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Geometrical Formulation of 3D Space-Time
Finite Integration Method

Jun Kawahara, Takeshi Mifune, and Tetsuji Matsuo, Member, IEEE

Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan

A geometrical formulation of a space-time finite integration (FI) method is studied for application to electromagnetic wave
propagation calculations. Based on the Hodge duality and Lorentzian metric, a modified relation is derived between the incidence
matrices of space-time primal and dual grids. A systematic method to construct the Maxwell grid equations on the space-time primal
and dual grids is developed. The geometrical formulation is implemented on a simple space-time grid, which is proven equivalent
to an explicit time-marching scheme of the space-time FI method.

Index Terms—Finite integration method, graph theory, Hodge duality, space-time grid.

I. INTRODUCTION

THE finite integration (FI) method [1]-[5] has been studied
to accomplish time-domain electromagnetic field compu-

tations using unstructured spatial grids. The FI method derives
grid-based Maxwell equations using incidence matrices based
on the dual computational-grid geometry. Graph theory en-
ables a systematic construction of the spatial dual grid from
the primal grid geometry. However, the geometry description
is restricted to the spatial domain. Accordingly, similar to the
FDTD method [6], the FI method uses a uniform time-step,
which is restricted by the Courant-Friedrichs-Lewy condition
[7] based on the smallest spatial grid size.

Previous work [8] introduced a space-time FI method that
achieves non-uniform time-steps naturally on the three- di-
mensional (3D) space-time grid with 2D space. The Hodge
dual grid was proposed in [9] to construct the 4D space-time
grid for electromagnetic field computation. An application of
space-time FI method to a photonic band computation was
reported in [12]. However, it is not always a simple task to
construct the Maxwell grid equations on these dual space-
time grids. To realize a systematic derivation of Maxwell grid
equations, a graph-theory-based formulation for the space-time
dual grids is required. This paper discusses a geometrical
formulation of the 3D space-time FI method that is based
on the Hodge duality and the Lorentzian metric but is not
a straightforward extension of the conventional spatial FI
formulation.

II. FINITE INTEGRATION METHOD ON A SPACE-TIME
GRID

A. Electromagnetics in Space-Time

The Maxwell equations are described in the differential form
as

dF = 0, dG = J. (1)
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In the coordinate system (x0, x1, x2, x3) = (t, x, y, z), F,G
and J are written as

F = −Σ3
i=1Eidx

0dxi +Σ3
j=1Bjdx

kdxl,

G = Σ3
i=1Hidx

0dxi +Σ3
j=1Djdx

kdxl,

J = cρdx1dx2dx3 − Σ3
j=1cJjdx

0dxkdxl (2)

where c is the speed of light, ρ is the electric charge density
and (j, k, l) is a cyclic permutation of (1, 2, 3). The integral
form of (1) is given as∮

∂Ωp

F = 0,

∮
∂Ωd

G =

∫
Ωd

J (3)

where Ωp and Ωd are hypersurfaces in space-time.
For simplicity, assuming the uniformity along the z-

direction, this paper discusses the FI formulation for the
electromagnetic field (Bz, Ex, Ey) in the (w, x, y)-3D free
space-time [8], where w = ct. Accordingly, F and G are
written as

F = Bzdxdy + Eydydw − Exdwdx,
G = Hzdw −Dydx+Dxdy (4)

where (Ex, Ey) = (Ex/c,Ey/c), Hz = Hz/c. Defining 3D
vectors F and G as

F = (Bz, Ey,−Ex), G = (Hz,−Dy, Dx) (5)

the integral form is written without source term as∮
S

F · ndS = 0,

∮
C

G · tds = 0 (6)

where n is the normal vector at each point on the closed
surface S and t the tangent vector at each point on the closed
curve C. The Euclidean metric is used for the dot product
operation.

The space-time FI method uses discretized variables as

f =

∫
p

F · ndS, g =

∫
s̃

G · tds (7)
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where p is a face of a primal grid and s̃ is an edge of a dual
grid. To express the constitutive equation between f and g
simply, n and t are given as [8]

n = (nw, nx, ny), t = (nw,−nx,−ny). (8)

Fig. 1 illustrates the geometrical relation between n and t,
where s̃ is orthogonal to p in the Lorentzian 3D space-time.
The relation between F · n and G · t is given as

F · n = ZG · t (9)

where Z is the impedance of the medium. Thus, f is related
to g as

f = zg (10)

z = Z
∆S

∆l
(11)

where ∆S is the area of p and ∆l is the length of s̃.
Ref. [9] extended the dual-grid construction above to the

4D space-time, called the Hodge dual grid. It is based on the
Hodge duality with the Lorentzian metric between F and G,
where the metric is modified in materials depending on the
speed of light.

Fig. 1: Relation of primal face and dual edge in space-time
grid when (a) n · t > 0 and (b) n · t < 0.

Fig. 2: Edges and faces on (a) the primal grid and (b) the dual
grid.

B. Explicit Time-Marching Scheme
Refs. [8] and [9] have shown explicit time-marching

schemes for 3D and 4D space-time FI analyses of electromag-
netic wave propagation. This subsection presents an explicit

time-marching scheme on a simple 2D space-time grid with
1D space to relate to the geometrical formulation described
later.

Fig. 2 illustrates 2D space-time primal and dual grids that
have temporal step sizes ∆w and ∆w/2 and spatial step size
∆x along the x- and y- directions.

Based on (5) and (7), the variables in Fig. 2 have the
following meaning; b: magnetic flux, e: electromotive force, f :
the composition of b and e, h: magnetomotive force, d: electric
flux, and g: the composition of h and d. The arrow directions
in Fig. 2 are based on (7) and (9) using the definition (5) and
(8). Note that the arrow direction of d is opposite to that of e.
These do not correspond directly to the directions of E and
D in the Euclidean space.

The explicit time-marching scheme is given as follows.
According to a numerical examination in [10], the scheme
is stable when (la − 1)2 + (∆w)2/2 < 1.

Variables d
n+1/4
2i−1 and e

n+1/4
2i−1 are given as

d
n+1/4
2i−1 = d

n−1/4
2i−1 − (hn

2i − hn
2i−1) (12)

e
n+1/4
2i−1 = ze1d

n+1/4
2i−1 , ze1 = Z

∆w∆x

2la
. (13)

On the primal grid, fn+1/4
2i−1 , fn+1/4

2i and consequently g
n+1/4
2i−1 ,

g
n+1/4
2i are given as

f
n+1/4
2i−1 = −e

n+1/4
2i−1 + bn2i−1,

f
n+1/4
2i = e

n+1/4
2i−1 + bn2i (14)

g
n+1/4
k =

1

zf
f
n+1/4
k (k = 2i− 1, 2i), zf = Z

4∆x2

∆w
.(15)

On the dual grid, d2i and e2i are updated using

d
n+1/2
2i = d

n−1/2
2i + hn

2i − hn
2i+1

+g
n−1/4
2i − g

n−1/4
2i+1 + g

n+1/4
2i − g

n+1/4
2i+1 (16)

e
n+1/2
2i = ze2d

n+1/2
2i , ze2 = Z

∆w∆x

2− la + (∆w)2/4
. (17)

Similarly, fn+3/4
2i−1 , fn+3/4

2i and g
n+3/4
2i−1 , gn+3/4

2i are given as

f
n+3/4
2i−1 = f

n+1/4
2i−1 + e

n+1/2
2i−2 ,

f
n+3/4
2i = f

n+1/4
2i − e

n+1/2
2i (18)

g
n+3/4
k =

1

zf
f
n+3/4
k (k = 2i− 1, 2i). (19)

On the dual grid, dn+3/4
2i−1 and e

n+3/4
2i−1 are obtained from

d
n+3/4
2i−1 = d

n+1/4
2i−1 + g

n+1/4
2i−1 − g

n+1/4
2i

+g
n+3/4
2i−1 − g

n+3/4
2i (20)

e
n+3/4
2i−1 = ze1 d

n+3/4
2i−1 . (21)

Hence, bn+1
2i−1, bn+1

2i and hn+1
2i−1, hn+1

2i are given by

bn+1
2i−1 = f

n+3/4
2i−1 − e

n+3/4
2i−1 ,

bn+1
2i = f

n+3/4
2i + e

n+3/4
2i−1 (22)

hn
k =

1

zb
bnk (k = 2i− 1, 2i), zb = Z

2∆x2

∆w
. (23)
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C. Incidence Matrices on 3D Euclidean Space

The FI method is generally formulated with the Maxwell
grid equations using the incidence matrices from graph theory.

Let arrays {n}, {s}, {p} and {v} denote the sets of nodes,
edges, faces, and volumes in the primal grid, respectively.
These are related by incidence matrices [G], [C] and [D] [1],
[2], [11] as

∂{s} = [G]{n}, ∂{p} = [C]{s}, ∂{v} = [D]{p} (24)

where ∂ denotes restriction to the boundary. Similarly, the sets
of nodes, edges, faces and volumes in the dual grid are related
as

∂{s̃} = [G̃]{ñ}, ∂{p̃} = [C̃]{s̃}, ∂{ṽ} = [D̃]{p̃}. (25)

In the Euclidean space, the dual grid is generally constructed
so the incidence matrices satisfy

[C̃] = [C]T, [D̃] = −[G]T, [G̃] = −[D]T. (26)

The relation above derives the Maxwell grid equations sys-
tematically from the primal grid geometry.

The space-time primal and dual grids based on (8) have
a similar property to that described by (26), which gives
the one-to-one correspondence between the faces {p} on the
primal grid and the edges {s̃} on the dual grid. However,
the directional relation between {p} and {s̃} determined by
(8) differs from that given by (26). The following subsection
derives the matrix relation for the space-time primal and dual
grids based on (8).

D. Incidence Matrices on 3D Space-Time

A simple space-time primal grid illustrated in Fig. 3 is ex-
amined. Assuming spatial periodicity in the grid geometry, the
edges si and faces pi are periodically numbered for notational
simplicity. Moreover, the edges and faces perpendicular to
the y-axis is omitted. The direction of edges s1, s2, s3, s′1,
s′2 is along the +y-direction. The edge s̃i on the dual grid
corresponds to the face pi on the primal grid, where their
directions satisfy (8).

Fig. 3: Edges and faces on (a) the primal grid and (b) the dual
grid.

The geometrical relation between edges and faces on the
primal grid is represented by the following equations.

∂p1 = s1 − s2, ∂p2 = −s1 + s2, ∂p3 = s1 − s3,

∂p4 = −s2 + s3, ∂p5 = s2 − s3, ∂p6 = s2 − s′2,

∂p7 = s3 − s′2, ∂p8 = −s3 + s′2, ∂p9 = s3 − s′1. (27)

To examine the relation between [C] and [C̃], a subset of {s}
and a subset of {p} are defined as

{s}sb = [s1 s2 s3]
T, {p}sb = [p1 p2 · · · p9]T. (28)

Omitting s′1, s′2, relation (27) is written {p}sb = [C]sb{s}sb
where [C]sb is a submatrix of [C] and given as

[C]Tsb =

 1 −1 1 0 0 0 0 0 0
−1 1 0 −1 1 1 0 0 0
0 0 −1 1 −1 0 1 −1 1

 . (29)

On the dual grid, the relation between edges and faces is
found to be:

∂p̃1 = s̃1 − s̃2 − s̃3 + s̃′9,

∂p̃2 = −s̃1 + s̃2 − s̃4 + s̃5 − s̃6 + s̃′6 − s̃′7 + s̃′8,

∂p̃3 = s̃3 + s̃4 − s̃5 + s̃7 − s̃8 − s̃9. (30)

Corresponding to {s}sb and {p}sb, subsets of {p̃} and {s̃} are
defined as

{p̃}sb = [p̃1 p̃2 p̃3]
T, {s̃}sb = [s̃1 s̃2 · · · s̃9]T. (31)

Omitting s̃′6, s̃′7, s̃′8, s̃′9, relation (30) is written as {p̃}sb =
{C}sb{s̃}sb where {C̃}sb is a submatrix of [C̃] and given as

[C̃]sb =

 1 −1 −1 0 0 0 0 0 0
−1 1 0 −1 1 −1 0 0 0
0 0 1 1 −1 0 1 −1 −1

 .

(32)
Comparing [C̃]sb with [C]Tsb shows that the elements of [C̃]sb
at the 3rd, 6th, and 9th columns have opposite signs to the
corresponding elements of [C]Tsb. This sign inversion caused
by (8) is illustrated in Fig. 1. If n and t given by (8) satisfy
n · t < 0, the direction of the edge is opposite to the direction
of the face as depicted in Fig. 1(b).

Consequently, the incidence matrix [C̃] of dual grid based
on (8) is given as

[C̃] = [C]∗T (33)

where the operator ∗T is determined by the mapping

c̃ij =


cji, (cji ̸= 0 and n · t > 0)

−cji, (cji ̸= 0 and n · t < 0)

0, (cji = 0)

. (34)

This relation is a consequence of the Hodge duality between
F and G based on the Lorentzian metric in the 3D space-time.
Using n · t = n2

w−n2
x−n2

y , the matrix [C]∗T can be obtained
without the need for the dual grid.

Using [C̃], the electromagnetic field equations on the dual
grid such as (12), (16) and (20) are expressed as

[C̃]{g} = 0 (35)

where {g} consists of the variables defined by the second
equation of (7) on the edges corresponding to {s̃}.
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The relation between faces and volumes on the primal grid
is represented similarly. For instance, the volume surrounded
by p1, p3, and p4 is written:

∂v1 = −p1 + p3 + p4. (36)

These relations are represented by matrix [D] in the form given
by the third equation of (24). Using [D], the electromagnetic
field equations on the primal grid such as (14), (18) and (22)
are expressed as

[D]{f} = 0. (37)

where {f} consists of the variables defined by the first
equation of (7) on the faces corresponding to {p}.

Fig. 4 summarizes the geometric relation above. In the 3D
Euclidean space, E and B are assigned separately to the edges
and faces, respectively whereas these are unified into F and
assigned to the faces in the 3D space-time.

Fig. 4: Duality and matrix relations.

E. Maxwell Grid Equations

From (10), {g} is related to {f} as

{f} = [z]{g} (38)

where [z] is a diagonal matrix of which elements are given by
(11).

Equations (33), (35), (37), and (38) derive the space-time
Maxwell grid equations systematically[

[D]
[C]∗T[z]−1

]
{f} = 0. (39)

By modifying the impedance matrix, another formulation
is possible, where relation [C̃] = [C]T holds. The modified
impedance matrix [z∗] is defined by replacing the elements of
[z] by −Z∆S/∆l when n · t < 0. Thereby, [C]∗T[z]−1 =
[C]T [z∗]−1 holds.

F. Application Example in 2D Space-Time Grid

The FI method formulated by (39) is implemented and
compared with the FI scheme explained in Subsection II.B.
The propagation of an electromagnetic wave with components
(Ey, Bz) is computed on the periodic 2D space-time grid
shown in Fig. 2 with ∆x = 1, i = 1, · · · , 50, ∆w = 0.5, n =
0, · · · , 80, and la = 1. The initial condition at w = 0 is given
as Bz = exp(−x2/25) and Ey = 0. The impedance matrix
[z] consists of ze1, ze2, zf , and zb that are given as (13), (15),

Fig. 5: Magnetic flux distribution at w = 40.

(17) and (23). The spatially periodic boundary condition is
imposed where en0 = en80 and hn

81 = hn
1 .

Fig. 5 shows the distribution of Bz at w = 80∆w, where
the simulation result given by the FDTD method is also shown
for comparison. The FI formulation (39) is equivalent to the
FI scheme given in II.B.

III. CONCLUDING REMARKS

A geometrical formulation of the 3D space-time FI method
was presented that provides a systematic method to construct
the Maxwell grid equations on the space-time primal and dual
grids. The relation between the incidence matrices of these
space-time grids was derived based on the Hodge duality with
Lorentzian metric.

Practically, the systematic formulation is used to derive
or confirm the explicit time-marching scheme. The extension
to the 4D space-time and its practical application will be
addressed in the near future.
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