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High LET radiation amplifies centrosome overduplication through a pathway 

of -tubulin monoubiquitination. 

 Abstract 

Purpose: Radiation induces centrosome overduplication leading to mitotic catastrophe and 

tumorigenesis. Since mitotic catastrophe is one of the major tumor cell killing factors in 

high LET radiation therapy and long-term survivors from such treatment have a potential 

risk of secondary tumors, we investigated here LET-dependence of radiation-induced 

centrosome overduplication and the underlying mechanism. 

Methods: Carbon and iron ion beams (13 - 200 keV/m) and -rays (0.5 keV/m) were 

used as radiation sources. To count centrosomes after IR exposure, human U2OS and mouse 

NIH3T3 cells were immunostained with antibodies of -tubulin and centrin 2. Similarly, 

Nbs1-, Brca1-, Ku70-, DNA-PKcs- deficient mouse cells and their counterpart wild type 

cells were used for measurement of centrosome overduplication.  

Results: The number of excess centrosomes-containing cells at interphase and the resulting 

multipolar spindle at mitosis were amplified with increased LET and reached a maximum 

level at 100 keV/m, then followed by sharp decrease in frequency.  Interestingly, Ku70 

and DNA-PKcs deficiencies marginally affected the induction of centrosome 

overduplication, while the cell killings were significantly enhanced.  This was in contrast 

to observation that high LET radiation significantly enhanced frequencies of centrosome 

overduplication in Nbs1- and Brca1-deficient cells.  Since NBS1/BRCA1 is implicated in 

monoubiquitination of -tubulin, subsequently we tested if it is affected by high LET 

radiation.  As a result, monoubiquitination of -tubulin was abolished in 48-72 hrs after 

exposure to high LET radiation, although -ray exposure slightly decreased it 48 hrs 

post-irradiation and it was restored to a normal level at 72 hrs.  

Conclusion:  High LET radiation significantly reduces NBS1/BRCA1-mediated 

monoubiquitination of -tubulin and amplifies centrosome overduplication with a peak at 

100 keV/m. On the other hands, Ku70 and DNA-PKcs deficiencies mitigate centrosome 

overduplication, although deficiencies of both NBS1/BRCA1 and Ku70/DNA-PKcs markedly 

enhance their cell killings.  

   Key words: centrosomes, ion beam, LET, NBS1, BRCA1, Ku70, DNA-PKcs, -tubulin, 

monoubiquitination 
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Introduction 

   Centrosomes, organelles consisting of centrioles and pericentriolar material, 

function as microtubule organizing center during mitosis (1). Centrosomes duplicate 

only once during each cell division, to provide two centrosomes, which form a 

bipolar mitotic spindle. Improper duplication of centrosomes results in excess or 

supernumerary centrosomes and forms multipolar spindles, leading to cell killing 

through mitotic catastrophe (2, 3). It has been reported by others that a small fraction 

of excess centrosome-containing cells can survive and forms polyploidy clonogenic 

cells, which are associated with tumorigenesis and tumor progression (4). Indeed, 

excess centrosomes have been frequently observed in many tumors (5). 

    BRCA1, a protein responsible for familial breast cancer, is an E3 ubiquitin 

ligase, which regulates DNA repair and cell cycle checkpoint (6). BRCA1 is directly 

involved in maintenance of centrosomes duplication through monoubiquitination of 

-tubulin, main component of centrosomes, at positions of K48 and K348 (7). XX 

have previously shown that centrosome overduplication frequently occurs in cells 

from patients with Nijmegen breakage syndrome (NBS), which is characterized by 

high sensitivity to radiation and predisposition to tumors (8). NBS1, the protein 

responsible for NBS, interacts with BRCA1 in centrosomes and regulates 

BRCA1-dependent centrosome duplication. Depletion of either BRCA1 or NBS1 

with siRNA results in centrosome overduplication through decreased 

monoubiquitination of -tubulin (8).  

   High linear energy transfer (LET) radiation, such as carbon ion and iron ion 

beams, has beneficial physical and biological aspects that improve radiotherapy (9). 

Bragg peak from heavy-ion beams induces regional damage to tumor without 

exacerbation of normal tissue complications. High LET radiation produces densely 

ionization along their trajectories and incurs complex and clustered DNA damage 

that provides high biological effects with a peak at 100 keV/m (10). High LET 

radiation therapy is clinically applied worldwide including the Heavy-Ion Medical 

Accelerator (HIMAC) in Chiba, Japan (9). Although high LET radiation therapy 

alone has provided favorable clinical outcome, interest is increasing as combined 

modalities with anticancer drug and gene therapies (11). Moreover, late effects, such 

as secondary tumor induction, are gradually becoming a matter of concern (12), and 
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hence, it is important to understand the mechanism of biological effect by high LET 

radiation. 

  Radiation-induced cell killing is affected by several factors including efficiency of 

DNA repair, chromosome aberration and apoptosis activity (13, 14).  Mitotic 

catastrophe is implicated as a key factor of high LET radiation-induced cell killing.  

Ianzini et al. reported mitotic catastrophe in 35% of cells irradiated with 1 Gy of 31 

keV/m proton beams (15). On the other hands, Sudo et al. showed that high LET 

radiation can induce supernumerary centrosome formation in finite life-span human 

mammary epithelial cells (16), which is associated with mitotic catastrophe and is 

also a potential factor of tumorigenesis (2, 3, 17). However, LET dependence of 

centrosome overduplication remains to be determined.  We investigated here LET 

dependency of centrosome overduplication by using carbon ion and iron ion beams 

generated from HIMAC, and also a role of -tubulin monoubiquitination in their 

inductions using DNA repair-deficient cell lines.   

 

Material and Methods 

 

Cell Culture 

The human U2OS and the mouse NIH3T3 cells were used as wild-type cell lines. 

A31-1 (Nbs1-/-) MEF, the A31-1 MEF complemented with NBS1 cDNA, Brca1-/- 

mouse ES cells, Brca1+/- mouse ES cells, mouse SCID (DNA-PKcs-/-) cells, the 

parental CB-17 (DNA-PKcs+/+) cells, Ku70-/- MEF and the Ku70-/- MEF 

complemented with Ku70 cDNA, were obtained as previously reported (18). Cells 

were cultured with DMEM containing 10% fetal bovine serum (FBS).  

 

Irradiation 

Cells were irradiated with 
137

Cs -rays (0.5 keV/m) at a dose rate of 1Gy/min using 

a Gammacell 40 system (MDS Nordion). Carbon-ion (13 keV/m, 50 keV/m, 70 

keV/m, 100 keV/m) and iron-ion beams (200 keV/m) were generated by 

HIMAC at National Institute of Radiological Science in Chiba.  

 

Cell survival assay 
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Cell survival was determined using colony formation assay. After exposure at 

indicated doses, cells were counted and plated on 100 mm dishes. 10-14 days later, 

cells were fixed with 100% ethanol and stained with crystal violet for counting 

colonies.  

 

Immunostaining 

Cells were cultured on slide glass (Matsunami) or slide chamber (Nunc) and 

irradiated with -rays or ion beams. 72 hrs after exposure, cells on coverslips were 

washed with phosphate-buffered saline (PBS), fixed in cold methanol (-20°C) for 10 

min and incubated with a detergent solution (0.1% Triton-X100, 20 mM HEPES pH 

7.4, 50 mM NaCl, 3 mM MgCl2, 300 mM sucrose) at 4°C for 5 min. The cells were 

then incubated with 3% non-fat milk for 30 min, followed by incubation with 

primary antibodies against -tubulin (sc17787, Santa Cruz). Centrosomes were also 

stained with centrin-2 (sc27793R, Santa Cruz), to delineate it. The cells were 

subsequently incubated with the following secondary antibodies: 

Alexa-488-conjugated anti-rabbit IgG (Molecular Probes) for -tubulin and 

Alexa-546-conjugated anti-rabbit IgG (Molecular Probes) for centrin-2. 

Fluorescence was visualized using a confocal laser-scanning microscope (Leica). At 

least 200 cells in each sample were examined for centrosome number and nuclear 

morphology. 

 

Western blotting 

   Cell extracts were prepared using RIPA buffer (50 mM Tris-HCl at pH 7.5, 150 

mM NaCl, 0.1% SDS, 1.0% TritonX-100, 0.1% Sodium deoxycholate, 1 mM EDTA, 

1× proteinase inhibitor, PMSF, aprotinin, leupeptin), or IP buffer (20 mM 

Hepes-NaOH at pH 7.4, 0.2% NP-40, 150 mM NaCl, 25% glycerol, 0.1 mM EDTA). 

The -tubulin was immunoprecipitated with Anti--tubulin (T3559, Sigma Chemical 

Co) according to the method previously described (8). Western blotting was 

performed using anti--tubulin (T3559, Sigma Chemical Co), FK2 anti-mono- and 

poly-ubiquitin (PW8810, Biomol international, LP). Anti-rabbit IgG (sc2027, Santa 

Cruz) was used as a negative control.  
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Statistical analysis 

  Values represented the mean and standard error (mean±SE) of three independent 

experiments. The differences between groups were determined by Student’s t-test. A 

p-value less than 0.05 was selected as the criterion for a statistically significant 

difference. 

 

 

Results 

Centrosome overduplications were increased with high LET irradiation. 

   Since we previously showed induction of centrosome overduplication by 

irradiation with -rays (18), frequency of the -ray-induced centrosome 

overduplication was compared with that of cells irradiated with high LET radiation 

using carbon ion beam (13 keV/m) and iron ion beam (200 keV/m). The number 

of centrosomes in U2OS and NIH3T3 cells at interphase was counted 72 hrs after 

irradiation (Figure 1a).  The frequencies of excess centrosome-containing U2OS 

cells were increased with graded dose and were enhanced with increased LET of 

radiation (Figure 1b). The frequency of excess centrosome-containing cells 

irradiated with 5 Gy of iron-ion beam was more than twice than that with 5 Gy of 

-rays. Similar results were obtained using NIH3T3 cells, although the frequencies 

of radiation-induced centrosome overduplication were higher in NIH3T3 cells than 

in U2OS cells (Figure 1c).  

 

Multipolar spindles were increased with high LET irradiation. 

   Centrosome overduplication induces multipolar spindle, which leads to mitotic 

catastrophe (2, 3).  Subsequently, we quantified the occurrence of multipolar 

spindles in U2OS cells at mitosis after exposure to -rays or high LET radiation. 

Formations of multipolar spindles in cells irradiated with 5 Gy of iron-ion (200 

keV/m) and carbon-ion (13 keV/m) were 32% and 22%, respectively, which were 

significantly higher 12% of cells irradiated with 5 Gy of –rays (Figure 2a and 2b). 

Similarly, iron ion and carbon ion beams efficiently induced cell killings, in 

comparison with that of cells after –rays radiation (Supplementary Figure 1). To 

clarify LET dependency of multipolar spindle formation, we compared it using 
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carbon-ion beam with a wide range of LET (13, 50, 70, 100 keV/m). The ratios of 

multipolar spindle cells after high LET radiation to that after –rays were increased 

with increased LET and, similar to radiation-induced cell killing, reached a 

maximum at 100 keV/m, although that of radiation-induced cell killing at 100 

keV/m was higher than that of multipolar spindle (Figure 3). This difference might 

be due to the involvement of factors other than mitotic catastrophe in cell killing.  

 

Radiation-induced centrosome overduplication in DNA repair-deficient cell lines. 

   We previously showed that centrosome overduplications are amplified by 

depletion of either Nbs1 or Brca1 (8). To investigate the involvement of DNA repair 

proteins on induction of centrosome overduplications after exposures to –rays and 

high LET radiation, we measured the radiation-induced centrosome overduplication 

in cells deficient with homologous recombination repair proteins including NBS1 

and BRCA1, or with non-homologous end-joining proteins including Ku70 and 

DNA-PKcs.  As a result, centrosome overduplications in Nbs1- or Brca1- deficient 

cells were increased with graded doses of –rays, and they were significantly higher 

than that in counterpart wild type cells (Figure 4a and 4b). Similar to centrosome 

overduplication, high LET radiation enhanced radiation-induced cell killing 

(Supplementary Figure 1). These enhancements of centrosome overduplication and 

cell killing by Nbs1- or Brca1- deficiency were also observed after exposures to high 

LET radiation with 13 keV/m and 200 keV/m.  We next investigated the 

radiation-induced centrosome overduplications in Ku70- and DNA-PKcs-deficient 

cells. In contrast to Nbs1- or Brca1- deficient cells, centrosome overdupliation in 

Ku70-deficient and DNA-PKcs-deficient cells were at a level similar to that of 

counterpart wild type cells at each dose and LET of radiation (Figure 5a and 5b).  

However, enhanced cell killings were observed in either Ku70- or 

DNA-PKcs-deficient cells irradiated with –rays and 200 keV/m iron ion beams, as 

observed in Nbs1- or Brca1- deficient cells. 

 

Compromized monoubiquitination of –tubulin after exposure to high LET 

radiation. 

Monoubiquitination of –tubulin regulates centrosome duplication, because the 
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decreased monoubiquitination of –tubulin, as observed in Nbs1- and 

Brca1-deficient cells, enhances centrosome duplication (8). We next investigated the 

monoubiquitination level of –tubulin in U2OS cells up to 120 hrs after irradiation.  

The cell lysates after irradiation were immunoprecipitated with –tubulin antibody 

and blotted using FK2 antibody. Although FK2 antibody recognizes both mono- and 

poly-ubiquitin after immunoprecipitated by –tubulin antibody, we observed a single 

band monoubiquitination of –tubulin, but not polyubiquitination. 

Monoubiquitination of –tubulin was slightly decreased 24-48 hrs after exposure to 

–rays, and it was restored to normal level 72 hrs later (Figure 6).  On the other 

hand, iron ion beam radiation abolished the monoubiquitination of –tubulin 24-48 

hrs post-irradiation and it was not restored even 120 hrs later. The decrease in 

monoubiquitination after irradiation with high LET was at the level similar to that of 

Nbs1-deficient cells (8). 

 

Discussion 

   We showed here that high LET radiation efficiently induced centrosome 

overduplication with a maximum level at 100 keV/m, which was similar to that of 

radiation-induced cell killing (Figure 3).  Although deficiencies of all DNA repair 

proteins tested here enhanced cell killing, enhancements of centrosome 

overduplication were observed in Nbs1- and Brca1-deficient cells but not in Ku70- 

and DNA-PKcs-deficient cells (Figure 4 and 5).  This could be because 

NBS1/BRCA1 proteins are involved in monoubiquitination of -tubulin, the 

disruption of which enhances centrosome overduplication (8).  Indeed, -tubulin 

monoubiquitination was decreased more severely in cells irradiated with high LET 

than that with -rays (Figure 6). On the other hand, radiation-induced centrosome 

overduplications in Ku70- and DNA-PKcs-deficient cells might be contributed 

predominantly by cell cycle checkpoint-dependent pathway, rather than decreased 

monoubiquitination of -tubulin, as we previously reported (18). 

   Centrosome overduplication was converted to multipolar spindles with an 

efficiency of more than 90 % after exposure to either -rays or 200 keV/m iron ion 

beam, as observed in Figure 2: fractions of multipolar spindles in U2OS cells, 

containing 15% or 38% of centrosome overduplication after exposure to either 5 Gy 
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of -rays or iron ion beam, were 12% or 35% at mitosis, respectively.  The 

difference in ratios between centrosome overduplication and multipolar cell division 

might be due to failure of cytokinesis after irradiation (4).  Although these 

multipolar spindle-containing cells may convert to mitotic catastrophe, there are 

additional factors derived from the other radiation damage.  Using time-lapse 

microscopy for up to 70 hrs, Dodson reported that mitotic catastrophes after 10 Gy 

of -rays are induced in 50% of mitotic cells, of which approximately 70% is 

derived from centrosome overduplication. The remaining 30% could be due to other 

radiation damage, such as dicentric chromosome, because it was not observed in 

un-irradiated cells (3). On the other hand, a majority of these cells that undergo 

mitotic catastrophe must die and a small fraction could survive. Time-lapse imaging 

analysis for 266 hrs by others revealed that, among 210 multipolar division in HeLa 

cells irradiated with 10 Gy of -rays, only four cells with polyploidy can survive and 

restore the proliferative state of tumor cell population through depolyploidization, 

which recapitulates a process of tumor progression (4).  Thus, high LET radiation, 

which efficiently causes the cell killing by mitotic catastrophe through 

radiation-induced centrosome overduplications, is a potential factor for tumor 

progression or secondary tumor development in cells surviving mitotic catastrophe.    

   It has been reported that monoubiquitination of –tubulin is required to maintain 

the proper number of centrosomes in cells (8).  This pathway is mediated with 

NBS1 and BRCA1, and disruptions of these proteins cause the centrosome 

overduplication by decreased monoubiquitination.  We showed here radiation also 

reduces the monoubiquitination of –tubulin (Figure 5).  Lately, Falck et al 

reported that CDK phosphorylates NBS1 at position of S432, which is essential for 

activation of NBS1 including DNA-end resection and homologous recombination 

(19).  Interestingly, this phosphorylation of NBS1 is gradually decreased after 

irradiation and is abolished 3 hrs later, suggesting the attenuation of –tubulin 

monoubiquitination after irradiation through inactivation of NBS1.  This also might 

explain why centrosome overduplication is not enhanced in Ku70- and 

DNA-PKcs-deficient cells. Since Ku-deficiency enhances homologous 

recombination (20), NBS1 phosphorylation state continues for longer time in Ku70- 

and DNA-PKcs-deficient cells, and as a result, this persistent NBS1 activation could 
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counteract the attenuated monoubiquitination of –tubulin after irradiation.  

Therefore, inhibition of non-homologous end-joining is useful for both enhancement 

of cell killing and repression of the secondary tumor or tumor progression in high 

LET radiation therapies.  

   In summary, we firstly showed here that high LET radiation significantly 

reduces monoubiquitination of γ-tubulin and, thereby, amplifies centrosome 

overduplication, with a peak at 100 keV/μm, although centrosome overduplication 

might raise the possibility of tumorigenesis.  The –tubulin monoubiquitination is 

mediated by NBS1 and BRCA1 and as a result, disruptions of NBS1 and BRCA1 

amplified centrosome overduplication, while it was not affected by disruptions of 

Ku70 and DNA-PKcs. This could provide useful information to decrease the 

possibility of tumorigenesis in high LET radiation therapies. These evidences 

suggest that adjuvant treatment to inhibit non-homologous end-joining, improve 

high LET radiation therapy without provocation of the secondary tumor 

development. 
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Figure legends 

Figure. 1.  Enhanced centrosome overduplications by exposure to high LET 

radiation.  Immunostainings of U2OS cells at interphase with –tubulin antibody 

and centrin-2 antibody were performed 72 hrs after exposures to 5 Gy of –rays, 

carbon-ion beam and iron-ion beam (a). Cells with more than 2 centrosomes were 

counted in U2OS cells (b) and NIH3T3 cells (c) after exposures to –rays and ion 

beams at indicated doses. At least 200 cells were counted and examined 3 times, 

respectively. 

 

Figure. 2.  Enhanced multipolar spindles by exposure to high LET radiation.  

Immunostainings of U2OS cells at mitosis with –tubulin antibody and centrin-2 

antibody were performed 72 hrs after exposures to 5 Gy of –rays, carbon-ion beam 

and iron-ion beam (a). Cells with multipolar spindle at mitosis were counted in 

U2OS cells after irradiation with 5 Gy of radiation with indicated LET (b). At least 

200 cells were counted and examined 3 times, respectively. Student’s t-test was 

performed between 70 keV/m and 100 keV/m, and indicated statistically 

significant increase (p<0.05). 

 

 

Figure. 3.  LET-dependent formation of radiation-induced multipolar spindle and 

cell killing.  The enhancement ratios of multipolar spindle formation in cells 

irradiated with 5Gy of high LET radiation to that of –rays (0.5 keV/m), as shown 

in Figure 2, were plotted with the LET.  Similarly, the ratios of surviving fractions 

at 5Gy, as shown in Supplementary Figure, were plotted with the LET.  

 

Figure 4.  Radiation-induced centrosome overduplication in HR repair-deficient 

cell lines.  The immunostainings were performed after irradiation, similar to Figure 

1, and more than 2 centrosomes-containing cells were counted in A31-1 

(Nbs1-deficient cells) and the cells complemented with wild type NBS1 cDNA (a), 

Brca1 knockout mouse cells (Brca1-/-) and the heterozygote mouse cells (Brca1+/-) 

(b), At least 200 cells were counted and examined 3 times, respectively. Student’s 
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t-test was performed after deduction of the frequency at 0 Gy from that at 5 Gy 

irradiation and indicated statistically significant increase (p<0.05). Similar statistical 

significances were obtained at doses of 1 Gy and 3 Gy. 

 

Figure 5.  Radiation-induced centrosome overduplication in NHEJ repair-deficient 

cell lines.  The immunostainings were perforemd after irradiation, similar to Figure 

1, and more than 2 centrosomes-containing cells were counted in Ku70 knockout 

mouse cells (Ku70-/-) and the cells complemented with wild type Ku70 cDNA (a), 

SCID mouse cells (DNA-PKcs-/-) and the parental CB17 mouse cells 

(DNA-PKcs+/+) (b). At least 200 cells were counted and examined 3 times, 

respectively. Student’s t-test was performed, similar to Figure 4, but indicated 

statistically no significant increase (p>0.05). No statistical significance was also 

observed at doses of 1 Gy and 3 Gy. 

 

Figure. 6.  Time course of –tubulin monoubiquitination after irradiation. U2OS 

cells were irradiated with -ray (0.5 keV/m) (a) and iron ion beam (200 keV/m) 

(b).  Cell lysates were immunoprecipitated with –tubulin antibody at the indicated 

time after irradiation and blotted with FK2 antibody. Mouse IgG antibody was used 

as a negative control.  














