is semi-ample on Xq (that is, there are semi-ample divisors
Ai,...,Ayon Xgand ay, ..., a, € Ry such that Dg = a1A, + - -+ + a,A,), then there are

®1,---,¢1 € Rat(X)g and c € R such that D+ (pi)g + (0,¢) > 0 for all i and

I
(") Supp(D + (@) = 0

i=1
on Xq (for the definition of Rat(X)y and arithmetic R-principal divisors, see SubSec-
tion 0.2 in Introduction and Conventions and terminology 2).

Proof. Let us consider the assertion of the lemma for D= (D, Q):

There exist ¢4, ..., ¢; € Rat(X); and ¢ € R such that

) D+ (@i)g +(0,¢) >0 foralli and ﬂﬁzl Supp(D + (¢i)r) = 0 on Xg.

Claim 2.3.1.1. (1) If D is a Q-Cartier divisor and D is semi-ample on Xq (i.e. nD is
base-point free on Xq for some n > 0), then (+) holds for D.
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(2) If D is vertical, then (+) holds for D.
(3) If a € R, and () holds for D, then so does for aD.
(4) If (+) holds for Dand D' , so does for D+D.

Proof. (1) Since D is a semi-ample Q-Cartier divisor on Xg, there are a positive
integer nn.and ¢, ..., ¢, € H'(X, nD) \ {0} such that "}_, Supp(nD + (¢;)) = 0 on Xq.

Since D + (qbg/ ")r is effective, we can find ¢ € R such that D + (gg/\")lR +(0,c) >0
for all i.
(2) We choose x € Ok \ {0} such that D + (x) > 0, and hence there is ¢ € R such

thatD+(x)+(0 c)=>0.
(3) Let ¢1,...,¢; € Rat(X); and ¢ € R such that D + (gol)]R (0,c) = 0 for all i
and ﬂz L Supp(D + (pi)r) = @ on Xgo. Then aD + ((p )g + (0,ac) > 0 for all i and

Niz Supp(aD + (@")r) = 0 on Xq.
(4) By our assumption, there exist ¢1,..., @1, ¢}, ... P € Rat(X)g and ¢, ¢’ € R
such that o
D+(g0)]R+(0 c) > 0 for all i.
ﬂz 15upp(D + (pi)r) = 0 on Xq,
D +(g0) +(0,¢’) >0 forall j,

ﬂ]:1 Supp(D’ +(¢)r) = 0 on Xq.
ThenD + D +((pl ) +(0,c+c’)>0foralli jand

ﬂ Supp(D + D’ + (pi¢))x) = @
ij
on Xq because

m Supp(D + D’ + (¢ip))r) C m (Supp(D + (¢i)r) U Supp(D’ + ((p})]R)) .
ij ij

O
Let us go back to the proof of the lemma. Since X is regular and D is semi-ample

on X, there are arithmetic Q-Cartier divisors Ds,...,D,of C%-type, ay, ..., a, € R,
a vertical R-Cartier divisor E and an F.-invariant continuous function 1 on X(C)
such that D;’s are semi-ample on Xqg and D =mD; + -+ +a,D, + (E,n). Thus the
assertion follows from the above claim. O

Let us fix an ample arithmetic Q-Cartier divisor H on X. For arithmetic R-
Cartier divisors D; and D, of C*-type on X, we denote cTe\g(ﬁd_2 Dy - 52) by

ae\gﬁ(ﬁl -D,). Let us consider the following lemma, which is a useful criterion of
pseudo-effectivity.

Lemma 2.3.2. We assume that X is reqular. Let D = (D, g) be an arithmetic R-Cartier
divisor of C*-type on X with the following properties:

(1) D is nef on Xq and deg(Dq - HE; %) = 0.

2) c1(D) is semipositive.

(3) D is divisorially T-nef with respect to H.
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(4) deg-(D") < 0.
Then D is not pseudo-effective.

Proof. First we claim the following:

Claim 2.3.2.1. There is an arithmetic R-Cartier divisor L = (L, h) of C®-type with the
following properties:

(a) L is ample on Xq.

(b) c1(L) is positive.

(c) L is divisorially m-nef with respect to H.

(d) degﬁ(f .D) < 0.
Proof. Since cTé\gﬁ(Bz) < 0, we have

ae\gﬁ(5+€ﬁ-5) <0
for a sufficiently small positive number €. Thus, if we set L =D +€H, then L
satisfies all properties (a) — (d). O
Let us goback to the proof of thelemma. Since L is ample on Xg, by Lemma2.3.1,

there are ¢, ..., ¢; € Rat(X)} and ¢ € R such that L + (¢;)g + (0,¢) > 0 for all i and

Mz, Supp(L + (p:)r) = 0 on Xg. Let T be a horizontal prime divisor. Then we can
tind i such that I" € Supp(L + (pi)r). Thus

degg((L +(0,0)) - (T,0)) = degi((L + (@i)g + (0,0)) - (T, 0))
= a&%(mﬁ” L+ @)y + (O, c))‘r) > 0.

Furthermore, the above inequality also holds for a vertical prime divisor I'because

L is divisorially r-nef with respect to H. Therefore, if G = (G, k) is an effective
arithmetic R-Cartier divisor of C'-type, then

deg(L +(0,0)) ) = degs(T + (0,0)) - G,0)) + 5 f kex ()*~2e:(T) > 0.
X(©)
In particular, if D is pseudo-effective, then
deg((L + (0,¢)) - D) > 0.
On the other hand, as deg(Dq - Hj;?) =0,
—_— — —_ —_— _ — C _
degg((L +(0,¢)) - D) = degg(L - D) + 5 deg(Dg - HE?)
= deg(L- D) < 0.
This is a contradiction. O

As consequence of Hodge index theorem and the above lemma, we have the
following theorem on pseudo-effectivity:

Theorem 2.3.3. We assume that X is reqular and d > 2. Let D = (D, g) be an arithmetic

IR-Cartier divisor of C-type. If D is pseudo-effective and D is numerically trivial on Xq,
then DQ € PDIV(XQ)]R
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Proof. We assume that Dg ¢ PDiv(Xg)r. Since D is numerically trivial on Xg, by
Lemma 2.2.2, we can find an effective vertical IR-Cartier divisor E such that D + E
is divisorially m-numerically trivial with respect to H. Moreover, we can find an
F-invariant D-Green function gy of C*-type with ¢1(D, go) = 0. Then there is an
F-invariant continuous function 7 on X(C) such that g + = go. Replacing g, by
go + ¢ (c € R), we may assume that 17 > 0. By the Hodge index theorem,

deg((D +E, 0)?) < 0.
Thus (D + E, go) is not pseudo-effective by Lemma 2.3.2, and hence

D=(D+E, &)~ (Emn)
is also not pseudo-effective. This is a contradiction. m|

Finally let us consider the following lemmas on pseudo-effectivity.

Lemma2.3.4. ForD € ﬁi;co (X)randz € @(X)]R, if Dis pseudo-effective, then D+z
is also pseudo-effective.

Proof. Let A be an ample arithmetic R-Cartier divisor on X. Since D is pseudo-

effective, D + (1/2)A is big. Moreover, z + (1 /2)A is ample because z is nef.
Therefore,

(D+z)+A=(D+(1/2)A4) + (z + (1/2)A)
is big, as required. m|

Lemma 2.3.5. Let D be a vertical R-Cartier divisor on X and let 1 be an F-invariant
continuous function on X(C). Let A be an element of RX© given by A, = infrex, n(x) for
all o € K(C). We can view A as a locally constant function on X(C), that is, Alx, = A.
If (D, n) is pseudo-effective, then (D, A) is also pseudo-effective.

Proof. Let us begin with the following claim:

Claim 2.3.5.1. We may assume that A is a constant function.

Proof. We set A’ = (1/[K : Q]) X yex(c) Ao and &, = A" — A, for each 0 € K(C). Then
ZaeK(C) & =0and & = &; for all o0 € K(C). Thus, by Dirichlet’s unit theorem (cf.
Corollary 3.4.7), there are ay, ..., a; € Rand uy, ..., us € Of such that

& = aploglo(uq)| + - -+ + aslog |o(us)|

for all o € K(C). If we set

(D, 1) = (D, 1) = 7" ((@1/2)(1wr) + -+ + (as/2)(us))

then inf.ex, n°(x) = A’ for all 0 € K(C). Moreover, by Lemma 2.34, (D,7’) is
pseudo-effective. If the lemma holds for 7', then (D, A’) is pseudo-effective, and
hence

(D, A) = (D, A') + " ((@1/2)(ur) + -+ + (as/2) (1))

is also pseudo-effective by Lemma 2.3.4. m|
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For a given positive number €, we set
U, = {x € X, [n(x) < Ay + (e/2)}

and U = [[,ex) Us- Let A = (A, h) be an ample arithmetic Cartier divisor on X.
Then, by Lemma 1.3.1, there is a constant C > 1 depending only on € and & such
that

(2.3.5.2) sup {lslibh(x)} < C’ sup {|S|t2+hh(x)}
xeX(C) xell

for all s € H(X(C), bA), b € Rs and all constant functions t on X(C). Let n be an
arbitrary positive integer with n > (21og(C))/e. Since (D, 1) + (1/ n)A is big, there
are a positive integer m and s € H(X, mD + (m/n)A) \ {0} such that ISl +-(mfmn < 1,
which implies that

2
|s|(m/n)h < exp(mn).

Therefore, ISIfm o S exp(m(A + (e/2))) over U, that is,

sup (IS sccrapeomm] < 1
xXe
Thus, by the estimation (2.3.5.2), we have

—(m/n) 2
C™"" sup {|S|mu+(e/2>>+(m/n>h} <1
xeX(C)

Since log(C)/n < €/2,

2 2
sup {lslm(/\+e)+(m/n)h} < sup {lsl(m/n)log(C)+m(A+(e/2))+(m/n)h}
xeX(C) xeX(C)

= C~ " sup {|s? <1
xeX(ItI)Z) { m(/\+(e/2))+(m/n)h}
which yields H(X, m((1/n)A + (D, A + €))) # {0}. Thus (D, A + €) + (1/n)A is big if
n > 1. As a consequence, (D, A +¢€) is pseudo-effective for any positive number €,
and hence (D, A) is also pseudo-effective. O

3. DIRICHLET’S UNIT THEOREM ON ARITHMETIC VARIETIES

In this section, we propose the fundamental question of this paper, which is a
higher dimensional analogue of Dirichlet’s unit theorem on arithmetic varieties. In
SubSection 3.4, we give the proof of the fundamental question on arithmetic curves
by using the arithmetic Riemann-Roch theorem and the compactness theorem in
SubSection 3.3. By the observations in this subsection, we can realize why the
fundamental question is related to the classical Dirichlet’s unit theorem. We
can also recognize that the theory of arithmetic IR-divisors is not an artificial
material. In SubSection 3.5, we consider a partial answer to the fundamental
question, that is, Dirichlet’s unit theorem under the assumption of the numerical
triviality of divisors on the generic fiber. Many results in the previous sections
will be used for the partial answer. Especially the equality condition of the
Hodge index theorem is crucial for our proof. In SubSection 3.6, we introduce the
notion of multiplicative generators of approximately smallest sections for further
discussions of the fundamental question. It gives rise to many examples in which
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Dirichlet’s unit theorem holds. SubSection 3.2 is devoted to the technical results
on the continuity of norms.

Let us fix notation throughout this section. Let X be a d-dimensional, generically
smooth, normal and projective arithmetic variety. Let

X — Spec(Ox) — Spec(Z)

be the Stein factorization of X — Spec(Z), where K is a number field and Ok is
the ring of integers in K.

3.1. Fundamental question. Let K be either Q or R. As in Conventions and
terminology 2, we set

Rat(X)g := Rat(X)* @z K,

whose element is called a K-rational function on X. Note that the zero function is
not a K-rational function. Let

O : Rat(X)% — Div(X)x and (g : Rat(X) — Dive=(X)x
be the natural extensions of the homomorphisms
Rat(X)* - Div(X) and Rat(X)* — Divce(X)
given by ¢ — (¢p) and ¢ — (/@ respectively. Note that
PDiv(X)k = {(@)x | p € Rat(X)y} and PDiv(X)x = {(p)x | ¢ € Rat(X)x]

(cf. SubSection 0.2 in Introduction and Conventions and terminology 2). Let
D = (D,g) be an arithmetic R-Cartier divisor of C’-type. We define I'’*(X, D),
(X, D), I%(X, D) and T’ (X, D) to be

I*(X, D) = (¢ € Rat(X)* | D + (¢) > 0} = H'(X, D) \ {0},

(X, D) := {¢ € Rat(X)* | D + (¢) > 0} = A°%(X, D) \ {0},

TX(X,D):= {p € Rat(X)} | D+ (@) o},

T3(X, D) := {p € Rat(X)% | D + (@)y 2 0}.
Let us consider a homomorphism

¢ : Rat(X)* — L}

loc

(X(©)
given by ¢ — log|¢p|. It extends to a linear map
lx : Rat(X)g — L, (X(C)).

loc
For ¢ € Rat(X)y, we denote exp(fk(¢)) by |p|. First let us consider the following
lemma.

Lemma 3.1.1. (1) If € I'g(X, D), then |p|exp(—g/2) is represented by a continu-
ous function 1y,e on X(C), so that we define ||@l|g sup to be

1pllg sup = max {n,,¢(x) | x € X(©)}.

() TE(X,D) = {p € (X, D) | igllgsup < 1}
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(3) We have the following formulae in Rat(X)E or Rat(X)g:

TX(X, D) = U,o TX(X, nD)V",  TX(X, D) = U, TX(X, nD)/",

TX(X,aD) = (X, D)*, TA(X,aD) =T§(X,D)*  (a € Qu),
I%(X,aD) = [(X, D), TX(X,aD) = TX(X,D)*  (a € Ru).

Proof. (1) We set D = 1Dy + - + a,D,, and ¢ = @' - ..(P;", where Dy,...,D, are
prime divisors, ¢1,...,¢; € Rat(X)* and a,...,a,,x1,...,x € K. Let fy,..., f, be
local equations of Dy, ...,D, around P € X(C). Then there is a local continuous

function h such that ¢ = —=Y.", a;log|fil* + h (a.e.) around P. Here let us see
that |1 -« - l@i|f1]™ - - - | ful™ is continuous around P. We set f; = u;t{" --- ;" and
p; = vjtlfﬂ---tf”, where ay, fjix € Z, uy,..., Uy, 01,...,0 are units of Ox)p and

ti,...,t, are prime elements of Ox()p. Then

lpal™ -l fal™ - - - | ful™

= [t g fon o g Lo

On the other hand, as

D+ (@) = (Z ain + ) x,ﬁﬂ] (h)+- -+ [Z aicty + ) xjﬁj,J (t)>0
j j

around P, we have
(3111) Z a;a + Z x]-ﬁ]-l >0, ... ,Z a;;, + Z x]-ﬁ]-, > 0.
i i i i
Thus the assertion follows. Therefore, 1™ - - - [@i["|f1] - - - | ful* exp(=h/2) is also
continuous around P, and hence we obtain (1) because

lplexp(=g/2) = 1" - -l ful" - - | ful™ exp(=h/2) (a.e.).
(2) We use the same notation as in (1). Note that

D+ (@) = (D +(Q)k, g+ Z xi(—log |(pi|2)) :
i=1
Moreover,

g+ Y xi(~loglpi) = —log(igi -+l - £, exp(-h) (a.e)

i=1
locally. Thus [|@llgsup < 1if and only if g + Y.iL; xi(—log lpil?) > 0 (a.e.), and hence
(2) follows. .

(3) For ¢ € Rat(X); and a € R., D + (@)r > 0 (resp. D+ (p)g = 0) if and only if
aD + (¢")r > 0 (resp. aD + (@")g = 0). Thus the assertions in (3) are obvious. O

Remark 3.1.2. We assume d = 1, that is, X = Spec(Ok). For P € Spec(Ok) \ {0}
and o € K(C), the homomorphisms ordp : K* — Z and | - |, : K* — R* given by
¢ = ordp(¢) and ¢ = |o(¢)| naturally extend to homomorphisms K* ®z R — R
and K* ®z R — IR* respectively. By abuse of notation, we denote them by ordp
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and |-|, respectively. Clearly, for ¢ € K*®z1R, |¢|, is the value of |p| at 0. Moreover,
by using the product formula on K*, we can see

(3.1.2.1) H plo = H #(Oy/P)*"r®

0€K(C) PeSpec(Ok)\{0}
forp e K*®z R

Finally we would like to propose the fundamental question as in SubSection 0.7
of Introduction.

Fundamental question. Let D be an arithmetic R-Cartier divisor of C*-type. Are
the following equivalent ?

(1) D is pseudo-effective.

2) T X(X,D) # 0.

Clearly (2) implies (1). Indeed, let ¢ be an element of Tx rX D). Let Abean ample
R-Cartier divisor on X. Since — ((p)IR is a nef R-Cartier divisor of C*-type, A — (go)]R

is ample, and hence D + A is big because D + A > A — (qo)]R The observations
in Subsection 3.4 show that the fundamental question is nothing more than a
generalization of Dirichlet’s unit theorem. Moreover, the above question does not
hold in the geometric case as indicated in the following remark.

Remark 3.1.4. Let Cbe a smooth algebraic curve over an algebraically closed field.
For 9 € Div(C)q with deg(9) = 0, the following are equivalent:

(1) 9 € PDiv(C)q.

(2) There is ¢ € Rat(C)y such that 3 + (¢)r = 0
Indeed, “(1) = (2)” is obvious. Conversely we assume (2). Then if we set
0 = 9+ ()R, then O is effective and deg(6) = 0, and hence 6 = 0. Thus 9 = (¢ })g.
Therefore, by (3) in Lemma 1.1.1, 9 € PDiv(C)q.

The above observation shows that if 3 is a divisor on C such that deg(d) = 0 and

Y is not a torsion element in Pic(C), then there is no ¢ € Rat(C)g with 8 + (¢)r > 0.

3.2. Continuity of norms. Let us fix p € R;; and an F.-invariant continuous
volume form €2 on X with fX(C) = 1. For ¢ € I'g(X, D), we define the LF-norm of
@ with respect to g to be

1/p
l@llgrr == ( (lplexp(=g/2)y’ Q) :
X(Q)

In this subsection, we consider the following proposition.
Proposition 3.2.1. Let ¢y, ..., ¢ € Rat(X)g. If we set
= {(x1,..., 1) ER'| @¥ -} € TX(X, D)),

then themap v, : ® — Rgivenby (x1,...,x) = |lp7' - - @,'llg 1 is uniformly continuous
on KN @ for any compact set K of R\. Moreover, the map veyp : ® — R given by
(x1,...,%) > ||(p91‘l e (pflllg,Sup is also uniformly continuous on K N @ for any compact
set K of R,
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Proof. In order to obtain the first assertion, we may clearly assume that ¢,...,¢; €
Rat(X)*. Let us begin with the following claim:

Claim 3.2.1.1. There is a constant M such that

1l - lpil™ exp(=g/2) < M (a.e.)
on X(C) for all (x1,...,x) € KNO.
Proof. Since X(C) is compact, it is sufficient to see that the above assertion holds
locally. We set D = 41Dy +---+a,D,, whereay,...,a, € Rand Dy, ..., D, are prime
divisors. Let us fix P € X(C) and let fi,..., f, be local equations of D;,...,D,

around P respectively. Let ¢ = Y..(—a;)log|fil> + h (a.e.) be the local expression
of ¢ with respect to f1,..., f,, where & is a continuous function around P. We

set fi = w;t{"--- ;" and ¢; = vjtfﬂ ---tfj’, where ay, i € Z, uy,..., Uy, vy, ..., 0 are

units of Oxc)p and ty, ..., t, are prime elements of Ox)p. Then
|1 -+ - Il exp(—g/2)
= [ug|™ - [ [0r [ - - - Jog Pt [ e R 3B g it L5 exp(—h/2) (a.e.).

Note that ), a;ay + ), i XiBjk (k =1,...,r) are bounded non-negative numbers (cf.
(3.1.1.1) in the proof of Lemma 3.1.1). Thus the claim follows. O

By the above claim, we obtain

X X1 P n yip
I3+ @I = - I,

< f |1 - |§01|P(y1—x1) e |§01|p(yz—x:)
X(©)

(lpal -+ lpil" exp(=g/2)Y Q

MFQ

< f |1 - |§01|P(y1—x1) e |¢l|p(yz—xz)
X(©

for (x1,...,x1), (y1,...,y1) € @. Thus the first assertion follows from the following
Lemma 3.2.2.

For the second assertion, note that lim,_« [l¢}" -+~ @}'llgr = I} -+ @' llg.sup for
(x1,...,x1) € @ (cf. [11, the proof of Corollary 19.9]). Thus it follows from the first
assertion. m|

Lemma 3.2.2. Let M be a d-equidimensional complex manifold and let w be a continuous
(d,d)-form on M such that w = vQ), where Q) is a volume form on M and v is a non-
negative real valued continuous function on M. Let ¢4, ..., @4 be meromorphic functions
such that @;’s are non-zero on each connected component of M. Then

lim f L= @™ - lpil™
(x1,---x1)—(0,...,0) M| (P qD

Proof. Clearly we may assume that M is connected. Let p : M’ — M be a proper
bimeromorphic morphism of compact complex manifolds such that the principal
divisors (u*(¢1)), ..., (4" (¢1)) are normal crossing. Note that there are a volume
form () on M’ and a non-negative real valued continuous function v' on M’ such
that p*(w) = v'{Y’. Moreover,

f 11— 1w @)l - I (@)
M’

w =0.

.

pw) = f |1 = |1 -+ - |pa™
M
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Thus we may assume that the principal divisors (¢1), . . ., (¢;) are normal crossing.
Here let us consider the following claim:

Claim 3.2.2.1. Let @q, ..., @; be meromorphic functions on
A ={(z1,...,2) €C |zl < 1,...,|z4l < 1}

such that @; = zil" .- -z;"" u; (i=1,...,1), where cj; € Z and u;’s are nowhere vanishing
holomorphic functions on {(z1,...,z4) € C'||zal < 1406,...,1z4 < 1+0) for some
0 € R.g. Then

lim — o .. x
(x1,021)—(0,.. O)fi |§01| |(Pl|

Proof. If we set y; = Zi:l c;ix;, then

[
Thus, if we put z; = r; exp( V=1 0,), then

(\/_) dzi Ndzy AN+ Ndzg ANdz; = 0.

|X1 .. |X1.

A =z ezl [ g

f |1 =l - |(Pz|xl|( ) dzy Adzy A -+ Ndzg A dzy
= f 11— Y r;rydlull"1 <[ dry AdOy A -+ Adrg A dO,.
([0,11x[0,27])"

Note that r1+y1 : -rjfydlull"l ey — 7y -1y uniformly, as (xy,...,x) — (0,...,0),
on (10,1] x [0,2])". Thus the claim follows. =
Let us choose a covering {Uj};‘]: , of M with the following properties:

(a) For each j, there is a local parameter (wy, ..., wy) of U; such that U; can be
identified with A? in terms of (w;, ..., w,).
(b) Supp((¢:)) NU; € {w; ---wy; = 0} for all i and ;.

Let {p ]} be a partition of unity subordinate to the covering {U }N Then

N
[ |1—|(p1|x1---|<pz|xf|w=; [ =ttt e

Note that there is a positive constant C; such that
d
V-1
p]cu<C( > )dwl/\dwl/\ “Adwy A dwg.

Thus the lemma follows from the above claim. m|

3.3. Compactness theorem. Let H be an ample arithmetic R-Cartier divisor on
X. Let I" be a prime divisor on X and let gr be an F-invariant I'-Green function

of C’-type such that
[ s 2deg(H (T, 0)
c =—
x5 [K:Q]
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for each 0 € K(C). WesetT = (T, gr). Note that

T e WDiva(X)x and deg(@  -T)=0

(see, Conventions and terminology 4). Moreover, let Cg(X) be the space of F..-
invariant real valued continuous functions n on X(C) with fx © 11 (H)*! = 0.

The following theorem will provide a useful tool to find an element of ’I:HX((X, D).

Theorem 3.3.1. Let X" be the set of all prime divisors on X. For an arithmetic R-Weil
divisor D of C°-type (cf. Conventions and terminology 4), we set

Y(D) = {(a, n) € REXY) & Ci(X)

5+Zarf+(0,n) 20},
r

where R(XW) is the vector space generated by X" over R (cf. Conventions and termi-
nology 5). Then Y(D) has the following boundedness:

(1) ForeachT € X, {ar}, v is bounded.

(2) Foreach o € K(C),
{f Ucl(ﬁ)d_l}
X (a,n)€Y (D)

Proof. We set D = (Y- drT, ). Here we claim the following:

is bounded.

Claim 3.3.1.1. (1) Forall (a,n) € Y(D) and T € X,

1f — — —d-1
= ci(H)M 1 + drdeg(H -(T’,0
3 ), 80 Y, dvdeg®@ - (,0)

7 eXM\(T}

—dr <ar < — ~
deg(H - (T,0)

(2) Forall (a,n) € Y(D) and ¢ € K(C),

— -1
2deg(H -(D,0 — —
e P fX RICSE fx ey

Proof. (1) The first inequality is obvious because —dr < ar for (a,1) € Y(D) and
I € XD, Moreover, for I" € XD,

0= (TC%(ﬁd_l . f’) = (Tc%(ﬁd_l . (1-'/, O)) + % gF’Cl(E)Ad_l-
X(C)
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Thus, as ). argr + n+ ¢ > 0, we have

— — 1 _
Y ar deg(H 1-(r’,0))s§ ar deg(H 1~(r’,0))+§ f (Z apgp+17+g]cl(H)Ad_l
= X(©

I’ I’

- Zar, (&?g(ﬁd‘l -(I”,0)) +1 f gr,cl(E)Ad-l)
T 2 Jx©

1 — 1 —
+ —f 17C1(H)Ad_1 + —f 8C1(H)/\d_1
2 Jxe 2 Jxw©

1 — Ad_
= 5 gcl(H)Ad 1,
X(C)

and hence

ardeglH - T,0)= Y apdegH ([, 00+ Y (-ar)degH -(I',0)

’ex® [7eXM\{T}

1 f T Teo(H L (T
<= o)+ ) drdeg(H - (I",0))
2 x(tt)g1 Z rees

I"#I'

for all T', which shows the second inequality.
(2) Since Y rarl' + D > 0, we obtain

0 < deg (ﬁd‘l : (Z a;T + D, o)) =Y ardeg(H - (T,0)) + deg(H - (D,0)).

T T
Therefore, as

— —d-1
—4q _ —2deg(H (T,0)

[Z argr + 1+ g) a(H)*!

T
—2Zar5é§(ﬁd‘l(r,0))
- - +f Wcl(ﬁ)d_l‘Ff gei(H)™
Xs X5

o< [
X

[K:Q]

— 1
2deg(H -(D,0)) Thd-1 -1
=TT KQ +£ﬁﬂ)ﬁL%®’

as required. O

By (1) in the above claim, {ar}(a/n)w@ is bounded for each I'. Further, by (2),
there is a constant M such that

f nei(H)™' > M
X,
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for all (a,n) € Y(D) and ¢ € K(C), and hence

M < f ne(H)* = - f nai(H)*™! < (#(K(C)) - 1)(-M),
Xo Xy

0’eK(C)\{o} 7

as desired. O

Corollary 3.3.2. Let A be a finite set and let {D,},cx be a family of arithmetic R-Weil
divisors of C*-type with the following properties:

(a) deg(H  -Dy)=0for A € A.
(b) Foreach A € A, there is an F.-invariant locally constant function p, such that

c1(Dy) A cy(H)M2 = PAcl(E)Ad_l-

(c) {Da)ren is linearly independent in mvcm (X)R-
Then, for D € WDiveo(X)g, the set

{a eR(A) | D+ ZaAEA > 0}

AeEA

is convex and compact.

Proof. The convexity of the above set is obvious, so that we need to show com-
pactness. We pose more conditions to the I'-Green function gr, that is, we further

assume that gr is of C®-type and c;(T) A ¢;(H)""? = vre,(H)""! for some locally
constant function vr on X(C). Note that this is actually possible. We set

Hx = {E:X(C) - R

¢ is locally constant, F-invariant and Z s = 0} .
oeK(C)

Then there are ar € R and &, € Ex such that

5/\ = Z OCArf +(0,&1)

r

for each A. Therefore,

Yab, =Y (Z]T LY ain
A T U2 A
Let us consider a linear map
T:R(A) - RXY) @ By
given by T(a) = (T1(a), T»(a)), where

Ty(@)r = ZaAaAF CeX") and T,@) = ZaAEA-

A A
Then T is injective. Indeed, if T(a) = 0, then

Za;ta)\r =0 (VT) and Zﬂ/\é/\ =0.

A A
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Thus ) AaAﬁ;\ = 0, and hence a = 0. Since A is finite, we can find a finite subset
A’ of XD such that the image of T is contained in IR(A’) ® Ex. Moreover, by the

previous theorem, Y(D) N (R(A) @ Ey) is compact. Thus

{a eR(A) | D+ ZaAﬁA > 0} =T (Y(D) N (R(A) ® Ey))
AEA

is also compact. O

Corollary 3.3.3. Let @1, ..., @, be R-rational functions on X (i.e. ¢1,...,¢; € Rat(X)g)
and let D = (D, g) be an arithmetic R-Cartier divisor of C'-type on X. If

®={(@a,...,a) R | g7 @ eTR(X, D)} #0,

then there exists (by, ..., b)) € © such that
b] .« e bl = 1
g - @) llgsup o, Inf

Proof. Clearly we may assume that ¢y, ..., ¢, are linearly independent in Rat(X)y.
Replacing g by ¢ + A (A € R) if necessarily, we may further assume that

{@,...,m) eR' | ¢ - @ € TR(X, D)} # 0.
We denote the above set by ®. As
O ={(@,...,a) eP g} @ llgaup <1},

we have
inf)eqa{”@ql"'@?’”grsup}: inf {||§0il"‘¢?l||g,sw}-

(@1, (@1,...a))ED
On the other hand, ® is compact by Corollary 3.3.2. Thus the assertion of the
corollary follows from Proposition 3.2.1. O

3.4. Dirichlet’s unit theorem on arithmetic curves. We assume d = 1, that is,
X = Spec(Ok). In this subsection, we would like to give a proof of Dirichlet’s unit
theorem in flavor of Arakelov theory (cf. [23]). Of course, the contents of this
subsection are nothing new, but it provides the background of this paper and a
usage of the compactness theorem (cf. Corollary 3.3.2). The referee points out
that Chambert-Loir give a similar proof based on a certain kind of compactness
in [4, §1.4, D]. Let us begin with the following weak version of Dirichlet’s unit
theorem, which is much easier than Dirichlet’s unit theorem.

Lemma 3.4.1. OF is a finitely generated abelian group.

Proof. This is a standard fact. Indeed, let us consider a homomorphism L : Of —
RX© given by L(x), = log|o(x)| for o € K(C). Itis easy to see that, for any bounded
set B in RX©, the set {x € O% | L(x) € B} is a finite set. Thus the assertion of the
lemma is obvious. O

We denote the set of all maximal ideals of Ox by Mg. For an R-Cartier divisor
E =} pey, erP on X, we define deg(E) and Supp(E) to be

deg(E) = Z eplog(#(Ox/P)) and Supp(E) :={P € Mg | ep # 0}.

PeMk
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Lemma 3.4.2. For a constant C, the set {E € Div(X) | E > 0 and deg(E) < C} is finite.
Proof. This is obvious. m|

Lemma 3.4.3. If we set K¥ = {x € K* | Supp((x)) € L} for a finite subset T of Mk, then
K is a finitely generated subgroup of K*.

Proof. Let us consider a homomorphism «a : Ki — Z* given by a(x)p = ordp(x)
for P € X.. Then Ker(a) = O and the image of « is a finitely generated. Thus the
lemma follows from the above weak version of Dirichlet’s unit theorem. O

Lemma 3.4.4. We set Cx = log ((2/ 1) 4/| dK/QI) where 1 is the number of complex

embeddmgs of K into C and dy,q is the discriminant of K over Q. If deg(D) > Ck for
De DIV(X) then there is x € K* such that D + (x) > 0.

Proof. Thisis a consequence of Minkowski’s theorem and the arithmetic Riemann-
Roch theorem on arithmetic curves. |

The following proposition is a core part of Dirichlet’s unit theorem in terms of
Arakelov theory, and can be proved by using arithmetic Riemann-Roch theorem
and the compactness theorem (cf. Corollary 3.3.2 and Corollary 3.3.3). As a
corollary, it actually implies Dirichlet’s unit theorem itself (cf. Corollary 3.4.7).

Proposition 3.4.5. Let D = (D, Q) be an arithmetic R-Cartier divisor on X. Then the
following are equivalent:

(i) deg(D)
(ii) D € PDIV(X)]R
(iii) deg(D) 0 and T X D) # 0.

Proof. “(iii) = (ii)” : By our assumption, D+z>0forsomeze lﬁ)i\V(X)]R. If we
set E = D + z, then E is effective and deg(f) = deg(ﬁ) + deg(z) = 0. Thus E=0,
and hence D = —z € ﬁ/(X)IR.

“(ii) = (i)” is obvious.

“(i) = (_iii) : First of all, we can find ay,...,a; € Rogand Dy,...,D; € [/)iTI(X)
such that D = a;D; + -+ + ayD; and deg(D) 0 for all i. If we can choose
Y; € Tx rX D;) for all i, then (U gba’ e T rX D). Thus we may assume that

De DIV(X) in order to show “(i) = (iii)”. For a positive integer 1, we set

2Ck )
n[K:QJJ)

Since aé\g(nﬁn) = Ck, by Lemma 3.4.4, there is x,, € K* such that nD, + (/xn\) >0.In
particular, nD + (x,,) > 0 and

Bn:5+(0,

deg(nD + (x,)) < deg(nD, + (x,)) = Cx.
Thus, by Lemma 3.4.2, there is a finite subset X of Mg such that
Supp(nD + (x,)) € X’
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for all n > 1. Note that Supp((x,)) € Supp((x,) + nD) U Supp(D). Therefore, we
can find a finite subset X of Mk such that x, € K for all # > 1. By Lemma 3.4.3,
we can take a basis ¢, ..., ¢, of K{ ®z R over R. Then, by Corollary 3.3.3, if we
set

® = {(ay,...,a,) €ER*| @] -~ @5 € TR(X, D)},
then there exists (cy, ..., cs) € @ such that

C1 C. _ . a1 a
||(P1 e (PSS”g,sup = (a1,.1,.1,}f)e®{”(Pl T (PSS”g,sup}r

that is, if we set ¥ = @7 -+~ @, then [[Yllgsup = infoersxpinrzem)i@llgsupl. On
the other hand, as D, + (x)/")g > 0, we have x./" € I[R(X, D) N (K¥ ®z R) and
||x,11/”||g,Sup < exp(Ck/n[K : Q]), so that [[{)||¢sup < exp(Cx/n[K : Q]) for all n > 0, and
hence |[{||gsup < 1, as required. O

As corollaries, we have the following. The second one is nothing more than of
Dirichlet’s unit theorem.

Corollary 3.4.6. Let D = (D, g) be an arithmetic R-Cartier divisor on X. Then there
exists 1 € I'y(X, D) such that

llgsup = inf {idllgsup | € TR(X, D)}

Proof. Clearly if the assertion holds for D, then so does for D + (0, ¢) for all ¢ € R.

Thus we may assume that (Te;;(ﬁ) = 0. Weset D = }.pcp, dpP. Then, for ¢ €
I'k(X, D), by using the product formula (3.1.2.1) in Remark 3.1.2,

[T 19l exp(-g0/2) = ] #Ox/Pyio s 21,

geK(C) PexM
and hence [|¢|lgsup = 1. On the other hand, by Proposition 3.4.5, there is 1 €
I'k(X, D) with ||{|lgsup < 1, as required. O

Corollary 3.4.7 (Dirichlet’s unit theorem). Let & be an element of RX® such that

Y & =0 and & =& (Yo eK(Q).

0eK(C)
Then there are uy, ..., us € Ogand ay, ..., a; € R such that
Eo = logluals + - - - + a5 1og |us|,

forall ¢ € K(C), that is, (0, &) + (a1/2)(u1) + - -+ + (a:/2)(ut5) = 0.
Proof. Since (Te\g((O, £)) = 0, by virtue of Proposition 3.4.5 and (1) in Lemma 1.1.1,
there area;,...,a; € Rand uy,...,us € K* such thata, ..., a; are linearly indepen-

dent over Q and (0,¢&) = a;(/ul\) + -+ a;@. We set (u;) = Z,izl a i Py for each j,
where aj; € Z and Py, ..., P, are distinct maximal ideals of Ok. Then

0= a/l(ul) +--t a;(us) = (Z a;aﬂ]Pl +ee+ [Z El;'O(lePI.

j=1 j=1
Thus Zj‘=1 a;.ajk = 0 for all k, and hence aj = 0 for all jk, which means that
uy, ..., us € Ox. Therefore, if we seta; = —Za;., then the corollary follows. O



TOWARD DIRICHLET’S UNIT THEOREM ON ARITHMETIC VARIETIES 45

Remark 3.4.8. Similarly, the finiteness of Div(X)/ PDiv(X) is also a consequence
of Lemma 3.4.2 and Lemma 3.4.4 (cf. [23]). Indeed, if we set

© = {E € Div(X) | E > 0 and deg(E) < Ck},

then © is a finite set by Lemma 3.4.2. Thus it is sufficient to show that, for
D e Div(X), there is x € K* such that D + (x) € ©. Since

— ([ 2(Cx —deg(D))\ _
deg (D, K Q] ) = Cx,

2(Cx—deg(D))
[K:Q]

by Lemma 3.4.4, there is x € K* such that (D, >+(,J-C\) > 0, thatis, D+(x) > 0

and log |x|, < CK[_ISEg](D) for all o € K(C). By using the product formula,
_ Ck — deg(D)
deg(D + (x)) = deg(D) + ; log |x|, < deg(D) + Z K0 - = Ck.

Therefore, D + (x) € ©, as required.

3.5. Dirichlet’s unit theorem on higher dimensional arithmetic varieties. In
this subsection, we will give a partial answer to the fundamental question as an
application of Hodge index theorem. First we consider the case where d = 1.

Proposition 3.5.1. We assume d = 1, that is, X = Spec(Ox). For an arithmetic R-
Cartier divisor D on X, the following are equivalent:
(i) Dis pseudo-effective.
(ii) deg(D) > 0.
(iii) T X D) # 0.

Proof. “(i) = (ii)”: Let Aisan ample arithmetic Cartier divisor on X. Then D +€A
is big for any € > 0, that is, deg(D +€A) > 0. Therefore, deg(D) > 0.

“(il) = (iii)” : If deg(D) > 0, then the assertion is obvious because H%(X, nD) #

{0} for n > 1, so that we assume ae\g(ﬁ) = 0. Then D € @(X)R by Proposi-
tion 3.4.5.

“(iii) = (i)” is obvious. O
To proceed with further arguments, we need the following lemma.

Lemma 3.5.2. We assume that X is regular. Let us fix an ample Q-Cartier divisor H
on X. Let Py,...,P; € Spec(Ok) and let Fp,,...,Fp, be prime divisors on X such that
Fp, € = X(P)) for all i. If A is an ample Q-Cartier divisor on X, then there is an effective
Q-Cartier divisor M on X with the following properties:
(a) Supp(M) € 7' (Py) U---Un ! (P)).
(b) A —M is divisorially ri-nef with respect to H, that is, deg, (A —M-T) > 0 for all
vertical prime divisors I on X (cf. Subsection 2.2).
(c) deg, (A — M - F) = 0 for all closed integral integral curve F on X with F C
7 (Py) U - Un(Py) and F # Fp, (Yi).

Proof. Let us begin with the following claim:
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Claim 3.5.2.1. Let 7w '(Py) = a;F1 + - + a,F,, be the irreducible decomposition as a
cycle, where a; € Zy. Renumbering F, ..., F,, we may assume Fp_= Fy. Then there are
X1, ..., X, € Qg such that if we set My = x1Fy + -+ - + x,F,, then deg, (A — My - F1) > 0
and deg (A —M;-F)=0fori=2,...,n.

Proof. By Lemma 2.2.1, there are x, ..., X, € Q such that
deg, (F,-Fi) deg,(F»-Fy) --- degy(F>-Fn))(x deg, (A - F»)

deg, (F,-F,) deg,(F,-F,) --- degy(F,-F.))\x, deg, (A - F,)

Replacing x; by x; + ta;, we may assume that x; > 0 for all i. We set My =
x1F1 + -+ + x,F,. Then deg, (A — M;-F;) =0foralli=2,...,n. Here we assume
that deg,,(A — My - F1) < 0. Then

0 <deg,(A-Fy) < deg,(M;-F),

and hence

n

deg, (M - My) = Z x; degy (M - F;)

i=1
= x; deg, (M - F1) + Zn: x;deg, (A -F;) > 0.
i=2
This contradicts to Zariski’s lemma (cf. Lemma 1.1.4). O
Let My, ..., M, be effective Q-Cartier divisors as the above claim. If we set
M=M;+---+M,,
then M is our desired Q-Cartier divisor. O
The following theorem is a partial answer to the fundamental question.
Theorem 3.5.3. Let D be a pseudo-effective arithmetic R-Cartier divisor of CO-type. If
d > 2 and D is numerically trivial on Xg, then I'y(X, D) # 0.
Proof. Let us begin with the following claim:
Claim 3.5.3.1. We may assume that X is reqular.

Proof. By [6, Theorem 8.2], there is a generically finite morphism uy : ¥ — X
of projective arithmetic varieties such that Y is regular. Clearly we have the
following:

D is pseudo-effective => p*(D) is pseudo-effective,
D is numerically trivial on X = p*(D) is numerically trivial on Yq

because \70\1(y*(f)) > \70\1@) for any arithmetic IR-Cartier divisor L of C%-type on

X. Let Divey(X)r be the vector space over R consisting of pairs (D, T), where D
is an R-Cartier divisor D and T is an F.-invariant (0, 0)-current of real type. We

can assign an ordering > to [/)iT/Cur(X)]R in following way:
(Dl, T1) > (Dz, Tz) — D1 > D1 and T1 > Tz.
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In the same way, we can define ﬁfcur(Y)R and the ordering on I/)RICur(Y)]R. Let
. : Diveu(Y)r = Divew(X)r
be a homomorphism given by u.(D, T) = (u.(D), u.(T)). Let
N : Rat(Y)* — Rat(X)*
be the norm map. Then it is easy to see the following;:
p.() = (N@)) for € Rat(v)*,
w.(u'(D)) = deg(Y — X)D for D € Diveo(X)R,
(D1, Th) 2 (Dy, Tp) = pu(D1,T1) 2 p(Ds, T).
The first equation yields a homomorphism
i : PDiv(Y)r — PDiv(X)g.
Thus the claim follows from the above formulae. O

First of all, by Theorem 2.3.3, Dg € PDiv(Xg)r. Thus there are z € @(X)IR,
a vertical R-Cartier divisor E and an F.-invariant continuous function 1 on X(C)

such that D = z + (E, n).

Claim 3.5.3.2. We may assume the following:

(a) E is effective.

(b) Thereare Py, ..., P, € Spec(Ok) such that Supp(E) C ' (P) U --- U 1w }(P)).

(c) Foreachi =1,...,1, there is a closed integral curve Fp, on X such that Fp, C

7Y (P;) and Fp, ¢ Supp(E).

Proof. Clearly we can choose Py, ..., P; € Spec(Ok) and B, ..., i € R such that if
we set E/ = E+ Byt ' (Py) + -+ - + B ' (P)), then E’ satisfy the above (a), (b) and (c).
Moreover, since the class group of Ok is finite (cf. Remark 3.4.8), there are n; € Z.,
and f; € O such that n,P; = f,Ox. Thus 170 }(P1) + - - - + Bt }(P;) € PDiv(X)R, and
hence the claim follows. O

Note that (E, 17) is pseudo-effective by Lemma 2.3.4. By Lemma 2.3.5, there is a
locally constant function A on X(C) such that (E, n) > (E, A) and (E, A) is pseudo-

effective. Let us fix an ample arithmetic Cartier divisor H = (H,h) on X. Then, by
Lemma 3.5.2, there is an effective vertical Q-Cartier divisor M such that

deg, (H-M-E)=0 and deg, (H-M-T)>0
for all vertical prime divisors I'.

Claim 3.5.3.3. There is a constant c such that if we set i’ = h + c, then
deg ((H MKy -H T 0)) >0
for all horizontal prime divisors I" on X.

Proof. Note that cTe\g((H, h) -Hd_z -([,0)) > 0. Thus it is sufficient to find a constant
¢ such that

deg((M,~c)-H' ~-(I,0) <0
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for all horizontal prime divisors I' on X. We choose Qj, ..., Q,, € Spec(Ok) and

a1,...,a, € Ry such that M < Y1, a;m1(Q;). We also choose a constant ¢ such
that

oK : QI > ) a;log#(Ox/Q).
=1
Then

deg(M,~o)-H - (T,0)
= ae\g ((Z am ™ (Q), —C) H T, O))
i=1
m, deg(HE? - To)
Z [K: Q] - log #(Ox/Qi) — cdeg(Hg - Tg) < 0.

Let L = (L, k) be an effective R-Cartier divisor of C’-type. Then, since
deg ((H M) -H (L, 0)) >0
by the above claim, we have

Jeg((H _MK)-H ., k))

> EéTg((H _MK)-H f kei(F)Y* > 0.
X(C)

N —

(0, k)) =

In particular,
deg(H-M ) -H ~-(E,1)>0

because (E, ) is pseudo-effective. Note that

— ) B 1 —
deg(H-M,I')-H - (E,A) = 5( Z Ag)f(ocl(H)d L

0eK(C)

Therefore, ZaeK(C) As 2 0, and hence, by Proposition 3.5.1, there are u, ..., u; € K*
and y1,...,¥s € Rsuch that y1(u1) + -+ - + y5(us) < (0, A). Thus

—

D=z+(En)2z+(0,A)2z+)(uw)+ +ys(us).
O

Corollary 3.5.4. If d = 2, D is pseudo-effective and deg(Dg) = 0, then the Zariski
decomposition of D exists.
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3.6. Multiplicative generators of approximately smallest sections. In this sub-
section, we define a notion of multiplicative generators of approximately smallest
sections and observe its properties. It is a sufficient condition to guarantee the

fundamental question (cf. Corollary 3.6.4). Let D be an arithmetic R-Cartier
divisor of C’-type on X. Let us begin with its definition.

Definition 3.6.1. We assume that FE(X, D) # 0. Let ¢4, ..., ¢; be R-rational func-
tions on X (i.e. ¢1,..., ¢ € Rat(X)g). We say @y, ..., ¢, are multiplicative generators

of approximately smallest sections for D if, for a given € > 0, there is 1y € Z.q such
that, for any integer n with n > ng and I'’*(X, nD) # 0, we can find a4,...,4; € R
satisfying @' - -- @' € Tx(X,nD) and

||(p? < @ lngsup < € min {[@lhgsup | § € T*(X, nD)}.

First let us see the following proposition.

Proposition 3.6.2. We assume that I'; (X D) # 0. Let ¢, ..., @1 be R-rational functions
on X. Then the following are equwalent

(1) @1,..., @ are multiplicative generators of approximately smallest sections for D.
(2) Thereare xy,...,x; € Rsuch that ¢ --- ;' € T{(X, D) and

P} @} llgsup < inf{ll llgsup | £ € TG, D)}

Note that if we set = @' --- @) in (2), then \ forms a multiplicative generator of
approximately smallest sections for D.

Proof. 1t is obvious that (2) implies (1), so that we assume (1). Let m be a positive
integer with (X, mD) # (. Here, let us check the following claim:

Claim 3.6.2.1. lim,,_,, (min{llhllnmg,Sulo | h e IT*(X, an)})l/nm exists and
tim (min (|l sp | B € P nmD)) ™" = inf (I fllgaup | £ € T(X, D))

Proof. 1f we set
ay = min{|/illumgsup | b € T(X, nmD)},
1/11}

7

thena,,,, <a,a, foralln,n’ > 0. Thusitis easy tosee thatlim,_,« ai/ = inf,-ola
which means

1/nm

tim (in{||lluug,sup | 1 € T*(X, nmD)))
= inf {min(|l1"/""llgsup | b € T*(X, nmD)}}.
On the other hand, by (3) in Lemma 3.1.1,

I(X, D) = T5(X, mD)'/™ = U (X, D)V

n>0

and hence the claim follows. O
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By Corollary 3.3.3, there exist x;, ..., x; € R such that if we set
= {(@,...,0) € R'| pf - € TR(X, D)},
then (xq,...,x) € ® and

x X s 7 a
||§011 T (Pll”g,sup - (al,}{}nf)eq) {ll(Pll T (pll”g,sup} .

On the other hand, by definition, for a given € > 0, there is ny € Z., such that,
for any integer n > 1y, we can find ¢y, ..., ¢; € R satisfying @' - - - @' € T§(X, nmD)
and

”(P§1 T (P?”nmg,sup <e min{”h”nmg,sup | he FX(X/ an)}
Thus, as (¢c;/nm, ..., c;/nm) € @,

||§03161 ' l”gsup < ”(P ”gsup
1/nm
<e (min{nhnnmg,sup | h € T*(X, nmD)})
for n > ny. Therefore, by Claim 3.6.2.1,

c1/nm c;/nm

X X, € 1- . 1/nm
”(;Dll T (Pll”g,sup <e 7111_1)1010 (mln{”h”nmg,sup | he FX(X/ an)})

= ¢ inf{l|fllgsup | f € TY(X, D)}
Thus (2) follows because € is arbitrary. O
By Corollary 3.4.6, if d = 1, then we can find ¢ € T'3(X, D) such that
llgsup = inf {idllgsup | € TR(X, D)}

Note that the above 1) yields a multiplicative generator of approximately smallest
sections. The same assertion holds if we assume the existence of multiplicative
generators of approximately smallest sections.

Theorem 3.6.3. We assume that I§(X,D) # 0. If D has multiplicative generators of
approximately smallest sections, then there exists 1 € I'y(X, D) such that

llgsup = inf {ipllgsup | € TR(X, D)}
Proof. By Proposition 3.6.2, it is sufficient to see the following inequality:
(3.6.3.1) inf {||fllgsup | £ € T5(X, D)} < inf {lillgoup | ¢ € TR(X, D)}
Letn e [{(X,D), D' =D +(n) and ¢’ = ¢ —log nl*. Then
(X, D) = {f/n| f e TY(X, D)},

T}(X,D’) = <z>/n|<z>er (X, D)},
19/1llg sup = Ibllgsup for € T3(X, D),

and hence
inf {J|f'llg sup | £ € TSX, D)} = inf {ll fllgaup | f € TSX, D)},
inf {ll¢'llgsup | ¢ € TR(X, D)} = inf {llpllgsup | ¢ € TH(X, D)}

Therefore, in order to see (3.6.3.1), we may assume that D is effective, that is, if we
set D =) drl',thendr >0 forallT.
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Let ¢ be an arbitrary element of F (X D) Then we can find fi, ..., f, € Rat(X)§
and ay,...,a, € R such that ¢ = .-« ffrand ay, ..., a, are linearly independent
over Q. Let S be the set of codimension one points of Uiz1 Supp((f))-

Claim 3.6.3.2. If € is a positive number, then ordr(¢p"/1*9) + dr > 0 for all T € S.

Proof. 1t is sufficient to show that ordr(¢p) + (1 + €)dr > O for all " € S. First of all,
note that ordr(¢) + dr > 0. If either ordr(¢) > 0 or dr > 0, then the assertion is
obvious, so that we assume ordr(¢) < 0 and dr = 0. Then

ordr(¢) = a; ordr(f1) + -+ - + a,ordr(f,) =0,

which yields ordr(f;) = --- = ordr(f,) = 0. This is a contradiction because I' €
S. O

As ¢1/(1+€) fr9 g0+ oy Claim 3.6.3.2, we can find 6 > 0 such that
fite- fireTR(X, D) for all (x4, ..., %) € R" with

1
X1 —a/(L+e€)|+---+|x,—a,/(1+e€)| <0.
We choose a sequence {t, = (t, ..., tqy)} e of Q such that
tn—a /(A +e)|+ -+t —a/(1+€)| <06
and lim,,t, = (a1/(1 +€),...,a,/(1 +€)). Then

inf (Il fllgsup | £ € TEGC DY <A™+ £ llgsup
because f . flr e TX o(X, D). Thus, by using Proposition 3.2.1, we obtain

inf {ll fllgsup | £ € TS D)} < 1Y g cup,
which implies mf{llfllgsup | f eIy (X D)} < |l¢llgsup by Proposition 3.2.1 again.
Therefore, we have (3.6.3.1). O

As a corollary, we have the following:

Corollary 3.6.4. We assume the following:

(1) T o D +(0,€)) # 0 for any € > 0.

2) D has multiplicative generators of approximately smallest sections.
Then TX(X, D) # 0.
Proof. By the above theorem, there exists ¢ € I';(X, D) such that

llgsup = inf {lidllgsup | € TR(X, D)}

Since T o D +(0,€)) # 0, we can find ¢ € T’} oX D) with [|pllgsup < ¢¢/2, and hence
||1,b||gsup /2. Therefore, ||Ylgsup < 1, as requlred O

Remark 3.6.5. (1) We assume that D € Div(X)q. Then FE(X, D) is dense in
I'X(X,D), that is, for f"---f;" € T'R(X,D) with a,...,a, € R and f,...,f, €

Rat(X)E, there is a sequence {(a1,, . .., 4:)},, iIN Q’ such that ”1” e fime FX (X D)
and lim, (@1, -.-,am) = (@1,..., ,) In particular, I’} (X D) # 0 if and only if
I'R(X, D) # 0. This fact can be checked as follows. Clearly we may assume that
ai,...,a, are linearly independent over Q. Let S be the set of codimension one
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points of |J;Supp((f;)) and D = }.rdrl (dr € Q). If (Qa; +--- + Qa,) N Q = {0},
then it is easy to see that ordr(f;" --- f/") +dr > O for allT € S. Thus the asser-
tion follows. If (Qa; + --- + Qa,) N Q = Q, then we may assume that a; € Q and
(Qaz +---+Qa,)NQ = {0}. Thus, as before, we can find a sequence {(az, . .., am)}
in Q"' such that £, --- f" € TE(X,( 1)+ D) and lim,,o(a2, - . ., ) = (a2, .- ., 4y),
as required.

(2) The assertion of (1) does not hold in general. For example, let ]PlZ =
Proj(Z[Ty, T:]) and a € R, \ Q. Then I'x (X, a(T1/Ty)) # @ and TE(X,a(Tl/TO)) = 0.
Indeed, z* € I'y(X,a(T1/Ty)), where z = Ty/T;. Moreover, if TE(X,a(Tl /Ty)) # 0,
then there are n € Z., and f € Q(z) such that (f) > na(z). In particular, f € Q[z],
so that we can set f(z) = Zf-:s cizl, where 0 < s <t ¢, # 0 and ¢; # 0. Note that
ordg(f) = s and orde(f) = —t. Thusna < s <t <na,and hencena =s =t. Thisisa
contraction because a € R, \ Q.

Finally let us consider a sufficient condition for multiplicative generators of
approximately smallest sections. Let us fix an F-invariant continuous volume

form Q) on X with fxm:) Q = 1. We assume that FE(X, D) # (. The natural inner
product (, ) 5 on H(X,nD) ® R is given by

(P, V) 5= j};(@ PV exp(—ng)Q (¢, ¥ € H (X, nD)).

For ¢1,...,¢ € H'(X,D)and A = (ay, ..., @) € Z,, 7' --- ¢/ is denoted by @* for
simplicity. Note that ¢ € H(X, |A|D), where |A| = a; + - - + a.

Definition 3.6.6. We say ¢, ..., € H(X,D) \ {0} is a well-posed generators for D
if, for n > 1, there is a subset X, of {A = (ay,...,a) € ZLO | 4y + -+ + a; = n} with
the following properties:
(1) {2 | A € £,} forms a basis of H(X,nD) ® Q over Q.
(2) Let (" | A € ¥,)z be the Z-submodule generated by {p* | A € L.} in
H(X,nD), thatis, (p” | A € )z = Y pcx, Z @*. Then

lim sup (#(H'(X, nD) /(@" | A € Z)2)) " = 1.

n—00

(3) For a finite subset {5, ..., {,} of H°(X,nD)g, the square root of the Gramian
of n,..., 1, withrespectto(, ) 5isdenoted by vol({ys, ..., 1,}) (for details,
see Conventions and terminology 6). Then

lim inf min [ e )W
e V4, ™) 5 vol(ip? | B € T, \ {A}})

Proposition 3.6.7. We assume that D is of C*-type. If ¢, ..., @ € H(X,D) \ {0} are
well-posed generators for D, then @1, . . ., @ are multiplicative generators of approximately
smallest sections for D

Aezn}:l.

Proof. For a given € > 0, we set €’ = €/6. First of all, there is a positive integer n
such that
ro = #(H'(X,nD)/(p" | A € £,)z) < ¢
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and

vol({p? | B € Z,}) —

Vgt @%)vol(ig? | Be I, \ {A})

for all n > ny and A € ¥,. Let W4 be the subspace generated by {@®}pcx,\14) Over
R. If 6,4 is the angle between @ and Wy, then, by Lemma 1.1.2

vol({g? | B € L))
V@ oMy vol(lg? | Be T, \ {A})

cos(04) = /1 — sin%(0.4)

< Vi—e2e <1-(1/2)e 2

forall A € X, because V1 —x <1 - (1/2)x for x € [0,1]. Let y € W4 and let O be
the angle between @” and y. Then, as 64 < min{6, = — 6},

Ko™, )] < cos(04) /(@%@ N, 1)
< (1= (1/2e7) (@, M) VY, ).

Let ¢ € I'*(X, nD). Then we can find a4 € Q (A € L,) such that ¢ = Yoaer, a29"
Note that r,a4 € Z for all A € L,,.. Let us choose A € X, such that as, # 0. We set

Y= Yoacr, g 2a@?. Then ¢ = an @™ + y. Since €"layy| > |ruaq,| > 1,
(P, ) = a4 (@™, 9™) + 2a4,(0™, y) + (v, )
> a5 (@™, @™) + (Y, y) = 2laa,| - Ko™, )l

z ailo((PAO/ (PAO> + <y, y) — 2laa,| AJ{@2, o) \/W(l _ (1/2)6_2”6/)

= (1-(1/2)e) (IaAol @, @) ~ \/W)2

+(1/2)e7 (a2 (@™, ™) + (v, )
> (1/2)6—2ne’ai0 <(PA0/ (PAO> — (1/2)6—4;16’ (EHGI(ZAO)Z«OAO, (PAO>
> (1/2)e " (@™, ™).

On the other hand, by Gromov’s inequality (cf. [20, Proposition 3.1.1]), choosing
a larger ng if necessarily, V|2, < e (p, ) for all n > ny and ¢ € H(X,nD).

sup

Moreover, we may also assume that 2 < "¢’ for all n > 1. Thus, as 12y = (D, D),
eNoliz,, = €6ne’||q5||§up > 235”6,”(]5”?up > 2¢°"(h, P)
> 265716’ ((1/2)6_4ne,<¢A0,([)A0>) — ene’<¢Ao’(PAo> > ”(PAollgupl
as required. m|

Example 3.6.8. Let ]P”lZ = Proj(Z[To, T1,...,T4l), Hi = {T; = 0} and z; = T;/T, for
i=01,...,d LetD = (Ho, g) be an arithmetic Cartier divisor of C*-type on
lPdZ. Moreover, let Q) be an F..-invariant continuous volume form on P4(C). We

sin(GA) =

and hence
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assume that there are continuous functions a and b on ]Rio such that g(zi,...,z4) =
a(lzlll R |Zd|) and

o-(E

—) b(|z1l, ..., |lzal)dz1 AdzZy A -+ - dzy A dZ,.
27

Arithmetic Cartier divisors considered in [21] satisfy the above condition.
Here let us see that 1, z, .. ., z; are well-posed generator for D. We set

Lo={@,...,a0) €Z% | ay + - +ag < nh.
Then {2} scr, forms a free basis of H(IP%, nHy). Moreover, if we set

zi =riexp2nV-10;) (i=1,...,4),
then
d

(4,24 ), = f H Zr?"JrA‘{+1 exp(2n V=1(A; — AY))
]R‘iOX[O,l]d i=1

x exp(—na(ry, ..., 1q)b(re,..., vra)dry - -drgdO; - --dO,,
which implies (z4,2%),,, = 0 for A, A’ € ¥, with A # A’, and hence

vol({z” | B € L,}) = v(z4,z4) vol({z® | B € £, \ {A}})
forallAeX,.

REFERENCES

[1] Z. Blocki and S. Kolodziej, On regularization of plurisubharmonic functions on manifolds,
Proc. of the A.M.S., 135 (2007), 2089-2093.
[2] J. -B. Bost, Potential Theory and Lefschetz theorems for arithmetic surfaces, Ann, scient. Ec.
Norm. Sup. 32 (1999), 241 - 312.
[3] J.I. Burgos Gil, A. Moriwaki, P. Philippon, M. Sombra, Arithmetic positivity on toric varieties,
in preparation.
[4] A. Chambert-Loir, Arakelov Geometry; Heights and Bogomolov conjecture,
(http://perso.univ-rennesl.fr/antoine.chambert-loir/2008-09/cga/cga.pdf).
[5] H. Chen, Positive degree and arithmetic bigness, preprint (arXiv:0803.2583 [math.AG]).
[6] A. J. de Jong, Smoothness, semi-stability and alterations, Publications Mathematiques
LLH.E.S., 83 (1996), 51-93.
[7] J.-P. Demailly, Complex Analytic and Differential Geometry.
[8] G. Faltings, Calculus on arithmetic surfaces, Ann. of Math. 119 (1984), 387-424.
[9] M. Hindry and J. H. Silverman, Diophantine Geometry: an Introduction, Graduate texts in
mathematics 201 (2000), Springer-Verlag.
[10] P. Hriljac, Height and Arakerov’s intersection theory, Amer. . Math., 107 (1985), 23-38.
[11] J. Jost, Postmodern Analysis (3rd Edition), Universitext (2005), Springer-Verlag.
[12] J.Lipman, Desingularization of two-dimensional schemes, Ann. of Math., 107 (1978), 151-207.
[13] V. Maillot, Géométrie d’Arakelov des variétés toriques et fibrés en droites intégrables,
Mémoires de la Société mathématique de France (nouvelle série) 83 (2000).
[14] J. Milnor, Morse Theory, Annals of Mathematical Studies, vol. 51, Princeton.
[15] A. Moriwaki, Arithmetic Bogomolov-Gieseker’s inequality, Amer. J. Math. 117 (1995), 1325-
1347.
[16] A.Moriwaki, Hodge index theorem for arithmetic cycles of codimension one, Mathematical
Research Letter 3, 173-183 (1996).



TOWARD DIRICHLET’S UNIT THEOREM ON ARITHMETIC VARIETIES 55

[17] A.Moriwaki, Continuity of volumes on arithmetic varieties, J. of Algebraic Geom. 18 (2009),
407-457.

[18] A. Moriwaki, Continuous extension of arithmetic volumes, International Mathematics Re-
search Notices, (2009), 3598-3638.

[19] A.Moriwaki, Estimation of arithmetic linear series, Kyoto J. of Math., 50 (Memorial issue for
the late Professor Nagata) (2010), 685-725.

[20] A. Moriwaki, Zariski decompositions on arithmetic surfaces, to appear in Publ. Res. Inst.
Math. Sci., see also (arXiv:0911.2951v4 [math.AG]).

[21] A. Moriwaki, Big arithmetic divisors on the projective spaces over Z, Kyoto J. of Math., 51
(2011), 503-534.

[22] A. Moriwaki, Numerical characterization of nef arithmetic divisors on arithmetic surfaces,
(arXiv:1201.6124v4 [math.AG]).

[23] L. Szpiro, Degrés, intersections, hauteurs, Astérisque, 127, (1985), 11-28.

[24] S. Zhang, Positive line bundles on arithmetic varieties, J]. of AMS, 8 (1995), 187-221.

[25] S. Zhang, Small points and adelic metrics, J. of Algebraic Geom. 4 (1995), 281-300.

DEePARTMENT OF MATHEMATICS, FacuLTY OF SciENcE, KyoTo UniversiTy, KyoTo, 606-8502, JarAN
E-mail address: moriwaki@math.kyoto-u.ac. jp



