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SYMMETRIC CRYSTALS
AND
LLTA TYPE CONJECTURES FOR THE AFFINE HECKE ALGEBRAS
OF TYPE B

NAOYA ENOMOTO AND MASAKI KASHIWARA

ABSTRACT. In the previous paper [EK1], we formulated a conjecture on the relations
between certain classes of irreducible representations of affine Hecke algebras of type B
and symmetric crystals for gl,,. In the first half of this paper (sections 2 and 3), we give
a survey of the LLTA type theorem of the affine Hecke algebra of type A. In the latter
half (sections 4, 5 and 6), we review the construction of the symmetric crystals and. the
LLTA type conjectures for the affine Hecke algebra of type B.

1. INTRODUCTION

1.1. The Lascoux-Leclerc-Thibon-Ariki theory connects the representation theory of the
affine Hecke algebra of ¢ype A with representations of the affine quantum enveloping algebra,
of type A. Recently, we presented the notion of symmetric crystals and conjectured that
certain classes of irreducible representations of the affine Hecke algebras of type B are
described by symmetric crystals for gl or Aél_)l ([EK1]). In this paper, we review the
LLTA-theory for the affine Hecke algebra of type A, the symmetric crystals, and then our
conjectures for the affine Hecke algebra of type B. For the sake of simplicity, we restrict
ourselves in this note to the case where the parameters of the affine Hecke algebras are not
a root of unity.

This paper is organized as follows. In part I (sections 2 and 3), we review the LITA-
theory for the affine Hecke algebras of type A. In section 2, we recall the representation
theory of Uy(gls,), especially the PBW basis, the crystal basis and the global basis. In
section 3, we recall the representation theory of the affine Hecke algebra of type A and
state the LLTA-type theorems. In part II (sections 4, 5 and 6), we explain symmetric
crystals for gl and the LLTA type conjectures for the affine Hecke algebras of type B.
In section 4, we recall the construction of symmetric crystals based on [EK1] and state
the conjecture of existence of the crystal basis and the global basis. In section 5, we
explain a combinatorial realization of the symmetric crystals for gl by using the PBW
type basis and the -restricted multisegments. This section is a new additional part to
the announcement [EK1]. The details will appear in [EK2]. In section 6, we explain
the representation theory of the affine Hecke algebra of type B and state our LLTA-
type conjectures for the affine Hecke algebra of type B. We add proofs of lemmas and
propositions in [EK1, section 3.4],

1.2. Let us recall the LLTA-theory for the affinc Hecke algebra of type A.

The representation theory of quantum enveloping algebras and the representation theory
of affine Hecke algebras have developed independently. G. Lusztig [L] constructed the PBW
type basis and canonical basis of U, (g) for the A, D, E cases. The second author Kas]
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defined the crystal basis B(co) and the (lower and upper) global bases {G"¥(b)}sep(co),
{GP(b) hrep(oo) of Uy (8). The lower global basis coincides with Lusztig’s canonical basis.
On the other hand, A. V. Zelevinsky [Z] gave a parametrization of the irreducible repre-
sentations of the affine Hecke algebra of type A by using multisegments. Chriss-Ginzburg
[CG] and Kazhdan-Lusztig [KL] constructed all the irreducible representations of the affine
Hecke algebras in geometric methods. '

Lascoux-Leclerc-Thibon conjectured in [LLT] that certain composition multiplicities
(called the decomposition numbers) of the Hecke algebra of type A can be written by
the transition matrices (specialized at ¢ = 1) between the upper global basis and a stan-
dard basis of the level 1 fundamental representation of Uq(g[;). In [A], S. Ariki generalized
and solved the conjecture for the cyclotomic Hecke algebra and the affine Hecke algebra of
type A by using the geometric representation theory of the affine Hecke algebra of type A.
In [GV], I. Grojnowski and M. Vazirani proved the multiplicity-one results for the socle of
certain restriction functors and the cosocle of certain induction functors on the category
of the finite-dimensional representations of the affine Hecke algebras HA of type A. By
using these functors, Grojnowski ([G]) gave the crystal structure on the set of irreducible
modules over the affine Hecke algebras H* of type A. In [V], Vazirani combinatorially
constructed the crystal operators on the set of multisegments and proved the compatibility
between her actions and Grojnowski’s actions.

For p € C*, let H2(p) be the affine Hecke algebra of type A of degree n generated by
T, (1 <i<n—1)and inl (1 € 7 € n). For asubset J of C*, we say that a finite-
dimensional H/-module is of type J if all the eigenvalues of X; (1 < 7 < n) belong to
J. We can prove that in order to study the irreducible modules over the affine Hecke
algebras of type A, it is enough to treat those of type J for an orbit J with respect to the
Z-action on C* generated by o — ap® (see Lemma 3.3). For a Z-orbit J, let K (H) be
the Grothendieck group of the abelian category of finite-dimensional H;:-modules of type
J, and K4 = @,50K ;(H2). The LLTA-theory gives the following correspondence between
the notions in the representation theory of a quantum enveloping algebra U,(gf,) and the
ones in the representation theory of affine Hecke algebras of type A.

the quantum enveloping algebra the affine Hecke algebra of type A
Ug(gles) Ha(p) (n > 0)
U7 (gl) K} = &nzaKy(H; (D)
e, fa certain restrictions e, and inductions f,
the crystal basis B(co) M = {the multisegments}
the upper global basis the irreducible modules
{G"(b) }oeB(oo) {Lo}seB(oo)
the modified root operators €, = soc(eq), fo = cosoc(f,)
A &Ly = Ley, fuly = Lz,
the PBW basis {P(b) }seB(o) the standard modules {M (b) }reB(c0)

Ficure 1. Lascoux-Leclerc-Thibon-Ariki correspondence in type A

The additive group K5 has a structure of Hopf algebra by the restriction and the in-
duction. The set J may be regarded as a Dynkin diagram with J as the set of vertices
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and with edges between a € J and ap?. Let g; be the associated Lie algebra, and g7 the
unipotent Lie subalgebra. Hence g; is isomorphic to gl if p has an infinite order. Let
Us be the group associated to g7. Then € ® K% is isomorphic to the algebra & (Uy) of
regular functions on U;. Let U,(gs) be the associated quantized enveloping algebra. Then
U, (97) has a crystal basis B(co) and an upper global basis {G"(b)}sep(oo). By special-
izing & Clg, g7 |G (b) at ¢ = 1, we obtain @(U;). Then the LLTA-theory says that the
elements associated to the irreducible H“-modules correspond to the image of the upper
global basis. Namely, each b € B(c0), an irreducible HA-module Z; is associated and we
have :
lea Ly : Ly = ela,b,b'fq=1a {faLb C Lyl = fa,b,b’ifJ:l'

Here [e, Ly - Ly] and [f,Lp - Ly] are the composition multiplicities of Ly of e.Ly and f,L,
in K4. (For the definition of the functors e, and Ja for a € J, see Definition 3.4.) The
Laurent polynomials ¢/, ;, and f,,y are defined by

GCPO) = D ehppGP), LGP0 = S funw G,
)

¥ €B(co) ¥eB(co

1.3. Let us explain our analogous conjectures for the affine Hecke algebras of type B.

For po,p1 € C*, let HE(po,p1) be the affine Hecke algebra of type B generated by
T, (0<i<n—1)and X; (1 <7< n). The representation theory of HZ (po, 1) of type
B are studied by V. Miemietz and Syu Kato. In [M], V. Miemietz defined certain restric-
tion functors E, and the induction functors F, on the category of the finite-dimensional
representations of the affine Hecke algebras of type B, which are analogous to Grojnowski-
Vazirani’s construction, and proved the multiplicity-one results (see sections 6.3 and 6.4).
On the other hand, 8. Kato obtained in [Kat] a geometric parametrization of the irreducible
representations of the affine Hecke algebra HZ(pg, p1), which is an analogue to geometric
methods of Kazhdan-Lusztig and Chriss-Ginzburg.

We say that a finite-dimensional HZ-module is of type J ¢ C* if all the eigenvalues
of X; (1 < j < n) belong to J. Let us consider the 7 x Zy-action on C* generated by
a = apf and a — a~!. We can prove that in order to study HP-modules, it is enough to
study irreducible modules of type J for a Z x Zy-orbit J in C* such that J is a Z-orbit or
J contains one of +1,+p, (see Proposition 6.4). Let I = Zyqq be the set of odd integers.
In this paper, we consider the case J = {pf | k € I} such that %1, +py ¢ J. Let K 1(HB)
be the Grothendieck group of the abelian category of finite-dimensional representations of
HE (po, p1) of type J.

Let a, (a € J) be the simple roots with

2 ifa=4,
(e, ) = ¢ 1 if b= api?,
0 otherwise.

Then the corresponding Lie algebra is gl,. Let 8 be the involution of J given by 6(a) = a1,
In sections 4 and 5, we introduce the ring By(gl..) and the Be(gl,,)-module V5(0). They
are analogues of the reduced g-analogue B,(gl) generated by ¢, and f,, and the B,(gl,.)-
module Ug (gly,). We can prove that V4(0) has the PBW type basis {Bs(b) }ocn,(0), the
crystal basis (Lg(0), Bs(0)), the lower global basis {GY™ (b) }rero(o) and the upper global
basis {G®(0) }semy(0). Moreover we can combinatorially describe the crystal structure by
using the f-restricted multisegments.

We conjecture that the irreducible HZ-modules of type J are parametrized by Byg(0)
and if Ly is an irreducible H®-module associated to b € By(0), then we have E,Lj = L B
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ﬁ Lb F 3 and [E Lb Lbl] = abb’!a—l, [F L[, Lb/] = ab,bllqzlq (FOI' the definition of

the functors E,, F, E, and F, for a € J, see Definition 6.5.) Here the Laurent polynomials
E,pp and Fypp are defined by

EGPb) = 5 BapwGy(), FGPE)= 3 FupwGy ).
¥ €Bo(0) 0
the quantum enveloping algebra the affine Hecke algebra of type B
Uy(gls) with & HE (po, p1) (n 2 0)
Vo(0) = Uz (8l0)/ 3 Uy (81e0) (s = foro) K? = @50, (HE (00, 1))
B, F, certain inductions E, and restrictions £,
the crystal basis By(0) Mg = {the §-restricted multisegments}
the upper global basis {G}"(0) }eeB, () the irreducible modules { L }veB,(0)
the modified root operators B, = soc(B,), F, = cosoc(F,)
Ea, Fy Eo Ly =1Lz, Fuly =L,
the PBW basis {Pyp(b) }repo(o the standard modules

FiguRrEe 2. Conjectural correspondence in type B

Part I. Review on Lascoux-Leclerc-Thibon-Ariki Theory
2. REPRESENTATION THEORY OF U(gl,,)

2.1. Quantized universal enveloping algebras and its reduced g-analogues. We
shall recall the quantized universal enveloping algebra Uy(g). Let I be an index set (for
simple roots), and @ the free Z-module with a basis {m}le 1. Let (s,0):QxQ—Zbea
symmetmc bilinear form such that (o, ;)/2 € Zsg for any ¢ and (@}, ;) € Zgo for i # j
where @) := 20;/(0i, ;). Let ¢ be an indeterminate and set K := Q(g). We define its
subrings Ag, A, and A as follows.

Ay = {f €K] [ is regular at ¢ = 0},

Ag = {f€K|fisregularat ¢ = co},

A = Q[Q7 qMI}-

Definition 2.1. The quantized universel enveloping algebra Uy(g) is the K-algebra gen-

erated by elements e;, f; and invertible elements t; (i € I) with the following defining
relations. ‘

(1) Thet;’s commute with each other.
(2) t; ezt_ =ql@%) e, and t-fitTI =g sl f; for anyi,j € 1.

)
it (o2
(3) les, fil =6y 1forz j €. Here g; 1= q\®%
(4) (Serre 1elat10n) or i # 7,

b b
Z(_ ke(k>€J Sb k) _ =0, Z f(k)fgf(b k) _
k=0

k=0
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Here b=1~ (o, ;) and

el = el /I, A0 = SE/IR L = (ab = a7 @ = a7, IR = [ (R

Let us denote by U;"(g) the subalgebra of U,(g) generated by the fi’s.
Let €; and ¢} be the operators on U, (g) defined by

era)t; —t;'ela -
ol hee ey (g)).
& —4; :

These operators satisfy the following formulas similar to derivations:
e;(ab) = €j(a)b + (Ad(t;)a)eib,

e; (ab) = aefb+ (efa)(Ad(t:)D).
The algebra U; (g) has a unique symmetric bilinear form (-, ») such that (1,1) =1 and

[ei) a} =
(2.1)

(eja,b) = (a, f;b) for any a,b € U, (g).

It is non-degenerate and satisfies (efa,b) = (a,bf;). Let B(g) be the algebra generated by
the e;’s and the f;’s. The left multiplication of f;, ¢/ and e} have the commutation relations

¢ifs = g7 fiel + 8y, €1 fy = fie] + 65 Ad(t),
and both the €}’s and the e}’s satisfy the Serre relations.

Definition 2.2. The reduced g-analogue B(g) of g is the Q(q)-algebra generated by €, and
fi-

2.2. Review on érystal bases and global bases. Since ¢} and f; satisfy the ¢-boson -
relation, any element a € Uy (g) can be written uniquely as

a= Zfi(n)an with €la,, = 0.

fn n20
7
[nhf

Definition 2.3. We define the modified root operators &; and f; on U, (g) by
Ga=> f"Va,, fa=3jrVa,

Here f™ =

nzl nz0
Theorem 2.4 ([Kas]). We define
L) = > Afy fi-1C U (8),

0220, i1,...,ipe1
Bloo) = {Ju- i1 modgl(c0) | £3 0,5, ,ig € I} C L(00)/gL(c0)
Then we have
(i) €L(o0) C L(oo) and f;L(c0) C L(o0),
(if) B(co) ds a basis of L(co)/qL(00),
(iii) fiB(co) C B(oo) and €B(o0) C B(oo) U {0}.
We call (L{o0), B(c0)) the crystal basis of Uy (g).
Let — be the automorphism of K sending g to ¢~!. Then Ag coincides with A...

Let V' be a vector space over K, Ly an A-submodule of V, Lo, an Ag- submodule, and
Va an A-submodule. Set E := Ly N Lo, N Va.
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Definition 2.5 ([Kas]). We say that (Lo, Lo, Va) is balanced if each of Lo, Leo and
Va generates V as a K-vector spoce, and if one of the following equivelent conditions is
satisfied.

(i) E — Lo/qLo is an isomorphism,

(ii) E — Le/q ' Loo is an isomorphism,

(iil) (LoNVa) ® (g7 Lo N Va) — Va is an isomorphism.

(iv) Ag®oE — Lo, Aw®QE — Leo, A®gE — Va and K®gFE — V are isomorphisms.

Let — be the ring automorphism of U,(g) sending g, i, &, fi to ¢, ¢ Loei [

Let U,(g)a be the A-subalgebra of Uy(g) generated by ez(."), fi(") and t;. Similarly we
define U; (g)a- '

Theorem 2.6. (L(00), L{co), Uy ()a) is balanced.

Let
G L(o0) gl (00)2E = L(o0) N () N Uy (5)

be the inverse of E—+1(00)/gL(00). Then {GY¥(b) | b € B(co)} forms a basis of Uy (g).

We call it a (lower) global basis. It is first introduced by G. Lusztig ([L]) under the name
of “canonical basis” for the A, D, E cases.

Definition 2.7. Let

G () | b € B(oo)}
be the dual basis of {G¥(b) | b € B(co)} with respect to the inner product (o,9). We call
it the upper global basis of U (g).

2.3. Review on the PBW basis. In the sequel, we set [ = Zoaq and

2 fori =7,
(qi,o5) =4 =1 for j=1i%2,
0  otherwise,
and we consider the corresponding quantum group Uy(gl,,). In this case, we can param-

etrize the crystal basis B(oo) by the multisegments. We shall recall this parametrization
and the PBW basis.

Definition 2.8, For i,j € I such that i < j, we define a segment (i,j) as the interval
[i,5) C Zipgg. A multisegment is a formal finite sum of segments:
m =3 (i, )
i<y
“with my; € Tso. If mi; > 0, we sometimes say that (i,j) appears in m. We denote

sometimes (i) for (i,5). We denote by M the set of multisegments. We denote by {0 the
zero element (or the empty multisegment) of M.

Definition 2.9. For two segments (i1, 71) and (iz, jo), we define the ordering 2 ppw by the
following:
J1> 172
(i1, 1) Zpw (iz, j2) &> ¢ o
Ji=7J2 and iy 2 iy
We call this ordering the PBW ordering.

Example 2.1@. We have <1, 1) >PBW <—-1, 1> >PBW <~*1, —1)
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Definition 2.11. We define the element P(m) € U; (gl) indezed by a multisegment m
as follows:

(1) for a segment (i, ), we define the element (i,7) € U; (gl,,) inductively by
(t,9) = f,
(6,5) = (,5-2)(j,5) = q(s,i){i,7 - 2),

(2) for a multisegment m = Zmij (i, 7), we define

i<y

P(m) = ﬁ <i,j>(mm)'

Py
Here the product [ is taken over segments appearing in m from large to small with
respect to the PBW ordering. The element (i, 5)™9) is the divided power of (i,7) i.e.
1

;o a\meg) s\
i, = 1, .
€, 7) [mi]_]!< 7

Set wi P(m) = - Zm@-j@ﬁ.
i<y
Theorem 2.12 ([L]). The sei of elements {P(m) | m € M} is a basis of the K-vector

space U; (gl,). Moreover this is o basis of the A-module Uy (8l)a. We call this basis the
PBW basis of Uy (gl,,).

Definition 2.13. For two segments (31, 1) and (5, j»), we define the ordering 2.y by the
following:
J1>J2
<i11jl> Zcry <i27j2> A or
J1=J2 and iy < da.
We call this ordering the crystal ordering. For m = Eig m; {3, 7) € M and and m'

i My (6, 7) € M, we define m’ < m if there ezists a segment io, Jo) such that m!_.
1 2,3 cry g J 10.J0

Mig,jo aNd My 5 = My for any (i, 7) >cry (io, jo).

<

Example 2.14. The crystal ordering is different from the PBW ordering. For example, we
have (~1,1) >y (1,1) >0y (—1, —1), while we have (1, 1) >ppw (—1,1) >ppw (—1,=1).
Befinition 2.15. We define the crystal structure on M as follows: form =% m;;(i,j) €
M and i € I, set A,(Z)(m) = Lwse(Mik — Migawie) for k = 4. Define e;(m) as
max {A;i)(m) |k = z}» = 0.
(i) If g;(m) = 0, then define &(m) = 0. Ife;(m) > 0, let k, be the largest k > 4 such
that ;(1mn) = A,(;)(m) and define &(m) = m — (i, k) + 6. (i + 2, kc).
(ii) Let ks be the smallest k > i such that &;(m) = Ag)(m) and define fi(m) = m —
Orpri(t+ 2, ks) + (4, ky).

Remark 2.16. For i € I, the actions of the operators & and fionm € M are also

described by the following algorithm:

Step 1. Arrange the segments in m in the crystal ordering.

Step 2. For each segment (1, j), write —, and for each segment (¢ + 2, 7), write +.

Step 3. In the resulting sequence of 4+ and —, delete a subsequence of the form +— and
keep on deleting until no such subsequence remains.
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Then we obtain a sequence of the form — —-+- —++---+.

(1) &i(m) is the total number of — in the resulting sequence.

(2) fi(m) is given as follows:
(a) If the leftmost + corresponds to a segment (i + 2, 7), then replace it with (4,7).
(b) If no + exists, add a segment (i,4) to m.

(3) €;(m) is given as follows:
(a) If the rightmost — corresponds to a segment (4, j), then replace it with (i+2,7).
(b) If no — exists, then &;(m) = 0.

Theorem 2.17. (i) L(oo) = B A P(m).

meM
(ii) B(oco) = {P(m)mod gL(c0) | m € M}.
(iii) We have

&P(m) = P@E(m) modgL(e),
fiP(m) = P(fi(m)) modgL{co).

Note that & and ﬁ in the left-hand-side is the modified root operators.
(iv) We have the expansion
P(m) € P(m)+ »  AP(m).
m' <m
ory
Therefore we can index the crystal basis by multisegments. By this theorem we can

easily see by a standard argument that (L(c0), L(co), U; (9)a) is balanced, and there ex-

ists a unique G'¥(m) € L(co) N U; (g)a such that G*¥(m) = G*"(m) and Gl¥(m) =
P(m) mod gL(c0). The basis {G""(101) }me is 2 lower global basis.

3. REPRESENTATION THEORY OF H/ AND THE LASCOUX-LECLERC-THIBON-ARIKI
THEORY

3.1, The affine Hecke algebra of type A.

Definition 3.1. Forp € C*, the affine Hecke algebra H2 of type A is a C-algebra generated
b
’ Ty, T, X5 X2
satisfying the following defining relations:
(1) XX, = X;X; forany 1 < 4,7 < n.
(2) [The braid relations of type A]
TTnT; =TT (1<i<n—2),
TT, = I/, (=il > 1.
(3) [The Hecke relations)
(Ti=-p)Ti+p)=0 (1<i<n-1)
(4) [The Bernstein-Lusztig relations]
TXTi=Xn (1<i<n-1),
TX = XTI (j#ii+1).
Since we can enbed HA into H2,, by Ty Tipm 1 < i < n—1), X; = Xpmy; (1< 5 <m),

n+m
we consider HA @ H2 as a subalgebra of Hiwy -
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Definition 3.2. For o finite-dimensional H2-module M, let

M:@Ma

ac(C*)m
be the generalized eigenspace decomposition with respect to X, ... , Xn. Here
My:={ueM|(X;~a)¥u=0foranyl <i<n and N > 0}

Jora=(as,...,a,) € (T
(1) We say that M is of type J if all the eigenvalues of X,..., X, belong to J C C*.

(2) Put
K} =CPKS,.

n20

Here K fn is the Grothendieck group of the abelian category of finite-dimensional HE-
modules of type J.
(3) The group Z acts on C* by Z 3 n: a — ap*™.

Lemma 3.3. Let Jy and Jy be Z-invariant subsets in C* such that Sind=10.
(1) If M is an irreducible H2 -module of type J1 and N is an irreducible HA -module of type

i
Ja, then Ind:;:g;ﬁ(]\/[ ® N) is irreducible of type J; U Js.
(2) Conversely, if L is an irreducible HA-module of type J, U Jo, then there exist m 0 <

m < n), an irreducible H2-module M of type Ji and an irreducible H2 . -module N

of type Jo such that L is isomorphic to IndZi@Hﬁ_m(M ®@N).

Hence in order to study the irreducible modules over the affine Hecke algebras of type
A, it is enough to treat the irreducible modules of type J for an orbit J with respect to
the Z-action on C*.

3.2. The a-restriction and the a-induction. For a C-algebra A, let us denote by
A-mod™ the abelian category of finite-dimensional A-modules.

Definition 3.4. Fora € C*, let us define the functors

€yt Hi-mod™® — HA | -mod®, f,: H2 -mod™ — H2,, -mod®

by: eaM is the generalized a-eigenspace of M with respect to the action of X, and

A
Hn+1

fold =Ind) 70

] M & (a),
where (a) is the 1-dimensional representation of (C[X,ﬁl] defined by X, 11 — a.
Moreover, put
€M :=soce,M, f,M := cosoc faM

for a € C*. Here the socle is the mazimal semisimple submodule and the coseocle is the
mazimal semisimple quotient module.

Theorem 3.5 (Grojnowski-Vazirani [GV]). Suppose M is irreducible. Then f,M is irre-
ducible, and €,M is irreducible or O for any a € C*.
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3.3. LLTA type theorems for the affine Hecke algebra of type A. In this subsec-
tion, we consider the case

J={p"| k€ Zoaa},
and suppose p is not a root of unity. For short, we shall write e;, €, f; and f; for ey, €y, i
and fy:, respectively.
The LLTA type theorem for the affine Hecke algebra of type A consists of two parts. First
is a labeling of finite-dimensional irreducible H4-modules by the crystal B(co). Second is
a description of some composition multiplicities by using the upper global basis.

Theorem 3.6 (Vazirani [V]). There are complete representaiwes
{Ly | b € B(co)}
of the finite-dimensional irreducible H*-modules of type J such that
&Ly = Ly, Jily = Lz,
foranyie I

Theorem 3.7 (Ariki [A]). For i € I = Zoqq, let us define €y, fipe € Clg,¢7'] by the
coefficients of the expansions:

;G (b) = E eipy GO,  LGY(b Z fipw GHE(Y).
b €B(oo) b €B(c0)
Then
le:Ly : Ly] = 6;,b,b’|q=17 , [fily s Lyl = fipptlg=1-
Here [M : N is the composition multiplicity of N in M on K.

Part II. The Symmetric Crystals and some LLTA Type Conjectures for
Affine Hecke Algebra of Type B

4, GENERAL DEFINITIONS AND CONJECTURES FOR SYMMETRIC CRYSTALS

We follow the notations in subsection 2.1. Let ¢ be an automorphism of [ such that
= id and (g, asy) = (@, ;). Hence it extends to an automorphism of the root
lat‘tlce @ by 0(e) = ag(;), and induces an automorphism of U, (g).

Definition 4.1. Let Bg(g) be the K-algebra generated by E;, F;, and invertible elements
T, (i € I) satisfying the following defining relations:
(i) the T;’s commute with each other,
i) Tpy = T for any 1,
(111) TE T_' = q(aﬁ“@()aﬂ)b and T,F;T = glosteem o) By for ,7€l,
) EF =g (@) B+ (8, + 59(,)J )forz jei,
v) the E s and the b s satisfy the g-Serre relations.

We set E™ = E/[nj;! and F™ = F*/[n];!.
Proposition 4.2. Let A € Pr:={) € Hom(Q, Q) | (o, A) € Zg for any i € I} be a dom-

inant integral weight such that 9(A) = A.

(i) There exists a By(g)-module Vo(A) generated by a non-zero vector ¢y such that
(a) Eipr=0 foranyicl,
(b) Tigs = ¢\*N¢y for anyi € I,
(c) {u € Vo(A) | Byu=0 for any i € I} = Ko,.
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Moreover such a Va(X) is irreducible and unique up to an isomorphism.

(ii) there exists a unique symmetric bilinear form (=, ) on Vp()\) such that (¢x,¢x) =1
and (B, v) = (u, Fyv) for any i € I and u,v € Vy()), and it is non-degenerate.

(iil) There exists an endomorphism — of Va(\) such that ¢y = ¢ and @0 = av, Fu = F;v
for any a € K and v € V(0.

The pair (By(g), Vs(N)) is an amalogue of (B(g), U7 (g)). Such a Vy()) is constructed
as follows. Let Uy (g)¢, and U7 (g)¢} be a copy of a free U, (g)-module. We give the
structure of a By(g)-module on them as follows: for any i € [ and a € U, (g)

Ti{agh) = q=N(Ad(titew)a)d),
(4.1) Ei(ag)) = (ea*q(a“\ Ad(t:)(€j;)0)) )
Fi(eg)) = (fia
and
Hag}) = ai’)‘>(Ad(tit9(i))a)¢i)’\y
(1) {E(aaﬁ&) = (o),
Fi(adh) = (ﬁa-l-q(ofi’A)(Ad(ti>G)fe(i))925&'-

Then there exists a unique By(g)-linear morphism ¢: Uy (g)¢}, — U7 (g)¢% sending ¢ to
N lts image ¥(U; (g)¢)) is Va(A).
Hereafter we assume further that
“there is no i € I such that 0(i) =
We conjecture that Vp(\) has a crystal basis. This means the following. Since E; and F; -
satisfy the g-boson relation By F; = ¢~ (@) F,E; + 1, we define the modified root cperators:

E‘Z(u) — Zﬂ(nﬁl)un and ﬁ(u) _ Zﬂ(nﬂ)um

nzl 720
when writing « = an F( Uy With Eyu, = 0. Let Lg(\) be the A.o submodule of Vy(A)
generated by E1 Fy¢y (€2 0and 4y,...,%. € 1), and let By()) be the subset

{Fur FugamodaLo() [ £ 0,6, is € T}

Conjecture 4.3. Let A be a dominant integral weight such that 6()\) =
(1) FiLy(\) C Le(A) and E;Lo(X) C Lo(N),
(2) Bo()) is a basis of Ly(A \)/qLs(N),
(3) FiBg()) C By(A), and E; 7 Ba(A) C By(M\) L {0},
(4) F;E;(b) = bfor any b € By()\) such that E;b # 0, and E;Fy(b) = b for any b € Bg(N).
Moreover we conjecture that Va(\) has a global crystal basis. Namely we have
Conjecture 4.4. (Ls()), Lo(\), Va(X)9") is balanced. Here Vy(\)v := Uy (9)a®a-

The dual version is as follows. As in [Kas|, we have

Lemma 4.5. Assume Conjecture 4.3. Then we have
(1) Lo(A) = {v € Vo(N) | (Ls(N),v) C A},
(ii) Let (=, <)o be the C-valued symmetric bilinear form on Le()\)/qLg()\) induced by
(e, ). Then Bg(\) is an orthonormal basis with respect to (=, «)g.
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Let us denote by Va(A\)¥ the dual space {v € Va(A) | (Va(N)§",v) € A}. Then Conjec-
ture 4.4 is equivalent to the following conjecture.

Conjecture 4.6. (Ly(\), c(Le(N)), Vo(A)¥) is balanced.

Here ¢ is a unique endomorphism of V3(\) such that c(¢y) =
c(Bw) = Eic(v) for any @ € K and v € V3(X). We have (c(v
v,V € Va(A).

Note that Vp(A)P is the largest A-submodule M of Vp(A) such that M is invariant by
the EM™’s and M NK¢) = Agy.

By Conjecture 4.6, Lg(A\) Nc(Le(X))N V5(0)* — Lg(A)/qLe()) is an isomorphism. Let
Gy® be its inverse. Then {Gy7(b) }sen,(n) 18 a basis of Vy()), which we call the upper global
basis of Va(\). Note that {Gy>(b) }een, (v is the dual basis to {G§™(b) }een,(n) With respect
to the inner product of Vg(A).

oy and c(av) = ac(v),
", v) = (v,0) for any

5. SYMMETRIC CRYSTALS FOR gl

In this section, we consider the case g = gl,, and the Dynkin involution # of I defined
by 9(2) = —i for i € I = Zyaa- :

We shall prove in this case Conjectures 4.3 and 4.4 for A = 0.
We set

Vp(0) := Ba(@)/(fi: By(g) Ei + ; By(g)(Fi = Fow)) = Uy (9%0)/ 22 U{(gfo;)(fi — fo).

%

Since Fypg = (fi + fow)) 98 = Fay @, we have an epimorphism
(5.1) Va(0) — V4(0).

It is in fact an isomorphism (see Theorem 5.9).
5.1. f-restricted multisegments.

" Definition 5.1. If o multisegment m has the form
—J IS
we call m a O-restricted multisegment. We denote by Mg the set of 8-restricted multiseg-
ments.

Definition 5.2. For a 0-restricted segment (i, j), we define its modified divided power by

.. i 1 cooam . .

| DT = )™ G =),
<’l’ > — 1 L

Emsy (=0 )" i ==j)

Hv=1[211]< 5,9) ( )

Definition 5.3. For m € My, we define the elements Py(m) € U; () C By(g) by
o .
Po(m)= [ (.)™

(i,j)em
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—
Here the product [] is taken over the segments appearing in m from large to small with
respect to the PBW-ordering.

5.2. Crystal structure on M,.
Definition 5.4. Suppose k > 0. For a 6-restricted multisegment m =Y m;;{(4,7), we

—Jsisy

set
&_(m) = max {Ag“k>(m) 03 ~k} :
where
—k
A§ )(m) = Z(m—k,e —M_prae42) for >k,
I
A,(c_k)(m) = Z(m_k,g = M_pt2,e) + 2Mp g+ 8(M_pyok is odd),
>k
Ag-"k) (m) = E(mﬁk_,g — M _pyoe) + 2M_jp — 2M_gro g2 + E Mk — E My k2
>k k42 i 42 —k+2<igg

for—k+2<7<k~2.
(i) Let ny be the smallest £ > —k + 2, with respect to the ordering -+ > k+2 > k >
~k+2> >k —2, such that e_(m) = A" (m). We define
—(—k+2,nf>+(—k,nf> ifng >k,
7 (m) = m— (—k+2,k) + (=k, k) ifng =k and m_gioyk 5 odd,
" T lm -~ Oppr{—k+ 2,k — 2) + (=k + 2, k) if ny =k and m_gyay 15 cven,
m = pppr2(ns+2,k—=2)+ (np+2,k) if —k+2<n;<k-2.
(it) Ifs_y(m) =0, then E_;(m) = 0. Ife_g(m) > 0, then let n. be the largest £ = —k+2,
with respect to the above ordering, such that £_x(m) = Aé_k)(m). We define
m - (—k nc>+<—k+2,ne> if ne >k,
m— (—k k) + (—k+2,k) ' if ne =k and m_p1o is even,
m— (— k +2,k) + 6pta(~k+2,k—2)  ifn.=k and m_roy s odd,
m~ (ne +2,k) + dpppo(ne + 2,k —2) if ~k+2<n. <k—2.

Eﬁk(m) =

Hemark 5.5. For 0 < k € I, the actions of E_k and ﬁ,k on m € My are described by
the following algorithm.
Step 1. Arrange segments in m of the form ( =k, 5) (4 2k), (-k+2,7) (j = k-2,0), (i,k)
(=k <i<k), (i,k—2) (~k+2 <4<k —2)in the order
A=k b+ 2),(=k+2,k+2), (=k, k), (~k+2,k),(~k+2,k - 2),
(=k+4,k), (-k+4,k=2), - [ (k—2,k), (k—2,k —2), (k).
Step 2. Write signatures for each segment appearing in m by the following rules.
(i) If a segment is not (—k + 2, k), then
e For (—k, k), write ——

e For (—k,j) with j > k write —,
o For (—k+ 2,k —2) with k > 1, write ++,

s For (5, k) if —k < j <k, write —,

-
(=
e For (—k+2,7) with § > k, wrlte+
(7
o For (7,k 2>if——k+2<j<k~—2,write+,
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o If otherwise, write no signature.
(ii) For segments m_gyok{—Fk + 2, k), if m_gyax is even, then write no signature,
and if m_pyoy is odd, then write a sequence —+.
Step 3. In the resulting sequence of + and —, delete a subsequence of the form +— and
keep on deleting until no such subsequence remains.

Then we obtain a sequence of the form — — -+ — + 4+ 4.

(1) e_x(m) is given as the total number of — in the resulting sequence.
(2) F_(m) is given as follows: ,
(i) if the leftmost + corresponds to a segment (—k +2,7) (4 > k), then replace the
segment with (—£, 7), ‘
(i) if the leftmost + corresponds to a segment (j, k — 2), then replace the segment
with (7, k),
(iii) { the leftmost + corresponds to segment (—k + 2, k)™ **>*, then replace one of
the segments with (—k&, k),
iv) if no + exists, add a segment (k, k) to m.
(3) E_gx(m) is given as follows: _
(i) if the rightmost — corresponds to a segment (—Fk,j), then replace the segment
with (—k + 2, 7),
(i) if the rightmost — corresponds to a segment (7, k) (§ # —k+ 2), then replace the
segment with (j,k — 2),
(iii) if the rightmost — corresponds to segments m_grox(—k + 2, k), then replace one
of the segment with (~k + 2,k — 2),
(iv) if no — exists, then E_(m) = 0.

Definition 5.6. Fork € .o, we define ﬁk, Ey and ey, by the same rule as in Definition 2.15
for fr and é.

Theorem 5.7. By Fy, Ej, &4 (k € I), My is a crystal, in the sense that, for any k € I,
we have

(i) FxMs © My and Eche C My U {0},
(i) FioBy(m) = m if By(m) # 0, and By o Fy =id,
(ili) ep{m) = max {n > 0| E™(m) # 0} < co for any m € M.

Example 5.8. (1) We shall write {a,b} for a(—1,1) +b(1). The following diagram 1s the
part of the erystal graph of Be(0) that concerns only the 1-arrows and the (—1)-arrows.

L {0, =505}
L 02 =03
p=={0.1) =z
L0 =1
I - cRV R

Especially the part of (—1)-arrows is the following diagram.

(0,20} — > {0,2n + 1} —— {1, 20} ~——> {1,2n + 1} — > {2,2n} —— -
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(2) The following diagram is the part of the crystal graph of Bg(0) that concerns only the
(=1)-arrows and the (—3)-arrows. This diagram is isomorphic as a graph to the crystal
graph of As.
/—/l//‘_,?, 2<_17 1)

o (LD +()

BTy

(3) Here is the part of the crystal graph of By(0) that concerns only the n-arrows and the
(—=n)-arrows for an odd integer n > 3: -

¢ == (n) == 2(n) == 3(n) == 4(n) .-
5.3. Main Theorem. We write ¢ for the generator ¢y of V;(0), for short
Theorem 5.9. (i) The morphism
Vo(0) = U, (a)/ 3 Uy ()(fi = F-4) = Va(0)
kel
5 an isomorphism.
(i) {Po()@}menm, is a basis of the K-vector space Vy(0).
(iii) Set
Le():= > AoF,---F,6 C V(0),
£20,81,..,1gc]
By(0) = {F}, - FiydmodqLo(0) [ £3 0,i1,... ir e I}

Then, Bg(0) is a basis of Le(0)/qLe(0) and (Le(0), Bs(0)) 4s a crystal basis of Vy(0),
and the crystal structure coincide with the one of My.

(iv) More precisely, we have



16 NAOYA ENOMOTO AND MASAKI KASHIWARA

(2) Lo(0) = X mept, AoFo(m)d,
(b) By(0) = {Py(m)¢pmod qLs(0) | m € My},
(c) for any k € I and m € My, we have
(1) FyPo(m)¢ = Py(Frm)¢ mod qLe(0),
(2) ExPo(m)¢ = Fp(Exm)¢ mod qLg(0), where we understand F3(0) = 0,
(3) ERPy(m)¢ € qLg(0) if and only if n > ex(mm).
5.3.1. Global Basis of V3(0). Recall that A = Qlg,¢ 7], and V4(0)a = U; (gl)a¢-
Lemma 5.10. (i) Vs(0)a = P AP(m)¢.

(ii) Form € M, e
Py(m)$ € Py(m)p+ » _ APs(n)s.

n < m
ery

By the above lemma, we obtain the following theorem.

Theorem 5.11. (i) (Ls(0), Lg(0), Vs(0)a) is balanced.
(i) For anym € My, there exists o unique G¥¥ (m) € Lg(0)NV(0)a such that G§¥ (m) =
Gl (m) and G¥™(m) = Pp(m)¢ mod gL (0).
(iii) G¥¥(m) € Pp(m)o + 3, ., ¢ ClalPs(n)¢ for any m € Ms.

cry

6. REPRESENTATION THEORY OF HZ anp LLTA TypPE CONJECTURES

8.1. The affine Hecke algebra of type B.

Definition 6.1. For po, p1 € C*, the affine Hecke algebra HE of type B is a C-algebra
generated by

TOyTlv'“ an~l’X1ﬂ:15" ’ vX:::l
salisfying the following defining relations:
(1) XoX; = X;X; forany 1 <4, < n.
(ii) [The braid relations of type B|
Ty ToTy = 11Ty T T,
LT T = T T (1 Lig<n— 2)7
T.T; = T;T; (li—Jt>1).
(iii) [The Hecke relations]
(To—po)(To+p;") =0, Ti-p)(Ti+pi)=0 (1<i<n-1).
(iv) [The Bernstein-Lusztig relations]
ToX[ T = X,
TXTi=X4 (1<i<n-1),
Note that the subalgebra generated by 7; (1 € ¢ < n— 1) and inl (1<7<n)is
isomorphic to the affine Hecke algebra H24.
We assume that py, p1 € C* satisfy

Pr#L pi#L

Let us denote by Pol, the Laurent polynomial ring C[XE!,... XF'], and by Pol,, its
quotient field C(X1,...,X,). Then HZ is isomorphic to the tensor product of Pol, and
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the subalgebra generated by the Ty's that is isomorphié to the Hecke algebra of type B,.

We have
— 5,0

- -1
Tia = (s:0)T; + (0 — p; )1 x oy
HerepZ =p (1<i<n)and X~ = X% (i = 0) and X~ —XXH_1 (1 €1 <mn). The
5;'s are the Weyl group action on Pol,,: sla\( X,) = a(X7, X, ... ,Xn) fori=0
and (sia)(Xl,...,Xn)=a(X1,...,Xi+1,X .. ) fOI' 1€i<n.
Note that HZ = C for n = 0.
The algebra HB acts faithfully on HZ/ 3" HE(T; — p;) ~ Pol,. Set

=(1-X")T — (p; —p;!) e H?

for a € Pol,,.

and
- - Y\ — .
@i = (07" = piX ) ; € Poly, @pa, HE.
Then the action of @; on Pol,, coincides with s;. They are called intertwiners.

6.2. Block decomposition of HZ-mod™., For n,m > 0, set

Fom= (C[Xf“l, .. .Xnijm, D*l],
where
D= [l (X%-pX) (6 — 072X (X - 03X ) (X — pp XTHG = X (X - X,
1gign<j<ntm

Then we can embed HE into HE,, ®pa,,,, Frm by
Tor@n G1T0G1 Pny T T A<i<m), Xie X (1<i<m).

Its image commute with %7 < HP,_ . Hence HE . ®po,,, Fnm is a right HEZ @ HE-
module. Note that (H7 @ HE) @por.y, Frim = Frm @polnsr (HZ @ HB) is an algebra.

Lemma 6.2, Hn+m ® gHB ® H ) ®]P01,H m F n,m L>H5+m ®Poln+m Fn,m'

Proof. Let W2 and WB be the finite Weyl group of type A and B. Note that |W, Al

[WE|. [WBl/(!WA| [WAl) W, +m( Hence the both sides are free modules of rank [W2,, |
over Fp . We prove that the map is surjective.

For short, we denote the image of H,,,, ® (HE ® HE) ®p,,,, Fam by HEE,
HARMA

77{77,—9—777, ®]P’01n,+m Fn,'m- NOte that (ﬁl (1‘577, c Hn+7n ®Poln_| . nm fO]Z' 1 i < .
First, we have G- Prdopy-- Son € H SPol, I M n,me Since (‘Pn T @1)_1
'Hf}+m ®woy, Frm, we have Ty @1 -+ 3, € Hl(ic
Second, note that

T; = (@ulp; —piX‘leH-l) =~ (P = )X T Xin) (1~ X7 Xn) T (1< i <),
EToTy - Tica @i~ $n € Hygyy, then Ty - - Ty Gign -+ - By € H2S, for 1 < i < n. Indeed,
we have

Tor Tigipr- @ = Too T @i Gn (07 = piXy X)L — X1 X,00) 7!
@i =) To Tia Gigr - - B Xy K (1= X7 X y1) ™!

=¢71"'95n€

and

To-TiaGogr Pn=@ir1- - PnTo---Tisy € HP, FrHE.
Therefore ToTy - - - T;, € Hi%,. Hence TyTy - T; € HIOC ( i <n+m). Indeed, if i < n,
then TyTy -+ T; € HE. If n < 4, then TyTy -+ Ty € M, and Ty -+~ T, € HE.
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Finally, we prove the surjectivity by the induction on m. Note that

n+m n+m—1

HE = Z Tl TotmetHo g+ 3 G BN T Mol
i=0
and TiTi1 -+ Topm-r € HA,,._,. Furthermore, HZ C Hp e, by the induction hy-
pothesis. Thus it is sufficient to pro ve that TyH: f,',; Hif‘,jn Here, Hn+m is the subalgebra
of HA ., generated by T1,. .., Tnim-1. This follows from
nt+m—1
77{7?.’5:% = v (Tzw Tovm— 1)T1T2
=
and ToTy -+ - T; € HES,. O

Definition 6.3. For a finite-dimensional HE-module M, let

M= & M,

ae(C*)n
be the generalized eigenspace decomposition with respect to /{1, ey Kt
Ma::{uEMHXi—aZ) w=0 for any 1 < ncmdN>>01

fora = (ay,...,0,) € (C)". 4
(1) We say that M is of iype J if all the eigenvalues of X1,...,Xn belong to J C C*. Put

=D K.
n20
Here KB 7 @5 the Grothendieck group of the abelian category of finite-dimensional HZ -
modules of type J.

(2) The semi-direct product group Z x Zn = Z x {1, ~1} acts on C* by (n, €): a— a’pi™.
(3) Let Jy and Jo be Z X Zog-invariant subsets of C* such that Jy N Jy = §. Then for an
HB-module N of type J1 and an HE -module M of type J2, the action of Polyim on

N @ M extends to an action of Frp . We set
NoM:= (H§+m BPolnsm Fn m) B (HESHD)@rol

folnt+m

Fn,m (N ® "]\([)'

By the lemma above, N ¢ M is isomorphic to Ind LZE";{ A (N ® M) as an Hﬁ,m—module.

Proposition 6.4. Let J; and Jy be Z x Zg-invariant subseis of C* such that Jy N Jy = @.

(1) Let N be an irreducible HE -module of type Jy and M an irreducible HE -module of type
Jo. Then N o M is an irreducible HEZ,-module of type Ji U Ja.

(2) Conversely if L is an irreducible HZ -module of type J1UlJz, then there exist an integer m
(0 < m < n), an irreducible HE, “module N of type J1 and an irreducible Hn,-—m -module
M of type Jo such that L~ N o M.

(3) Assume that a Z x Za-orbit J decomposes into J = J,. U J.. where Jx are Z-orbits and
J_ = (J4)"!. Assume that +1,+py & J. Then for any irreducible Hy-module L of
type J, there exists an irreducible H2-module M such that L =~ IndH M.

Proof. (1) Let (NoM)y, 5, be the generalized eigenspace, where the eigenvalues of X; 1<
i < n) are in J; and the eigenvalues of X; (n < j < n+m) are in Jy. Then (No M)y, =
N®Mby JjnJy = 0 by the above 1emma and the shuffle lemma (e.g. [G, Lemma
5.5]). Suppose there exists non-zero HZ,, -submodule S in N o M. Then Snp #F 0
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as an H2 ® HE-module. Hence Sy, ;, = N ® M by the irreducibility of N ® M as an
HE ® HZ-module. We obtain $ = N o M.

(2) For an irreducible HZ-module L, the HZ @ 2 __-module L Ji.0. does not vanish
for some m. Take an irreducible HEZ @ HP_ -submodule S in L. Then there exist an
irreducible HE-module N of type J; and an irreducible HE_.-module M of type J, such
that S = N®M. Hence there exists a surjective hornomorphism Ind(NQM) = NoM — L.
Since N ¢ M is irreducible, this is an isomorphism.

(3) See [M, Section 6]. O

Hence in order to study HP-modules, it is enough to study irreducible modules of type
J for a Z x Zy-orbit J in C* such that J is a Z-orbit or J contains one of %1, £py.

6.3. The g-restriction and e-induction.

Definition 8.5. For a € C* and a finite-dimensional HZ-module M, let us define the
functors
Byt Hy -mod® — HZ | -mod®, F,: HE -mod™ — M2, -mod®

a

by: E,M is the generalized a-eigenspace of M with respect to the action of Xn, and

F, M = Ind /e

npecpes M © (a),

1

7

where (a) is the 1-dimensional representation of C[XEL] defined by Xpiy — a.
Define '

EGM =goc B, M, faﬂf :=cosoc F,M
fora e C*. '
Theorem 6.6 (Miemietz [M]). Suppose M is irreducible. Then E,M is irreducible and
EoM s irreducible or O for any a € C*\{£1}.
6.4. LLTA type conjectures for type B. Now we take the case
J={p] | k'€ Zoaa} -
Assugle that any of 1 and +po is not contained in J. For short, we shall write E;, Ei, F;
and F; for B, Ey, Fi and Fi, respectively.
Conjecture 6.7. (1) There are complete representatives
{Ly | b€ By(0)}
of the finite-dimensional irreducible H8-modules of type J such that
Eily=Lg, Fly=Lg,
for any i € I = Zoqq.

(2) For any i € Zgqgq, let us define Eipy, Fipp € Clg, ¢71] by the coefficients of the following
expansions: ‘

EGPb) = 3. EpwGPl), EGPO)= 3 FiuwGRE).
b'eBs{0) b'eBe(0)
Then
[EiLy : Ly) = Eipple=1, [Fily: Lyl = Fipple=1-
Here [M : N is the composition multiplicity of N in M on K B
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Remark 6.8. There is a one-to-one correspondence bhetween the above index set Bg(0)
and Syu Kato’s parametrization ([Kat)) of irreducible representations of HZ of type J.

Remark 6.9. (i) For conjectures for other Z » Zg-orbits J, see [EK1].

(i) Similar conjectures for type D are presemted by the second author and Vanessa
Miemietz ([KM]).

Errata to “Symmetric crystals and affine Hecke algebras of type B, Proc. Japan Acad., 82,
no. &, 2006, 131-136" :

i) In Conjecture 3.8, A = A, + A, —: should be read as A = A,, where A = I'n
i Fo cA
ac
{po, 25%, —P0, —py* +. We thank S. Ariki who informed us that the original conjecture
is false.

(i) In the two diagrams of By()) at the end of §2, X should be 0.
(iii) Throughout the paper, Agl) should be read as Af)l.
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