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Abstract 

Background: SDF-1/CXCR4 signaling plays key roles in directed cell migration under physiological 

and pathological conditions. To develop agonist-based CXCR4 probes for detection of CXCR4 

expression on cell lines and metastatic tumors, structure-activity relationship analyses of fluorescent 

SDF-1 derivatives were carried out. Results: Several SDF-1 derivatives with a single fluorescent 

label were designed and synthesized. Modification of the SDF-1 C-terminus with AlexaFluor® 488 

or tetramethylrhodamine provided potent CXCR4 probes. Using a potent probe, a novel binding 

inhibition assay was established for biological evaluation of potential CXCR4 ligands. Conclusions: 

SDF-1 derivatives with C-terminal modification exhibit equipotent binding with CXCR4 and an 

alternative SDF-1 receptor CXCR7 to unlabeled SDF-1. The SDF-1 derivatives are applicable to 

flow cytometry to detect the receptor expression and identify binding compounds for CXCR4. 

 

Key terms 

Chemokine: Chemotactic cytokines to regulate a number of biological processes including 

leukocyte trafficking, hematopoiesis and angiogenesis by the interaction with G-protein-coupled 

receptors. 

Receptor Internalization: Translocation of cell surface receptors into intracellular compartment to 

induce desensitization and degradation of the receptors. 

Polyphemusin II: An anti-microbial peptide isolated from the hemocytes of a horseshoe crab 

Limulus polyphemus. 

Bicyclam: Molecules that contain two macrocyclic nitrogen heterocycles to form metal chelate 

complexes.  

Click chemistry: Facile and simple reactions to efficiently produce the target substances under mild 

conditions such as Huisgen 1,3-dipolar cycloaddition between an azide and an alkyne. 
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Introduction 

Stromal cell-derived factor (SDF)-1/CXCL12 belongs to a family of chemoattractant cytokines 

known as chemokines that interact with CXC chemokine receptor 4 (CXCR4) on various leukocytes 

[1,2]. CXCR4-expressing immune cells migrate through an SDF-1 gradient, which is highly secreted 

from inflammatory tissues, leading to onset of the immune response under physiological conditions 

[3]. The SDF-1/CXCR4 axis also contributes to the migration of stem/progenitor cells to appropriate 

locations during embryogenesis and organogenesis, and thus knockdown of the SDF-1 or CXCR4 

gene in mice causes embryonic lethality [4,5]. In addition to these physiological findings, 

pathological roles of CXCR4 in several diseases have been reported. CXCR4-overexpressing 

malignant tumor cells metastasize toward distinct organs present in a high level of SDF-1, such as 

the direction of breast cancer cells toward the lung, liver and bone marrow [6]. CXCR4 also plays an 

essential role in the entry of human immunodeficiency virus type (HIV)-1 into T cells [7,8]. 

Therefore, CXCR4 is a promising molecular target for anti-metastatic and anti-HIV agents, and for 

diagnostic agents for CXCR4-expressing malignant tumors [9–13]. Recently, CXCR7/RDC1 was 

identified as an alternative receptor for SDF-1 [14]. CXCR7 is also related to cancer progression and 

HIV infection [15,16], and functions as a decoy receptor that does not trigger G-protein-dependent 

downstream signaling (e.g. calcium flux) upon SDF-1 interaction, unlike the case for CXCR4 

[17,18].  

To fully appreciate the physiological and pathological roles of CXCR4 and CXCR7, 

tracer-conjugated receptors have been employed for visualization of the receptor localization and 

trafficking [19,20]. For example, when a fluorescent protein such as GFP was conjugated to the 

CXCR4 C-terminus, SDF-1-mediated CXCR4 internalization and homodimer/heterodimer formation 

were observed by bioluminescence resonance energy transfer and fluorescence resonance energy 

transfer [21–23]. In addition, an anti-CXCR4 antibody was applied to the detection of the receptors 

on cells [24,25]. Fluorescent CXCR4-selective antagonists including TY14003 have been also 
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developed from the polyphemusin II-derived antagonist T140 [11,12] and from a bicyclam-based 

antagonist [26]. Conversely, there are few reports of fluorescently tagged SDF-1 derivatives, which 

can be used for live cell imaging after the internalization of CXCR4 and CXCR7. Herein, we report 

the design, synthesis and biological evaluation of fluorescent SDF-1 derivatives. 

 

Experimental section 

Synthesis of Fluorescent SDF-1 Derivatives 

Protected peptide resins for the SDF-1 derivatives were synthesized by Fmoc-based solid-phase 

peptide synthesis on NovaSyn TGR-resin. For C-terminal Asn67 preparation, Fmoc-Asp-Ot-Bu, 

1,3-diisopropylcarbodiimide and HOBt·H2O were agitated with NovaSyn TGR-resin for 2 h in DMF. 

For the synthesis of SDF-1(27-Pra), SDF-1(63-Pra) and SDF-1(67-Pra), Lys27, Glu63 and Asn67 

were substituted with propargylglycine (Pra), respectively, using Fmoc-Pra-OH. Treatment of the 

resins with a trifluoroacetic acid (TFA)/1,2-ethanedithiol (EDT)/H2O/m-cresol/thioanisole 

(80:5:5:5:5) cocktail for 2 h at room temperature, followed by air oxidation, provided the expected 

SDF-1 derivatives containing a propargyl moiety. For the preparation of AlexaFluor® 488 (AF488)- 

or tetramethylrhodamine (TMR)-labeled peptides, the Pra-labeled peptides (1.5 mM; 39 L in 

DMSO) were treated with 50 mM AF488-azide or 50 mM TMR-azide (2.4 L in DMSO; 

Invitrogen), respectively, in the presence of 100 mM CuSO4·5H2O (1.5 L in H2O) and 100 mM 

sodium ascorbate (2.95 L in H2O). The crude products were purified by preparative HPLC on a 

Cosmosil 5C18-AR-300 preparative column (Nacalai Tesque; 20  250 mm; flow rate, 10 mL/min) 

to afford the expected peptides. All peptides were characterized by micromass ZQ LC-MS (Waters) 

and the purities were calculated to be >95% by HPLC on a Cosmosil 5C18-AR-300 analytical 

column (Nacalai Tesque; 4.6  250 mm; flow rate, 1 mL/min) at 220-nm absorbance. The HPLC 

profiles of the products are shown in Supplemental Figure 1. The characterizing data for the purified 

products are shown in Supplemental Table 1.  
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[125I]-SDF-1 binding and displacement  

To evaluate the binding affinities of the SDF-1 derivatives labeled by the green fluorophore 

[SDF-1(63-AF488) and SDF-1(67-AF488)], competitive inhibition assays with GF/B filters were 

performed using [125I]-SDF-1 according to a previously described procedure [13]. To evaluate the 

binding affinities of the SDF-1 derivatives labeled by the red fluorophore [SDF-1(27-TMR), 

SDF-1(63-TMR) and SDF-1(67-TMR)], CXCR4 (5.0 g) and CXCR7 (9.3 g) membranes with 0.5 

g of agglutinin-coupled SPA beads type A (GE Healthcare) were incubated with 0.5 nM 

[125I]-SDF-1 and increasing concentrations of compounds in 100 L of binding buffer (25 mM 

HEPES pH 7.4, 50 M MgCl2, 1 M CaCl2, 140 mM NaCl, 250 mM sucrose and 0.5% BSA in H2O) 

for 1 h at room temperature. The reaction mixtures were measured by a TopCount (Packard). Data 

were analyzed using GraphPad Prism software (GraphPad Software Inc.). 

 

Intracellular calcium mobilization 

Calcium mobilization was evaluated by aequorin assay by the Euroscreen FAST service from 

Euroscreen (Gosselies, Belgium). Briefly, CHO-K1 cells expressing the human recombinant CXCR4, 

were grown for 18 h prior to the test in media without antibiotics. The cells were detached by gentle 

flushing with PBS-EDTA (5 mM EDTA), recovered by centrifugation and resuspended in assay 

buffer (DMEM/F-12 with HEPES + 0.1% BSA protease free). Cells were incubated at room 

temperature for at least 4 h with coelenterazine h (Molecular Probes). 50 l of cell suspension was 

injected on 50 l of test compound (200 nM) plated in a 96-well plate. The resulting emission of 

light was recorded using the Hamamatsu Functional Drug Screening System 6000 (FDSS 6000). 

 

Establishment of Cell Lines 
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pcDNA5/FRT/TO-CXCR4 and pcDNA5/FRT/TO-CXCR7 were prepared as previously 

described [11]. Flp-In 293 cells or Flp-In CHO cells (Invitrogen) were maintained in Dulbecco’s 

modified Eagle’s medium (Sigma) or F-12 medium (Wako), respectively. These were supplemented 

with 10% heat-inactivated fetal bovine serum, 100 g/mL zeocin, 100 U/mL penicillin and 100 

g/mL streptomycin in 5% CO2 at 37°C. The CXCR4 mutant constructs were cotransfected with 

pOG44 (Invitrogen), an expression vector for Flp recombinase, into Flp-In 293 cells according to the 

manufacturer’s protocol. The cells were cultured in the above medium in the presence of 100 g/mL 

hygromycin. The cells showing resistance to hygromycin were selected, and the expression of 

CXCR4 was examined by flow cytometry as CXCR4-positive cells.  

 

Flow Cytometry Analyses 

HEK293 cells with transfection of pcDNA5/FRT/TO-CXCR4 were detached using trypsin and 

incubated with 5 nM SDF-1(67-AF488) or TY14003 in 500 μL of PBS containing 1% BSA at 0°C 

for 20 min in the presence of TF14016 [9], FC131 [10] or AMD3100 [27] as an inhibitor. After the 

incubation, the cells were analyzed using a FACSCalibur (BD Biosciences). Ten thousand events on 

probe-binding cells were analyzed per sample, and the data were collected from FL1 in the log mode. 

The numbers of stained cells were plotted for each competitor concentration. Data were analyzed 

using CellQuest Pro software (BD Biosciences).  

 

Confocal Microscopy Analyses of Ligand Internalization 

CHO cells (with or without transfection) were plated on 35-mm glass-bottomed dishes and 

cultured in F-12 medium containing 10% heat-inactivated fetal bovine serum supplemented with 

penicillin/streptomycin and hygromycin. Cells were washed once with cold F-12 medium, and 

incubated with fluorescent ligands [SDF-1(67-AF488) or SDF-1(67-TMR) (100 nM)] in F-12 
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medium (100 L) at 37 °C for 30 min. After rinsing once with cold F-12 medium, cells were 

observed by confocal microscopy (Eclipse Ti-E: Nikon). 

 

Results and Discussion 

Preparation and Biological Evaluation of the Fluorescent SDF-1 Derivatives 

SDF-1 comprises three major regions, namely an N-terminal region that plays a critical role in 

binding to CXCR4, a central -sheet core structure and a C-terminal -helix (Figure 1a) [28]. A 

two-step/two-site model suggests that the N-terminal region of SDF-1 binds to the CXCR4 groove, 

leading to a conformational change of the receptor for G-protein binding and downstream signaling 

[28,29]. The central and C-terminal regions are involved in CXCR4 activation to induce chemotaxis 

[30]. To date, there have been two reports of fluorescent SDF-1 derivatives, in which the N- or 

C-terminus was modified. These derivatives were employed for multiparameter flow cytometry and 

for monitoring the CXCR4 localization [24,31]. However, comparative structure-activity relationship 

analyses for fluorescent SDF-1 derivatives have not been reported. Initially, we designed SDF-1 

derivatives modified with several types of fluorophores at the N-terminus, Lys27 in the central 

region and Glu63 or Asn67 in the C-terminus.  

The SDF-1 derivatives were synthesized by a standard Fmoc-based solid-phase synthesis, in 

which propargylglycine (Pra) was employed at the labeling sites (Lys27, Glu63 and Asn67). The 

resulting protected peptide resins were subjected to final deprotection and subsequent air oxidation 

[32]. Treatment of the alkyne-containing SDF-1 derivatives with a fluorophore-conjugated azide 

including AF488 or TMR in the presence of CuSO4 and sodium ascorbate provided the expected 

fluorescent SDF-1 derivatives (Figure 1b). For the preparation of SDF-1(N-FL), N-terminal 

modification of the protected peptide resin was carried out using carboxyfluorescein.  

 

Binding Affinities of the Fluorescent SDF-1 Derivatives for CXCR4 and CXCR7 
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The binding affinities of the SDF-1 derivatives were evaluated as their inhibitory potencies 

toward [125I]-SDF-1-binding to CXCR4 (Table 1). The bioactivity of SDF-1(N-FL) was significantly 

less potent compared with unlabeled SDF-1. Four SDF-1 derivatives with modification at the 

C-terminal region [SDF-1(63-AF488), SDF-1(67-AF488), SDF-1(63-TMR) and SDF-1(67-TMR)] 

exhibited equipotent activities to unlabeled SDF-1, regardless of the fluorophores, consistent with a 

previous report that these regions were irrelevant to CXCR4 binding [30,31]. Modification of the 

central -sheet region with TMR [SDF-1(27-TMR)] led to a slight decrease in the binding affinity 

for CXCR4, while the precursor propargyl analog [SDF-1(27-Pra)] exhibited equipotent activity to 

unlabeled SDF-1. Although a direct interaction of the central region of SDF-1 with CXCR4 has not 

been reported, the iminium cation or bulky chromophore group of TMR may interfere with the 

possible interaction between SDF-1 and CXCR4 [33].  

In addition, we investigated the binding affinities of the SDF-1 derivatives for CXCR7, which is 

known to be an alternative receptor for SDF-1 [14]. Similar to the case for CXCR4 binding, a 

significant decrease in the receptor binding of N-terminally modified SDF-1(N-FL) was observed, 

suggesting that the SDF-1 N-terminus is critical for the receptor binding to CXCR7 as well. 

Modification at the central region [SDF-1(27-TMR)] also significantly decreased the bioactivity for 

CXCR7. In contrast, replacement of Lys27 with Pra [SDF-1(27-Pra)] did not affect the bioactivity, 

although a lower number of positively charged residues in SDF-1 was reported to reduce CXCR7 

binding [34]. These findings suggest that the introduction of a fluorophore functional group into the 

central region impairs the interaction with CXCR7. The fluorescent SDF-1 derivatives with 

C-terminal modification [SDF-1(63-AF488), SDF-1(67-AF488), SDF-1(63-TMR) and 

SDF-1(67-TMR)] reproduced the binding affinity for CXCR7. This is the first report on fluorescent 

probes for CXCR7, which would be applicable to further investigations of SDF-1/CXCR7 signaling. 
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Ca2+ Mobilization and Receptor Internalization of CXCR4-expressing Cells by Fluorescent 

SDF-1 Derivatives 

CXCR4-mediated Ca2+ mobilization by the SDF-1 derivatives was evaluated using 

aequorin-mediated bioluminescence. SDF-1(27-TMR) showed moderate agonistic activity for 

CXCR4, while the fluorescent SDF-1 derivatives with C-terminal modification were almost 

equipotent to unlabeled SDF-1 (Figure 2). This result indicated that the fluorescent labeling at the 

C-terminus did not impair the agonistic activity via G protein-dependent signaling. 

It has been reported that CXCR4 and CXCR7 are internalized by stimulation by SDF-1 [14,21]. 

To demonstrate translocation of fluorescent SDF-1 derivatives upon receptor binding, 

CXCR4-expressing CHO cells were treated with SDF-1(67-AF488) and SDF-1(67-TMR). The 

internalization of SDF-1 into CXCR4-expressing cells with both fluorescent SDF-1 derivatives after 

30 min incubation at 37 °C were observed, whereas non-transfected CHO cells were not stained 

(Figure 3) [35]. In addition, internalization of the fluorescent SDF-1 derivatives in 

CXCR7-expressing CHO cells was also observed (Figure 3). Taken together, it was demonstrated 

that these fluorescent SDF-1 derivatives reproduced the bioactivities of intact SDF-1. 

 

Application of the Fluorescent SDF-1 Derivatives to Flow Cytometry 

The potent SDF-1(67-AF488) was applied to flow cytometry analysis of CXCR4-expressing 

cells. Incubation of the cells with SDF-1(67-AF488) resulted in a concentration-dependent increase 

in the fluorescence intensity (data not shown). When SDF-1(67-AF488) (5 nM) and the cells were 

incubated in the presence of a known CXCR4 antagonist, TF14016, FC131 or AMD3100, the 

binding of SDF-1(67-AF488) to the cells was inhibited in a concentration-dependent manner (Figure 

4, Supplemental Figures 2 and 3). More potent binding inhibition was observed for TF14016 than for 

FC131, as previously reported [9,10]. Of note, the inhibitory concentrations in these assays were 

similar to those in the flow cytometry analyses using an antagonist-based CXCR4 probe TY14003 
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[11], rather than the standard binding inhibition assays using the radioligand [125I]-SDF-1 (Figure 4 

and Table 2). 

 

Conclusions 

We have established a preparation protocol for fluorescent SDF-1 derivatives via standard 

Fmoc-based solid-phase synthesis and click chemistry. The fluorescent SDF-1 derivatives with 

labeling at the C-terminus showed equipotent binding affinities for CXCR4 and CXCR7 to unlabeled 

SDF-1. Using one of the fluorescent SDF-1 derivatives, SDF-1(67-AF488), a novel binding 

inhibition assay for CXCR4 ligands was established by flow cytometry. Recently, Saini et al. 

demonstrated that FITC-ubiquitin bound to CXCR4-expressing cells and extracellular ubiquitin 

worked as a CXCR4 ligand [36]; however, the interaction mode of ubiquitin with CXCR4 is 

different from that of SDF-1 [28,37]. These fluorescent SDF-1 derivatives are more appropriate 

probes to evaluate the bioactivity of SDF-1/CXCR4 axis by flow cytometry, especially for inhibitory 

compounds of SDF-1-CXCR4 interaction. This report provides a novel and general approach to 

develop fluorescent chemokine derivatives with the original bioactivity. 

 

Executive summary 

 SDF-1 derivatives with an alkyne moiety can be efficiently conjugated with 

fluorophore-conjugated azide by click chemistry. 

 N-terminal modification of SDF-1 leads to significant decreases in the binding affinities for 

CXCR4 and CXCR7. 

 Modification at the SDF-1 C-terminal region reproduces the original bioactivity of unlabeled 

SDF-1 regardless of the fluorophore. 

 Specific binding of a fluorescent SDF-1 derivative to CXCR4-expressing cells is observed in 

flow cytometry analysis. 
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 A novel assay system for CXCR4 ligands by flow cytometry has been established using this 

fluorescent SDF-1 derivative. 

 A fluorescent SDF-1 derivative has been applied to CXCR4/CXCR7 labeling and utilized as a 

probe in binding inhibition assays. 

 

Future perspective 

The labelled signalling molecule constitutes an important tool for biochemical studies of a 

receptor which is relevant to a number of disease states both in clinical use and in further clinical 

trials for other applications. Using the agonist-based fluorescent CXCR4 probes developed in this 

study, the physiological and pathological significance of CXCR4/SDF-1 signaling will be further 

appreciated. For the application to detect endogenous levels of CXCR4, further evaluations of these 

fluorescent probes are now in progress. In particular, detection of circulating tumor cells by the 

probes could be a promising diagnostic approach for metastatic tumors in the early stage. The 

fluorescent SDF-1 derivatives could also be a valuable tool for further investigations of the 

biological and physiological roles of SDF-1/CXCR7 signaling. 
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Figure 1. Design and synthesis of fluorescent SDF-1 derivative. (a) Structural model of SDF-1 (PDB 

ID code: 1SDF). The substructures of the -helix (red), -turn (green) and -sheet (blue) are 

illustrated by ViewerLite software (Accelrys Inc.). (b) Representative synthetic scheme for 

fluorescent SDF-1 derivatives. Reagents: i) Fmoc-based SPPS; ii) 

TFA/H2O/EDT/m-cresol/thioanisole (80:5:5:5:5), followed by air oxidation; iii) fluorophore-N3, 

CuSO4·5H2O and sodium ascorbate. 
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Figure 2. Ca2+ mobilization by fluorescent SDF-1 derivatives. Cells were treated with 

SDF-1(63-AF488) (a), SDF-1(67-AF488) (b), SDF-1(27-TMR) (c), SDF-1(63-TMR) (d) or 

SDF-1(67-TMR) (e). 100% signal indicates the maximum agonistic activity by 100 nM SDF-1. 
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Figure 3. Confocal microscopy images of fluorescent SDF-1 derivatives: internalization into 

CXCR4-expressing cells (a,b), CXCR7-expressing cells (c,d) and untransfected CHO cells (e,f). 

Cells were treated with SDF-1(67-AF488) (a,c,e) or SDF-1(67-TMR) (b,d,f) (100 nM) for 30 min at 

37 °C. 
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Figure 4. Flow cytometry profiles in competitive inhibition assays of the fluorescent probes against 

CXCR4 antagonists. CXCR4-expressing HEK cells were stained with 5 nM SDF-1(67-AF488) (a-c) 

or TY14003 (d-f) in the presence of TF14016 (a,d), FC131 (b,e) or AMD3100 (c,f) at 0°C for 20 min. 

100% indicates the probe binding in the absence of the antagonist. 
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Table 1. Binding activities of the fluorescent SDF-1 derivatives. 

peptide substituted 
amino acid 

fluorophore IC50 (nM)a 

CXCR4 CXCR7 

SDF-1 - - 2.3c, 4.3d 6.6c, 11d 

SDF-1(N-FL)b - fluorescein 580c 730c 

SDF-1(27-Pra) Lys27 - 2.4c 5.2c 

SDF-1(63-Pra) Glu63 - 3.3c 1.4c 

SDF-1(67-Pra) Asn67 - 2.7c 2.8c 

SDF-1(63-AF488) Glu63 AlexaFluor® 488 2.9c 11c 

SDF-1(67-AF488) Asn67 AlexaFluor® 488 5.6c 14c 

SDF-1(27-TMR) Lys27 tetramethylrhodamine 97d 490d 

SDF-1(63-TMR) Glu63 tetramethylrhodamine 7.6d 17d 

SDF-1(67-TMR) Asn67 tetramethylrhodamine 12d 29d 

aThe IC50 values are the concentrations required for 50% inhibition of the [125I]-SDF-1 binding to 

CXCR4 and CXCR7. bFluorescein was conjugated at the Lys1 -amino group. cData from filter plate 

ligand assays. dData from SPA binding assays. 
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Table 2. Data from binding inhibition assays of CXCR4 antagonists using fluorescent probes or the 

radioligand. 

 IC50 (nM)a 

antagonist SDF-1(67-AF488) 
binding inhibitionb 

TY14003 binding 
inhibitionb 

[125I]-SDF-1 binding 
inhibitionc 

TF14016 2.44 4.68 3.98 

FC131 108 52.7 280 

AMD3100 444 794 798 

aThe IC50 values were derived from dose–response curves generated from triplicate data points. 

bData from flow cytometry analyses. cData from SPA binding assays. 


