Title	SYMMETRIC CRYSTALSAND LLTA TYPE CONJECTURES FOR THE AFFINE HECKE ALGEBRAS OF TYPE B（Combinatorial Representation Theory and Related Topics）
Author（s）	ENOMOTO，NAOYA；KA SHIWARA，MASAKI
Citation	数理解析研究所講究録別冊＝RIMS Kokyuroku Bessatsu （2008），B8：1－20
Issue Date	2008－05
URL	http：／hdl ．handle．net／2433／174305
Right	
Type	Departmental Bulletin Paper
Textversion	publisher

SYMMETRIC CRYSTALS AND
 LLTA TYPE CONJECTURES FOR THE AFFINE HECKE ALGEBRAS OF TYPE B

NAOYA ENOMOTO AND MASAKI KASHIWARA

Abstract

In the previous paper [EK1], we formulated a conjecture on the relations between certain classes of irreducible representations of affine Hecke algebras of type B and symmetric crystals for gl_{∞}. In the first half of this paper (sections 2 and 3), we give a survey of the LLTA type theorem of the affine Hecke algebra of type A. In the latter half (sections 4,5 and 6), we review the construction of the symmetric crystals and the LITA type conjectures for the affine Hecke algebra of type B.

1. Introduction

1.1. The Lascoux-Leclerc-Thibon-Ariki theory connects the representation theory of the affine Hecke algebra of type A with representations of the affine quantum enveloping algebra of type A. Recently, we presented the notion of symmetric crystals and conjectured that certain classes of irreducible representations of the affine Hecke algebras of type B are described by symmetric crystals for $\mathfrak{g l}_{\infty}$ or $A_{\ell-1}^{(1)}([E K 1])$. In this paper, we review the LLTA-theory for the affine Hecke algebra of type A, the symmetric crystals, and then our conjectures for the affine Hecke algebra of type B. For the sake of simplicity, we restrict ourselves in this note to the case where the parameters of the affine Hecke algebras are not a root of unity.

This paper is organized as follows. In part I (sections 2 and 3), we review the LLTAtheory for the affine Hecke algebras of type A. In section 2 , we recall the representation theory of $U_{q}\left(\mathfrak{g l}_{\infty}\right)$, especially the PBW basis, the crystal basis and the global basis. In section 3 , we recall the representation theory of the affine Hecke algebra of type A and state the LLTA-type theorems. In part II (sections 4,5 and 6), we explain symmetric crystals for g_{∞} and the LLTA type conjectures for the affine Hecke algebras of type B. In section 4, we recall the construction of symmetric crystals based on [EKI] and state the conjecture of existence of the crystal basis and the global basis. In section 5, we explain a combinatorial realization of the symmetric crystals for $\mathfrak{g l}_{\infty}$ by using the PBW type basis and the θ-restricted multisegments. This section is a new additional part to the announcement [EK1]. The details will appear in [EK2]. In section 6, we explain the representation theory of the affine Hecke algebra of type B and state our LLTAtype conjectures for the affine Hecke algebra of type B. We add proofs of lemmas and propositions in [EK1, section 3.4].

1.2. Let us recall the LLTA-theory for the affinc Hecke algebra of type A.

The representation theory of quantum enveloping algebras and the representation theory of affine Hecke algobras have doveloped independently. G. Lusztig [L] constructed the PBW type basis and canonical basis of $U_{q}^{-}(g)$ for the A, D, E cases. The second author [Kas]

[^0]defined the crystal basis $B(\infty)$ and the (lower and upper) global bases $\left\{G^{\text {low }}(b)\right\}_{b \in B(\infty)}$, $\left\{G^{u p}(b)\right\}_{b \in B(\infty)}$ of $U_{q}^{-}(\mathfrak{g})$. The lower global basis coincides with Lusztig's canonical basis. On the other hand, A. V. Zelevinsky [Z] gave a parametrization of the irreducible representations of the affine Hecke algebra of type A by using multisegments. Chriss-Ginzburg $[\mathrm{CG}]$ and Kazhdan-Lusztig [KL] constructed all the irreducible representations of the affine Hecke algebras in geometric methods.

Lascoux-Leclerc-Thibon conjectured in [LLT] that certain composition multiplicities (called the decomposition numbers) of the Hecke algebra of type A can be written by the transition matrices (specialized at $q=1$) between the upper global basis and a standard basis of the level 1 fundamental representation of $U_{q}\left(\widehat{\left.s \mathscr{L}_{\ell}\right)}\right.$. In [A], S. Ariki generalized and solved the conjecture for the cyclotomic Hecke algebra and the affine Hecke algebra of type A by using the geometric representation theory of the affine Hecke algebra of type A. In [GV], I. Grojnowski and M. Vazirani proved the multiplicity-one results for the socle of certain restriction functors and the cosocle of certain induction functors on the category of the finite-dimensional representations of the affine Hecke algebras \mathcal{H}^{A} of type A. By using these functors, Grojnowski ($[\mathrm{G}]$) gave the crystal structure on the set of irreducible modules over the affine Hecke algebras \mathcal{H}^{A} of type A. In [V], Vazirani combinatorially constructed the crystal operators on the set of moultisegments and proved the compatibility between her actions and Grojnowski's actions.

For $p \in \mathbb{C}^{*}$, let $\mathcal{H}_{n}^{A}(p)$ be the affine Hecke algebra of type A of degree n generated by $T_{i}(1 \leqslant i \leqslant n-1)$ and $X_{j}^{ \pm 1}(1 \leqslant j \leqslant n)$. For a subset J of \mathbb{C}^{*}, we say that a finitedimensional \mathcal{H}_{n}^{A}-module is of type J if all the eigenvalues of $X_{j}(1 \leqslant j \leqslant n)$ belong to J. We can prove that in order to study the irreducible modules over the affine Hecke algebras of type A, it is enough to treat those of type J for an orbit J with respect to the \mathbb{Z}-action on \mathbb{C}^{*} generated by $a \mapsto a p^{2}$ (see Lemma 3.3). For a \mathbb{Z}-orbit J, let $K_{J}\left(\mathcal{H}_{n}^{A}\right)$ be the Grothendieck group of the abelian category of finite-dimensional \mathcal{H}_{n}^{A}-modules of type J, and $K_{J}^{A}=\oplus_{n \geqslant 0} K_{J}\left(\mathcal{H}_{n}^{A}\right)$. The LLTA-theory gives the following correspondence between the notions in the representation theory of a quantum enveloping algebra $U_{q}\left(g_{\infty}\right)$ and the ones in the representation theory of affine Hecke algebras of type A.

the quantum enveloping algebra	the affine Hecke algebra of type A
$U_{q}\left(g_{\infty}\right)$	$\mathcal{H}_{n}^{A}(p)(n \geqslant 0)$
$U_{q}^{-}\left(\mathscr{g}_{\infty}\right)$	$K_{J}^{A}=\oplus_{n \geqslant 0} K_{J}\left(\mathcal{H}_{n}^{A}(p)\right)$
e_{a}^{\prime}, f_{a}	certain restrictions e_{a} and inductions f_{a}
the crystal basis $B(\infty)$	$\mathcal{M}=\{$ the multisegments $\}$
the upper global basis	the irreducible modules
$\left\{G^{\text {up }}(b)\right\}_{b \in B(\infty)}$	$\left\{L_{b}\right\}_{b \in B(\infty)}$
the modified root operators	$\widetilde{e}_{a}=\operatorname{soc}\left(e_{a}\right), \widetilde{f}_{a}=\operatorname{cosoc}\left(f_{a}\right)$
$\widetilde{e}_{a}, \widetilde{f}_{a}$	$\widetilde{e}_{a} L_{b}=\widetilde{L}_{\widetilde{e}_{a}}, \widetilde{f}_{a} L_{b}=L_{\tilde{f}_{b} b}$
the PBW basis $\{P(b)\}_{b \in B(\infty)}$	the standard modules $\{M(b)\}_{b \in B(\infty)}$

Figure 1. Lascoux-Leclerc-Thibon-Ariki correspondence in type A
The additive group K_{J}^{A} has a structure of Hopf algebra by the restriction and the induction. The set J may be regarded as a Dynkin diagram with J as the set of vertices
and with edges between $a \in J$ and $a p^{2}$. Let ξ_{J} be the associated Lie algebra, and \mathfrak{g}_{J}^{-}the unipotent Lie subalgebra. Hence g_{J} is isomorphic to g_{∞} if p has an infinite order. Let, U_{J} be the group associated to Ω_{J}^{-}. Then $\mathbb{C} \otimes \mathbb{K}_{J}^{\mathrm{A}}$ is isomorphic to the algebra $\mathscr{O}\left(U_{J}\right)$ of regular functions on U_{J}. Let $U_{q}\left(\mathfrak{g}_{J}\right)$ be the associated quantized enveloping algebra. Then $U_{q}^{-}(g s)$ has a crystal basis $B(\infty)$ and an upper global basis $\left\{G^{\text {up }}(b)\right\}_{b \in B(\infty)}$. By specializing $\oplus \mathbb{C}\left[q, q^{-1}\right] G^{\text {up }}(b)$ at $q=1$, we obtain $\mathscr{O}\left(U_{J}\right)$. Then the LLTA-theory says that the elements associated to the irreducible \mathcal{H}^{A}-modules correspond to the image of the upper global basis. Namely, each $b \in B(\infty)$, an irreducible \mathcal{H}^{A}-module L_{b} is associated and we have

$$
\left[e_{a} L_{b}: L_{b}\right]=\left.\epsilon_{a, b, b^{\prime}}^{\prime}\right|_{q=1}, \quad\left[f_{a} L_{b}: L_{b^{\prime}}\right]=\left.f_{a, b, b^{\prime}}\right|_{q=1}
$$

Here $\left[e_{a} L_{b}: L_{b^{\prime}}\right]$ and $\left[f_{a} L_{b}: L_{b^{\prime}}\right]$ are the composition multiplicities of $L_{b^{\prime}}$ of $e_{a} L_{b}$ and $f_{a} L_{b}$ in K_{J}^{A}. (For the definition of the functors e_{a} and f_{a} for $a \in J$, see Definition 3.4.) The Laurent polynomials $e_{a, b, b^{\prime}}^{\prime}$ and $f_{a, b, b^{\prime}}$ are defined by

$$
e_{a}^{\prime} G^{\mathrm{up}}(b)=\sum_{b^{\prime} \in B(\infty)} e_{a, b, b^{\prime}}^{\prime} G^{\mathrm{up}}\left(b^{\prime}\right), \quad f_{a} G^{\mathrm{up}}(b)=\sum_{b^{\prime} \in B(\infty)} f_{a, b, b} G^{\mathrm{up}}\left(b^{\prime}\right)
$$

1.3. Let us explain our analogous conjectures for the affine Hecke algebras of type B.

For $p_{0}, p_{1} \in \mathbb{C}^{*}$, let $\mathcal{H}_{n}^{B}\left(p_{0}, p_{1}\right)$ be the affine Hecke algebra of type B generated by $T_{i}(0 \leqslant i \leqslant n-1)$ and $X_{j}(1 \leqslant j \leqslant n)$. The representation theory of $\mathcal{H}_{n}^{B}\left(p_{0}, p_{1}\right)$ of type B are studied by V. Miemietz and Syu Kato. In [M], V. Miemietz defined certain restriction functors E_{a} and the induction functors F_{a} on the category of the finite-dimensional representations of the affine Hecke algebras of type B, which are analogous to GrojnowskiVazirani's construction, and proved the multiplicity-one results (see sections 6.3 and 6.4). On the other hand, S. Kato obtained in [Kat] a geometric parametrization of the irreducible representations of the affine Fecke algebra $\mathcal{H}_{n}^{B}\left(p_{0}, p_{1}\right)$, which is an analogue to geometric methods of Kazhdan-Lusztig and Chriss-Ginzburg.

We say that a finite-dimensional \mathcal{H}_{n}^{B}-module is of type $J \subset \mathbb{C}^{*}$ if all the eigenvalues of $X_{j}(1 \leqslant j \leqslant n)$ belong to J. Let us consider the $\mathbb{Z} \backslash \mathbb{Z}_{2}$-action on \mathbb{C}^{*} generated by $a \mapsto a p_{1}^{2}$ and $a \mapsto a^{-1}$. We can prove that in order to study η^{B}-modules, it is enough to study irreducible modules of type J for a $\mathbb{Z} \times \mathbb{Z}_{2}$-orbit J in \mathbb{C}^{*} such that J is a \mathbb{Z}-orbit or J contains one of $\pm 1, \pm p_{0}$ (see Proposition 6.4). Let $I=\mathbb{Z}_{\text {odd }}$ be the set of odd integers. In this paper, we consider the case $J=\left\{p_{1}^{k} \mid k \in I\right\}$ such that $\pm 1, \pm p_{0} \notin J$. Let $K_{J}\left(\mathcal{H}_{n}^{B}\right)$ be the Grothendieck group of the abelian category of finite-dimensional representations of $\mathcal{H}_{n}^{B}\left(p_{0}, p_{1}\right)$ of type J.

Let $\alpha_{a}(a \in J)$ be the simple roots with

$$
\left(\alpha_{a}, \alpha_{b}\right)=\left\{\begin{array}{lc}
2 & \text { if } a=b \\
-1 & \text { if } b=a p_{1}^{ \pm 2} \\
0 & \text { otherwise }
\end{array}\right.
$$

Then the corresponding Lie algebra is $\mathfrak{g l}_{\infty}$. Let θ be the involution of J given by $\theta(a)=a^{-1}$. In sections 4 and 5 , we introduce the ring $\mathcal{B}_{\theta}\left(g I_{\infty}\right)$ and the $\mathcal{B}_{\theta}\left(\mathrm{gl}_{\infty}\right)$-module $V_{\theta}(0)$. They are analogues of the reduced q-analogue $\mathcal{B}_{q}\left(\mathfrak{g l}_{\infty}\right)$ generated by ϵ_{a}^{\prime} and f_{a}, and the $\mathcal{B}_{q}\left(\mathrm{gl}_{\infty}\right)$ module $U_{q}^{-}\left(g_{l}\right)$. We can prove that $V_{\theta}(0)$ has the PBW type basis $\left\{P_{\theta}(b)\right\}_{b \in B_{\theta}(0)}$, the crystal basis $\left(L_{\theta}(0), B_{\theta}(0)\right)$, the lower global basis $\left\{G_{\theta}^{\text {low }}(b)\right\}_{b \in \mathbb{H}_{\theta}(0)}$ and the upper global basis $\left\{G_{\theta}^{\mathrm{up}}(b)\right\}_{b \in B_{\theta}(0)}$. Moreover we can combinatorially describe the crystal structure by using the θ-restricted multisegments.

We conjecture that the irreducible \mathcal{K}^{B}-modules of type J are parametrized by $B_{\theta}(0)$ and if L_{b} is an irreducible \mathcal{H}^{B}-module associated to $b \in B_{\theta}(0)$, then we have $\widetilde{E}_{a} L_{b}=L_{\tilde{E}_{a} b}$,
$\widetilde{F}_{a} L_{b}=L_{\tilde{F}_{a} b}$ and $\left[E_{a} L_{b}: L_{b^{\prime}}\right]=\left.E_{a, b, b^{\prime}}\right|_{q=1},\left[F_{a} L_{b}: L_{b^{\prime}}\right]=\left.F_{a, b, b^{\prime}}\right|_{q=1}$. (For the definition of the functors $E_{a}, F_{a}, \widetilde{E}_{a}$ and \widetilde{F}_{a} for $a \in \bar{J}$, see Definition 6.5.) Here the Laurent polynomials $E_{a, b, b^{\prime}}$ and $F_{a, b, b^{\prime}}$ are defined by

$$
E_{a} G_{\theta}^{\mathrm{up}}(b)=\sum_{b^{\prime} \in B_{\theta}(0)} E_{a, b, b} G_{\theta}^{\mathrm{up}}\left(b^{\prime}\right), \quad F_{a} G_{\theta}^{\mathrm{up}}(b)=\sum_{b^{\prime} \in B_{\theta}(0)} F_{a, b, b^{\prime}} G_{\theta}^{\mathrm{up}}\left(b^{\prime}\right)
$$

the quantum enveloping algebra	the affine Hecke algebra of type B
$U_{q}\left(\mathfrak{g l} l_{\infty}\right)$ with θ	$\mathcal{H}_{n}^{B}\left(p_{0}, p_{1}\right)(n \geqslant 0)$
$V_{\theta}(0)=U_{q}^{-}\left(\mathfrak{g l}_{\infty}\right) / \sum_{i} U_{q}^{-}\left(g_{\infty}\right)\left(f_{i}-f_{\theta(i)}\right)$	$K_{J}^{B}=\oplus_{n \geqslant 0} K_{J}\left(\mathcal{H}_{n}^{B}\left(p_{0}, p_{i}\right)\right)$
E_{a}, F_{a}	certain inductions E_{a} and restrictions F_{a}
the crystal basis $B_{\theta}(0)$	$\mathcal{M}_{\theta}=\{$ the θ-restricted multisegments $\}$
the upper global basis $\left\{G_{\theta}^{\text {up }}(b)\right\}_{b \in B_{\theta}(0)}$	the irreducible modules $\left\{L_{b}\right\}_{b \in B_{\theta}(0)}$
the modified root operators	$\widetilde{E}_{a}=\operatorname{soc}\left(E_{a}\right), \widetilde{F}_{a}=\operatorname{cosoc}\left(F_{a}\right)$
$\widetilde{E}_{a}, \widetilde{F}_{a}$	$\widetilde{E}_{a} L_{b}=L_{\widetilde{E}_{a} b}, \widetilde{F}_{a} L_{b}=L_{\widetilde{F}_{a} b}$
the PBW basis $\left\{P_{\theta}(b)\right\}_{b \in B_{\theta}(0)}$	the standard modules

Figure 2. Conjectural correspondence in type B

Part I. Review on Lascour-Leclerc- Thibon-Ariki Theory

2. Representation Theory of $U_{q}\left(g_{\infty}\right)$

2.1. Quantized universal enveloping algebras and its reduced q-analogues. We shall recall the quantized universal enveloping algebra $U_{q}(\mathfrak{g})$. Let I be an index set (for simple roots), and Q the free \mathbb{Z}-module with a basis $\left\{\alpha_{i}\right\}_{i \in I}$. Let $(\circ, \circ): Q \times Q \rightarrow \mathbb{Z}$ be a symmetric bilinear form such that $\left(\alpha_{i}, \alpha_{i}\right) / 2 \in \mathbb{Z}_{>0}$ for any i and $\left(\alpha_{i}^{\vee}, \alpha_{j}\right) \in \mathbb{Z}_{\leqslant 0}$ for $i \neq j$ where $\alpha_{i}^{\vee}:=2 \alpha_{i} /\left(\alpha_{i}, \alpha_{i}\right)$. Let q be an indeterminate and set $\mathbb{K}:=\mathbb{Q}(q)$. We define its subrings $\mathbb{A}_{0}, \mathbb{A}_{\infty}$ and \mathbb{A} as follows.

$$
\begin{aligned}
\mathbb{A}_{0} & =\{f \in \mathbb{K} \mid f \text { is regular at } q=0\} \\
\mathbb{A}_{\infty} & =\{f \in \mathbb{K} \mid f \text { is regular at } q=\infty\} \\
\mathbb{A} & =\mathbb{Q}\left[q, q^{-1}\right]
\end{aligned}
$$

Definition 2.1. The quantized universal enveloping algebra $U_{q}(\mathfrak{g})$ is the \mathbb{K}-algebra generated by elements e_{i}, f_{i} and invertible elements $t_{i}(i \in I)$ with the following defining relations.
(1) The t_{i} 's commute with each other.
(2) $t_{j} e_{i} t_{j}^{-1}=q^{\left(\alpha_{j}, \alpha_{i}\right)} e_{i}$ and $t_{j} f_{i} t_{j}^{-1}=q^{-\left(\alpha_{j}, \alpha_{i}\right)} f_{i}$ for any $i, j \in I$.
(3) $\left[e_{i}, f_{j}\right]=\delta_{i j} \frac{t_{i}-t_{i}^{-1}}{q_{i}-q_{i}^{-1}}$ for $i, j \in I$. Here $q_{i}:=q^{\left(\alpha_{i}, \alpha_{i}\right) / 2}$.
(4) (Serre relation) For $i \neq j$,

$$
\sum_{k=0}^{b}(-1)^{k} e_{i}^{(k)} e_{j} e_{i}^{(b-k)}=0, \sum_{k=0}^{b}(-1)^{k} f_{i}^{(k)} f_{j} f_{i}^{(b-k)}=0
$$

Here $b=1-\left(\alpha_{i}^{\vee}, \alpha_{j}\right)$ and

$$
e_{i}^{(k)}=e_{i}^{k} /[k]_{i}!, f_{i}^{(k)}=f_{i}^{k} /[k]_{i}!, \quad[k]_{i}=\left(q_{i}^{k}-q_{i}^{-k}\right) /\left(q_{i}-q_{i}^{-1}\right),[k]_{i}!=[1]_{i} \cdots[k]_{i}
$$

Let us denote by $U_{q}^{-}(\mathfrak{g})$ the subalgebra of $U_{q}(\mathfrak{g})$ generated by the f_{i} 's.
Let e_{i}^{\prime} and e_{i}^{*} be the operators on $U_{q}^{-}(g)$ defined by

$$
\left[e_{i}, a\right]=\frac{\left(e_{i}^{*} a\right) t_{i}-t_{i}^{-1} e_{i}^{\prime} a}{q_{i}-q_{i}^{-1}} \quad\left(a \in U_{q}^{-}(\mathfrak{g})\right)
$$

These operators satisfy the following formulas similar to derivations:

$$
\begin{align*}
& e_{i}^{\prime}(a b)=e_{i}^{\prime}(a) b+\left(\operatorname{Ad}\left(t_{i}\right) a\right) e_{i}^{\prime} b, \tag{2.1}\\
& e_{i}^{*}(a b)=a e_{i}^{*} b+\left(e_{i}^{*} a\right)\left(\operatorname{Ad}\left(t_{i}\right) b\right)
\end{align*}
$$

The algebra $U_{q}^{-}(g)$ has a unique symmetric bilinear form (\circ, \circ) such that $(1,1)=1$ and

$$
\left(e_{i}^{\prime} a, b\right)=\left(a, f_{i} b\right) \quad \text { for any } a, b \in U_{q}^{-}(\mathfrak{g})
$$

It is non-degenerate and satisfies $\left(e_{i}^{*} a, b\right)=\left(a, b f_{i}\right)$. Leit $\mathcal{B}(g)$ be the algebra generated by the $e_{i}^{\prime \prime} s$ and the $f_{i}^{\prime \prime}$. The left multiplication of f_{j}, e_{i}^{\prime} and e_{i}^{*} have the commutation relations

$$
e_{i}^{\prime} f_{j}=q^{-\left(\alpha_{i}, \alpha_{j}\right)} f_{j} e_{i}^{\prime}+\delta_{i j}, e_{i}^{*} f_{j}=f_{j} e_{i}^{*}+\delta_{i j} \operatorname{Ad}\left(t_{i}\right),
$$

and both the $e_{i}^{\prime \prime}$'s and the $e_{i}^{* \prime} s$ satisfy the Serre relations.
Definition 2.2. The reduced q-analogue $\mathcal{B}(\mathfrak{g})$ of \mathfrak{g} is the $\mathbb{Q}(q)$-algebra generated by e_{i}^{\prime} and f_{i}.
2.2. Review on crystal bases and global bases. Since e_{i}^{\prime} and f_{i} satisfy the q-boson relation, any element $a \in U_{q}^{-}(\mathfrak{g})$ can be written uniquely as

Here $f_{i}^{(n)}=\frac{f_{i}^{n}}{[n]_{i}!}$.

$$
a=\sum_{n \geqslant 0} f_{i}^{(n)} a_{n} \quad \text { with } e_{i}^{\prime} a_{n}=0
$$

Definition 2.3. We define the modified root operators \widetilde{e}_{i} and \widetilde{f}_{i} on $U_{q}^{-}(g)$ by

$$
\widetilde{e}_{i} a=\sum_{n \geqslant 1} f_{i}^{(n-1)} a_{n}, \quad \widetilde{f}_{i} a=\sum_{n \geqslant 0} f_{i}^{(n+1)} a_{n} .
$$

Theorem 2.4 ([Kas]). We define

$$
\begin{aligned}
L(\infty) & =\sum_{\ell \geqslant 0, i_{1}, \ldots, i_{\ell} \in I} \mathbb{A}_{0} \tilde{f}_{i_{1}} \cdots \tilde{f}_{i_{\ell}} \cdot 1 \subset U_{q}^{-}(\mathfrak{g}) \\
B(\infty) & =\left\{\tilde{f}_{i_{1}} \cdots \tilde{f}_{i_{\ell}} \cdot 1 \bmod q L(\infty) \mid \ell \geqslant 0, i_{1}, \cdots, i_{\ell} \in I\right\} \subset L(\infty) / q L(\infty)
\end{aligned}
$$

Then we have
(i) $\tilde{e}_{i} L(\infty) \subset L(\infty)$ and $\tilde{f}_{i} L(\infty) \subset L(\infty)$,
(ii) $B(\infty)$ is a basis of $L(\infty) / q L(\infty)$,
(iii) $\widetilde{f}_{i} B(\infty) \subset B(\infty)$ and $\widetilde{e}_{i} B(\infty) \subset B(\infty) \cup\{0\}$.

We call $(L(\infty), B(\infty))$ the crystal basis of $U_{q}^{-}(g)$.
Let - be the automorphism of \bar{K} sending q to q^{-1}. Then $\overline{\mathbf{A}_{0}}$ coincides with \mathbf{A}_{∞}.
Let V be a vector space over \mathbb{K}, L_{0} an A-submodule of V, L_{∞} an \mathbb{A}_{∞} - submodule, and V_{A} an A -submodule. Set $E:=L_{0} \cap L_{\infty} \cap V_{\mathrm{A}}$.

Definition 2.5 ([Kas]). We say that $\left(L_{0}, L_{\infty}, V_{\mathrm{A}}\right)$ is balanced if each of L_{0}, L_{∞} and V_{A} generates V as a \mathbb{K}-vector space, and if one of the following equivalent conditions is satisfied.
(i) $E \rightarrow L_{0} / q L_{0}$ is an isomorphism,
(ii) $E \rightarrow L_{\infty} / q^{-1} L_{\infty}$ is an isomorphism,
(iii) $\left(L_{0} \cap V_{\mathrm{A}}\right) \oplus\left(q^{-1} L_{\infty} \cap V_{\mathrm{A}}\right) \rightarrow V_{\mathrm{A}}$ is an isomorphism.
(iv) $\mathbb{A}_{0} \otimes_{\mathbb{Q}} E \rightarrow L_{0}, \mathbb{A}_{\infty} \otimes_{\mathbb{Q}} E \rightarrow L_{\infty}, \mathbb{A}_{\mathbb{Q}} E \rightarrow V_{\mathbb{A}}$ and $\mathbb{K} \otimes_{\mathbb{Q}} E \rightarrow V$ are isomorphisms.

Let - be the ring automorphism of $U_{q}(\mathfrak{g})$ sending q, t_{i}, e_{i}, f_{i} to $q^{-1}, t_{i}^{-1}, e_{i}, f_{i}$.
Let $U_{q}(g)_{\mathbb{A}}$ be the \mathbb{A}-subalgebra of $U_{q}(g)$ generated by $e_{i}^{(n)}, f_{i}^{(n)}$ and t_{i}. Similarly we define $U_{q}^{-}(g)_{\text {A }}$.
Theorem 2.8. $\left(L(\infty), \overline{L(\infty)}, U_{q}^{-}(\mathfrak{g})_{\mathcal{A}}\right)$ is balanced.
Let

$$
G^{\text {low }}: L(\infty) / q L(\infty) \xrightarrow{\sim} E:=L(\infty) \cap \overline{L(\infty)} \cap U_{q}^{-}(g) \mathrm{A}
$$

be the inverse of $E \xrightarrow{\sim} L(\infty) / q L(\infty)$. Then $\left\{G^{\text {low }}(b) \mid b \in B(\infty)\right\}$ forms a basis of $U_{q}^{-}(g)$. We call it a (lower) global basis. It is first introduced by G. Lusztig ([L]]) under the name of "canonical basis" for the A, D, E cases.
Deninition 2.7. Let

$$
\left\{G^{\mathrm{ap}}(b) \mid b \in B(\infty)\right\}
$$

be the dual basis of $\left\{G^{\text {low }}(b) \mid b \in B(\infty)\right\}$ with respect to the inner product (\cdot, \cdot). We call it the upper global basis of $U_{q}^{-}(\mathrm{g})$.
2.3. Review on the $\mathbb{P B} \mathbb{W}$ basis. In the sequel, we set $I=\mathbb{Z}_{\text {odd }}$ and

$$
\left(\alpha_{i}, \alpha_{j}\right)=\left\{\begin{array}{cl}
2 & \text { for } i=j \\
-1 & \text { for } j=i \pm 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

and we consider the corresponding quantum group $U_{q}\left(g_{r_{\infty}}\right)$. In this case, we can parametrize the crystal basis $B(\infty)$ by the multisegments. We shall recall this parametrization and the PBW basis.
Definition 2.8. For $i, j \in I$ such that $i \leqslant j$, we define a segment $\langle i, j\rangle$ as the interval $[i, j] \subset \mathbb{Z}_{\text {odd }}$. A multisegment is a formal finite sum of segments:

$$
\mathrm{m}=\sum_{i \leqslant j} m_{i j}\langle i, j\rangle
$$

with $m_{i, j} \in \mathbb{Z}_{\geqslant 0}$. If $m_{i, j}>0$, we sometimes say that $\langle i, j\rangle$ appears in m. We denote sometimes $\langle i\rangle$ for $\langle i, i\rangle$. We denote by \mathcal{M} the set of multisegments. We denote by \emptyset the zero element (or the empty multisegment) of \mathcal{M}.
Definition 2.9. For two segments $\left\langle i_{1}, j_{1}\right\rangle$ and $\left\langle i_{2}, j_{2}\right\rangle$, we define the ordering $\geqslant{ }_{P B W}$ by the following:

$$
\left\langle i_{1}, j_{1}\right\rangle \geqslant_{P B W}\left\langle i_{2}, j_{2}\right\rangle \Longleftrightarrow\left\{\begin{array}{l}
j_{1}>j_{2} \\
o r \\
j_{1}=j_{2} \text { and } i_{1} \geqslant i_{2}
\end{array}\right.
$$

We call this ordering the PBW ordering.
Example 2.10. We have $\left.\langle 1,1\rangle\rangle_{P B W}\langle-1,1\rangle\right\rangle_{P B W}\langle-1,-1\rangle$.

Definition 2.11. We define the element $P(\mathrm{~m}) \in U_{q}^{-}\left(\mathrm{gl}_{\infty}\right)$ indexed by a multisegment m as follows:
(1) for a segment $\langle i, j\rangle$, we define the element $\langle i, j\rangle \in U_{q}^{-}\left(\operatorname{gL}_{\infty}\right)$ inductively by

$$
\begin{aligned}
& \langle i, i\rangle=f_{i}, \\
& \langle i, j\rangle=\langle i, j-2\rangle\langle j, j\rangle-q\langle j, j\rangle\langle i, j-2\rangle,
\end{aligned}
$$

(2) for a multisegment $\mathrm{m}=\sum_{i \leqslant j} m_{i j}\langle i, j\rangle$, we defne

$$
P(\mathrm{~m})=\vec{\Pi}\langle i, j\rangle^{\left(m_{i j}\right)} .
$$

Here the product $\vec{\Pi}$ is taken over segments appearing in m from large to small with respect to the $P B W$ ordering. The element $\langle i, j\rangle^{\left(m_{i j}\right)}$ is the divided power of $\langle i, j\rangle$ i.e.

$$
\langle i, j\rangle^{\left(m_{i j}\right)}=\frac{1}{\left[m_{i j}\right]!}\langle i, j\rangle^{m_{i j}} .
$$

Set $\mathrm{wt} P(\mathrm{mp})=-\sum_{i \leqslant j} m_{i j} \alpha_{i j}$.
Theorem 2.12 ([L]). The set of elements $\{P(\mathrm{~m}) \mid \mathrm{m} \in \mathcal{M}\}$ is a basis of the \mathbb{K}-vector space $U_{q}^{-}\left(g_{\infty}\right)$. Moreover this is a basis of the A-module $U_{q}^{-}\left(g_{\infty}\right)_{\mathrm{A}}$. We call this basis the PBW basis of $U_{q}^{-}\left(\mathrm{gl}_{\infty}\right)$.
Definition 2.13. For iwo segments $\left\langle i_{1}, j_{1}\right\rangle$ and $\left\langle i_{2}, j_{2}\right\rangle$, we define the ordering \geqslant cry by the following:

$$
\left\langle i_{1}, j_{1}\right\rangle \geqslant_{c r y}\left\langle i_{2}, j_{2}\right\rangle \Leftrightarrow\left\{\begin{array}{l}
j_{1}>j_{2} \\
\text { or } \\
j_{1}=j_{2} \text { and } i_{1} \leqslant i_{2}
\end{array}\right.
$$

We call this ordering the crystal ordering. For $\mathfrak{m}=\sum_{i \leqslant j} m_{i, j}\langle i, j\rangle \in \mathcal{M}$ and and $\mathfrak{m}^{\prime}=$ $\sum_{i \leqslant j} m_{i, j}^{\prime}\langle i, j\rangle \in \mathcal{M}$, we define $\mathrm{ma}^{\prime}<\mathrm{m}$ if there exists a segment $\left\langle i_{0}, j_{0}\right\rangle$ such that $m_{i_{0}, j_{0}}^{\prime}<$ $m_{i, j_{0}}$ and $m_{i, j}^{\prime}=m_{i, j}$ for any $\langle i, j\rangle>_{\text {cry }}\left\langle i_{0}, j_{0}\right\rangle$.
Example 2.14. The crystal ordering is different from the PBW ordering. For example, we have $\langle-1,1\rangle\rangle_{c r y}\langle 1,1\rangle>_{c r y}\langle-1,-1\rangle$, while we have $\left.\left.\langle 1,1\rangle\right\rangle_{P B W}\langle-1,1\rangle\right\rangle_{P B W}\langle-1,-1\rangle$.
Definition 2.15. We define the crystal structure on \mathcal{M} as follows: for $\mathrm{m}=\sum m_{i, j}\langle i, j\rangle \in$ \mathcal{M} and $i \in I$, set $A_{k}^{(i)}(\mathrm{m})=\sum_{k^{\prime} \geqslant k}\left(m_{i, k^{\prime}}-m_{i+2, k^{\prime}+2}\right)$ for $k \geqslant$ i. Define $\varepsilon_{i}(\mathrm{~m})$ as $\max \left\{A_{k}^{(i)}(\mathrm{m}) \mid k \geqslant i\right\} \geqslant 0$.
(i) If $\varepsilon_{i}(\mathrm{~m})=0$, then define $\tilde{e}_{i}(\mathrm{~m})=0$. If $\varepsilon_{i}(\mathrm{~m})>0$, let k_{e} be the largest $k \geqslant i$ such that $\varepsilon_{i}(\mathrm{~m})=A_{k}^{(i)}(\mathrm{m})$ and define $\tilde{e}_{i}(\mathrm{~m})=\mathrm{m}-\left\langle i, k_{e}\right\rangle+\delta_{k_{e} \neq i}\left\langle i+2, k_{e}\right\rangle$.
(ii) Let k_{f} be the smallest $k \geqslant i$ such that $\varepsilon_{i}(\mathrm{ma})=A_{k}^{(i)}(\mathrm{m})$ and define $\tilde{f}_{i}(\mathrm{~m})=\mathrm{m}-$ $\delta_{k_{f} \neq i}\left\langle i+2, k_{f}\right\rangle+\left\langle i, k_{f}\right\rangle$.

Remark 2.16. For $i \in I$, the actions of the operators \widetilde{e}_{i} and \widetilde{f}_{i} on $m \in \mathcal{M}$ are also described by the following algorithm:
Step 1. Arrange the segments in m in the crystal ordering.
Step 2. For each segment $\langle i, j\rangle$, write - , and for each segment $\langle i+2, j\rangle$, write + .
Step 3. In the resulting sequence of + and - , delete a subsequence of the form +- and keep on deleting until no such subsequence remains.

Then we obtain a sequence of the form $--\cdots-++\cdots+$.
(1) $\varepsilon_{i}(m)$ is the total number of - in the resulting sequence.
(2) $\tilde{f}_{i}(\mathrm{~m})$ is given as follows:
(a) If the leftmost + corresponds to a segment $\langle i+2, j\rangle$, then replace it with $\langle i, j\rangle$.
(b) If no + exists, add a segment $\langle i, i\rangle$ to m .
(3) $\widetilde{e}_{i}(\mathrm{~m})$ is given as follows:
(a) If the rightmost - corresponds to a segment $\langle i, j\rangle$, then replace it with $\langle i+2, j\rangle$.
(b) If no - exists, then $\widetilde{\widetilde{i}}_{i}(\mathrm{~m})=0$.

Theorem 2.17. (i) $L(\infty)=\underset{m \in \mathcal{M}}{\oplus} \mathrm{~A}_{0} P(\mathrm{~m})$.
(ii) $B(\infty)=\{P(\mathrm{~m}) \bmod q L(\infty) \mid \mathrm{m} \in \mathcal{M}\}$.
(iii) We have

$$
\begin{array}{ll}
\tilde{e}_{i} P(\mathrm{~m}) \equiv P\left(\tilde{e}_{i}(\mathrm{~m})\right) & \bmod q L(\infty), \\
\tilde{f}_{i} P(\mathrm{~m}) \equiv P\left(\widetilde{f}_{i}(\mathrm{~m})\right) & \bmod q L(\infty) .
\end{array}
$$

Note that \widetilde{e}_{i} and \widetilde{f}_{i} in the left-hand-side is the modified root operators.
(iv) We have the expansion

$$
\overline{P(\mathrm{~m})} \in P(\mathrm{~m})+\sum_{\mathrm{m}^{\prime}<\mathrm{m}} \mathbb{A} P\left(\mathrm{~m}^{\prime}\right) .
$$

Therefore we can index the crystal basis by multisegments. By this theorem we can easily see by a standard argument that $\left(L(\infty), \overline{L(\infty)}, U_{q}^{-}(\mathfrak{g})_{\mathrm{A}}\right)$ is balanced, and there exists a unique $G^{\text {low }}(\mathrm{m}) \in L(\infty) \cap U_{q}^{-}(\mathfrak{g})_{\mathbf{A}}$ such that $\overline{G^{\text {low }}(\mathrm{m})}=G^{\text {low }}(\mathrm{m})$ and $G^{\text {low }}(\mathrm{ma}) \equiv$ $P(\operatorname{ma}) \bmod q L(\infty)$. The basis $\left\{G^{\text {low }}(\mathrm{ma})\right\}_{\mathrm{m} \in \mathcal{M}}$ is a lower global basis.

3. Representation Theory of \mathcal{H}_{n}^{A} and the Lascoux-Leclerc-Thibon-Ariki Theory

3.1. The affine Hecke algebra of type A.

Definition 3.1. For $p \in \mathbb{C}^{*}$, the affine Hecke algebra, \mathcal{H}_{n}^{A} of type A is a \mathbb{C}-algebra generated by

$$
T_{1}, \cdots, T_{n-1}, X_{1}^{ \pm 1}, \cdots, X_{n}^{ \pm 1}
$$

satisfying the following defining relations:
(1) $X_{i} X_{j}=X_{j} X_{i}$ for any $1 \leqslant i, j \leqslant n$.
(2) [The braid relations of type A]

$$
\begin{array}{ll}
T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1} & (1 \leqslant i \leqslant n-2), \\
T_{i} T_{j}=T_{j} T_{i} & (|i-j|>1) .
\end{array}
$$

(3) [The Hecke relations]

$$
\left(T_{i}-p\right)\left(T_{i}+p^{-1}\right)=0 \quad(1 \leqslant i \leqslant n-1) .
$$

(4) [The Bernstein-Lusztig relations]

$$
\begin{array}{ll}
T_{i} X_{i} T_{i}=X_{i+1} & (1 \leqslant i \leqslant n-1) \\
T_{i} X_{j}=X_{j} T_{i} & (j \neq i, i+1)
\end{array}
$$

Since we can enbed $\mathcal{H}_{n}^{\mathrm{A}}$ into $\mathcal{H}_{n+m}^{\mathrm{A}}$ by $T_{i} \mapsto T_{i+m}(1 \leqslant i \leqslant n-1), X_{j} \mapsto X_{m+j}(1 \leqslant j \leqslant m)$, we consider $\mathcal{H}_{m}^{\mathrm{A}} \otimes \mathcal{H}_{n}^{\mathrm{A}}$ as a subalgebra of $\mathcal{H}_{n+m}^{\mathrm{A}}$.

Definition 3.2. For a finite-dimensional \mathcal{H}_{n}^{A}-module M, let

$$
M=\bigoplus_{a \in\left(\mathbb{C}^{n}\right)^{n}} M_{a}
$$

be the generalized eigenspace decomposition with respect to X_{1}, \ldots, X_{n}. Here

$$
M_{a}:=\left\{u \in M \mid\left(X_{i}-a_{i}\right)^{N} u=0 \text { for any } 1 \leqslant i \leqslant n \text { and } N \gg 0\right\}
$$

for $a=\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathbb{C}^{*}\right)^{n}$.
(1) We say that M is of type J if all the eigenvalues of X_{1}, \ldots, X_{n} belong to $J \subset \mathbb{C}^{*}$.
(2) Put

$$
K_{J}^{A}:=\bigoplus_{n \geqslant 0} K_{J, n}^{A}
$$

Here $K_{J, n}^{A}$ is the Grothendieck group of the abelian category of fnite-dimensional \mathcal{H}_{n}^{A} modules of type J.
(3) The group \mathbb{Z} acts on \mathbb{C}^{*} by $\mathbb{Z} \ni n: a \mapsto a p^{2 n}$.

Lemma 3.3. Let J_{1} and J_{2} be \mathbb{Z}-invariant subsets in \mathbb{C}^{*} such that $J_{1} \cap J_{2}=\emptyset$.
(1) If M is an irreducible $\mathcal{H}_{m}^{\mathrm{A}}$-module of type J_{1} and N is an irreducible $\mathcal{H}_{n}^{\mathrm{A}}$-module of type J_{2}, then $\operatorname{Ind}_{\mathcal{H}_{m}^{\mathrm{A}} \otimes \mathrm{H}_{n}^{\mathrm{A}}}^{\mathcal{H}_{\mathrm{A}}^{\mathrm{A}}+n}(M \otimes N)$ is irreducible of type $J_{1} \cup J_{2}$.
(2) Conversely, if L is an irreducible $\mathcal{H}_{n}^{\mathrm{A}}$-module of type $J_{1} \cup J_{2}$, then there exist $m(0 \leqslant$ $m \leqslant n$), an irreducible $\mathcal{H}_{m}^{\mathrm{A}}$-module M of type J_{1} and an irreducible $\mathcal{H}_{n-m}^{\mathrm{A}}$-module N of type J_{2} such that L is isomorphic to $\operatorname{Ind}_{\mathcal{H}_{m}^{A} \otimes \mathcal{H}_{n-m}^{\mathrm{A}}}^{\mathcal{H}_{\mathrm{A}}^{\mathrm{A}}}(M \otimes N)$.
Hence in order to study the irreducible modules over the affine Hecke algebras of type A, it is enough to treat the irreducible modules of type J for an orbit J with respect to the \mathbb{Z}-action on \mathbb{C}^{*}.
3.2. The awestriction and the a-induction. For a \mathbb{C}-algebra. A, let us denote by A-mod ${ }^{\text {fd }}$ the abelian category of firite-dimensional A-modules.

Definition 3.4. For $a \in \mathbb{C}^{*}$, let us define the functors

$$
e_{a}: \mathcal{H}_{n}^{A}-\bmod ^{\mathrm{fd}} \rightarrow \mathcal{H}_{n-1}^{A}-\bmod ^{\mathrm{fd}}, \quad f_{a}: \mathcal{H}_{n}^{A}-\bmod ^{\mathrm{fd}} \rightarrow \mathcal{H}_{n+1}^{A}-\bmod ^{\mathrm{fd}}
$$

by: $e_{a} M$ is the generalized a-eigenspace of M with respect to the action of X_{n}, and

$$
f_{a} M:=\operatorname{Ind}_{\mathcal{H}_{n}^{A} \otimes \mathbb{C}\left[X_{n+1}^{ \pm+1}\right]}^{\mathcal{H}^{A}} M \otimes\langle a\rangle,
$$

where $\langle a\rangle$ is the 1 -dimensional representation of $\mathbb{C}\left[X_{n+1}^{ \pm 1}\right]$ defined by $X_{n+1} \mapsto a$.
Moreover, put

$$
\widetilde{e}_{a} M:=\operatorname{soc} e_{a} M, \quad \widetilde{f}_{a} M:=\operatorname{cosoc} f_{a} M
$$

for $a \in \mathbb{C}^{*}$. Here the socle is the maximal semisimple submodule and the cosocle is the maximal semisimple quotient module.

Theorem 3.5 (Grojnowski-Vazirani [GV]). Suppose M is irreducible. Then $\widetilde{f}_{a} M$ is irreducible, and $\widetilde{e}_{a} M$ is irreducible or 0 for any $a \in \mathbb{C}^{*}$.
3.3. LITA type theorems for the affine Hecke algebra of type A. In this subsection, we consider the case

$$
J=\left\{p^{k} \mid k \in \mathbb{Z}_{\mathrm{odd}}\right\},
$$

and suppose p is not a root of unity. For short, we shall write $e_{i}, \widetilde{e}_{i}, f_{i}$ and \widetilde{f}_{i} for $e_{p^{i}}, \widetilde{e}_{p^{i}}, f_{p^{i}}$ and $\widetilde{f_{p^{i}}}$, respectively.

The LLTA type theorem for the affine Hecke algebra of type A consists of two parts. First is a labeling of finite-dimensional irreducible \mathcal{H}^{A}-modules by the crystal $B(\infty)$. Second is a description of some composition multiplicities by using the upper global basis.

Theorem 3.6 (Vazirani [V]). There are complete representatives

$$
\left\{L_{b} \mid b \in B(\infty)\right\}
$$

of the finite-dimensional irreducible \mathcal{H}^{A}-modules of type J such that

$$
\widetilde{e}_{i} L_{b}=L_{\widetilde{e}_{i} b}, \quad \widetilde{f}_{i} L_{b}=L_{\tilde{f_{i}} b}
$$

for any $i \in I$.
Theorem 3.7 (Ariki $[\mathrm{A}]$). For $i \in I=\mathbb{Z}_{\text {odd }}$, let us define $e_{i, b, b^{\prime}}^{\prime}, f_{i, b, b^{\prime}} \in \mathbb{C}\left[q, q^{-1}\right]$ by the coefficients of the expansions:

$$
e_{i}^{\prime} G^{u p}(b)=\sum_{b^{\prime} \in B(\infty)} e_{i, b, b^{\prime}}^{\prime} G^{u p}\left(b^{\prime}\right), \quad f_{i} G^{u p}(b)=\sum_{b^{\prime} \in B(\infty)} f_{i, b, b^{\prime}} G^{u p}\left(b^{\prime}\right) .
$$

Then

$$
\left[e_{i} L_{b}: L_{b^{\prime}}\right]=\left.e_{i, b, b^{\prime}}^{\prime}\right|_{q=1}, \quad\left[f_{i} L_{b}: L_{b^{\prime}}\right]=\left.f_{i, b, b^{\prime}}\right|_{q=1} .
$$

Here $[M: N]$ is the composition multiplicity of N in M on K_{J}^{A}.
Part II. The Symmetric Crystals and some LITA Type Conjectures for Afine Hecke Algebra of Type B

4. General Definitions and Conjectures for Symmetric Crystals

We follow the notations in subsection 2.1. Let θ be an automorphism of I such that $\theta^{2}=$ id and $\left(\alpha_{\theta(i)}, \alpha_{\theta(j)}\right)=\left(\alpha_{i}, \alpha_{j}\right)$. Hence it extends to an automorphism of the root lattice Q by $\theta\left(\alpha_{i}\right)=\alpha_{\theta(i)}$, and induces an automorphism of $U_{q}(\mathfrak{g})$.
Definition 4.1. Let $B_{\theta}(g)$ be the \mathbb{K}-algebra generated by E_{i}, F_{i}, and invertible elements $T_{i}(i \in I)$ satisfying the following defining relations:
(i) the T_{i} 's commute with each other,
(ii) $T_{\theta(i)}=T_{i}$ for any i,
(iii) $T_{i} E_{j} T_{i}^{-1}=q^{\left(\alpha_{i}+\alpha_{\theta(i)}, \alpha_{j}\right)} E_{j}$ and $T_{i} F_{j} T_{i}^{-1}=q^{\left(\alpha_{i}+\alpha_{\theta(i)},-\alpha_{j}\right)} F_{j}$ for $i, j \in I$,
(iv) $E_{i} F_{j}=q^{-\left(\alpha_{i}, \alpha_{j}\right)} F_{j} E_{i}+\left(\delta_{i, j}+\delta_{\theta(i), j} T_{i}\right)$ for $i, j \in I$,
(v) the E_{i} 's and the F_{i} 's satisfy the q-Serre relations.

We set $E_{i}^{(n)}=E_{i}^{n} /[n]_{i}!$ and $F_{i}^{(n)}=F_{i}^{n} /[n]_{i}!$.
Proposition 4.2. Let $\lambda \in P_{+}:=\left\{\lambda \in \operatorname{Hom}(Q, \mathbb{Q}) \mid\left\langle\alpha_{i}^{\vee}, \lambda\right\rangle \in \mathbb{Z} \geqslant 0\right.$ for any $\left.i \in I\right\}$ be a dominant integral weight such that $\theta(\lambda)=\lambda$.
(i) There exists a $\mathcal{B}_{\theta}(g)$-module $V_{\theta}(\lambda)$ generated by a non-zero vector ϕ_{λ} such that
(a) $E_{i} \phi_{\lambda}=0$ for any $i \in I$,
(b) $T_{i} \phi_{\lambda}=q^{\left(\alpha_{i}, \lambda\right)} \phi_{\lambda}$ for any $i \in I$,
(c) $\left\{u \in V_{\theta}(\lambda) \mid E_{i} u=0\right.$ for any $\left.i \in I\right\}=\mathbb{K} \phi_{\lambda}$.

Moreover such a $V_{\theta}(\lambda)$ is irreducible and unique up to an isomorphism.
(ii) there exists a unique symmetric bilinear form $(\bullet, 0)$ on $V_{\theta}(\lambda)$ such that $\left(\phi_{\lambda}, \phi_{\lambda}\right)=1$ and $\left(E_{i} u, v\right)=\left(u, F_{i} v\right)$ for any $i \in I$ and $u, v \in V_{\theta}(\lambda)$, and it is non-degenerate.
(iii) There exists an endomorphism - of $V_{\theta}(\lambda)$ such that $\overline{\phi_{\lambda}}=\phi_{\lambda}$ and $\bar{a} \bar{v}=\bar{a} \bar{v}, \overline{F_{i} v}=F_{i} \bar{v}$ for any $a \in \mathbb{K}$ and $v \in V_{\theta}(\lambda)$.
The pair $\left(B_{\theta}(g), V_{\theta}(\lambda)\right)$ is an analogue of $\left(B(g), U_{q}^{-}(g)\right)$. Such a $V_{\theta}(\lambda)$ is constructed as follows. Let $U_{q}^{-}(g) \phi_{\lambda}^{\prime}$ and $U_{q}^{-}(g) \phi_{\lambda}^{\prime \prime}$ be a copy of a free $U_{q}^{-}(g)$-module. We give the structure of a $B_{\theta}(g)$-module on them as follows: for any $i \in I$ and $a \in U_{q}^{-}(g)$

$$
\left\{\begin{align*}
T_{i}\left(a \phi_{\lambda}^{\prime}\right) & =q^{\left(\alpha_{i}, \lambda\right)}\left(\mathrm{Ad}\left(t_{i} t_{\theta(i)}\right) a\right) \phi_{\lambda}^{\prime} \tag{4.1}\\
E_{i}\left(a \phi_{\lambda}^{\prime}\right) & =\left(e_{i}^{\prime} a+q^{\left(\alpha_{i}, \lambda\right)} \operatorname{Ad}\left(t_{i}\right)\left(e_{\theta(i)}^{*} a\right)\right) \phi_{\lambda}^{\prime} \\
F_{i}\left(a \phi_{\lambda}^{\prime}\right) & =\left(f_{i} a\right) \phi_{\lambda}^{\prime}
\end{align*}\right.
$$

and

$$
\left\{\begin{align*}
T_{i}\left(a \phi_{\lambda}^{\prime}\right) & =q^{\left(\alpha_{i}, \lambda\right)}\left(A d\left(t_{i} t_{0(i)}\right) a\right) \phi_{\lambda}^{\prime \prime} \tag{4.2}\\
E_{i}\left(a \phi_{\lambda}^{\prime \prime}\right) & =\left(e_{i}^{\prime} a\right) \phi_{\lambda}^{\prime \prime} \\
F_{i}\left(a \phi_{\lambda}^{\prime \prime}\right) & =\left(f_{i} a+q^{\left(\alpha_{i}, \lambda\right)}\left(\operatorname{Ad}\left(t_{i}\right) a\right) f_{\theta(i)}\right) \phi_{\lambda}^{\prime \prime}
\end{align*}\right.
$$

Then there exists a unique $B_{\theta}(\mathfrak{g})$-linear morphism $\psi: U_{q}^{-}(\mathfrak{g}) \phi_{\lambda}^{\prime} \rightarrow U_{q}^{-}(\mathfrak{g}) \phi_{\lambda}^{\prime \prime}$ sending ϕ_{λ}^{\prime} to $\phi_{\lambda}^{\prime \prime}$. Its image $\psi\left(U_{q}^{-}(g) \phi_{\lambda}^{\prime}\right)$ is $V_{\theta}(\lambda)$.

Hereafter we assume further that

$$
\text { there is no } i \in I \text { such that } \theta(i)=i \text {. }
$$

We conjecture that $V_{\theta}(\lambda)$ has a crystal basis. This means the following. Since E_{i} and F_{i} satisfy the q-boson relation $E_{i} F_{i}=q^{-\left(\alpha_{i}, \alpha_{i}\right)} F_{i} E_{i}+1$, we define the modified root operators:

$$
\widetilde{E}_{i}(u)=\sum_{n \geqslant 1} F_{i}^{(n-1)} u_{n} \text { and } \widetilde{F}_{i}(u)=\sum_{n \geqslant 0} F_{i}^{(n+1)} u_{n}
$$

when writing $u=\sum_{n \geqslant 0} F_{i}^{(n)} u_{n}$ with $E_{i} u_{n}=0$. Let $L_{\theta}(\lambda)$ be the \mathbb{A}_{0}-submodule of $V_{\theta}(\lambda)$ generated by $\widetilde{F}_{i_{1}} \ldots \widetilde{F}_{i_{\ell}} \phi_{\lambda}\left(\ell \geqslant 0\right.$ and $\left.i_{1}, \ldots, i_{\ell} \in I\right)$, and let $B_{\theta}(\lambda)$ be the subset

$$
\left\{\widetilde{F}_{i_{1}} \ldots \tilde{F}_{i_{\ell}} \phi_{\lambda} \bmod q L_{\theta}(\lambda) \mid \ell \geqslant 0, i_{1}, \ldots, i_{\ell} \in I\right\}
$$

of $L_{\theta}(\lambda) / q L_{\theta}(\lambda)$.
Conjecture 4. 3 . Let λ be a dominant integral weight such that $\theta(\lambda)=\lambda$.
(1) $\widetilde{F}_{i} L_{\theta}(\lambda) \subset L_{\theta}(\lambda)$ and $\widetilde{E}_{i} L_{\theta}(\lambda) \subset L_{\theta}(\lambda)$,
(2) ${\underset{\sim}{F}}_{\theta}(\lambda)$ is a basis of $L_{\theta}(\lambda) / q L_{\theta}(\lambda)$,
(3) $\widetilde{F}_{i} B_{\theta}(\lambda) \subset B_{\theta}(\lambda)$, and $\widetilde{E}_{i} B_{\theta}(\lambda) \subset B_{\theta}(\lambda) \sqcup\{0\}$,
(4) $\widetilde{F}_{i} \widetilde{E}_{i}(b)=b$ for any $b \in B_{\theta}(\lambda)$ such that $\tilde{E}_{i} b \neq 0$, and $\tilde{E}_{i} \tilde{F}_{i}(b)=b$ for any $b \in B_{\theta}(\lambda)$.

Moreover we conjecture that $V_{\theta}(\lambda)$ has a global crystal basis. Namely we have
Conjecture 4.4. $\left(L_{\theta}(\lambda), \overline{L_{\theta}}(\lambda), V_{6}(\lambda)_{\mathbb{A}}^{\text {low }}\right)$ is balanced. Here $V_{\theta}(\lambda)_{A}^{\text {low }}:=U_{q}^{-}(\mathfrak{g})_{A} \phi_{\lambda}$.
The dual version is as follows. As in [Kas], we have
Lemma 4.5. Assume Conjecture 4.3. Then we have
(i) $L_{\theta}(\lambda)=\left\{v \in V_{\theta}(\lambda) \mid\left(L_{\theta}(\lambda), v\right) \subset \mathbb{A}_{0}\right\}$,
(ii) Let $(\cdot, \circ)_{0}$ be the \mathbb{C}-valued symmetric bilinear form on $L_{\theta}(\lambda) / q L_{\theta}(\lambda)$ induced by $(\bullet, *)$. Then $B_{\theta}(\lambda)$ is an orthonormal basis with respect to $(*, \infty)_{0}$.

Let us denote by $V_{\theta}(\lambda)_{\mathrm{A}}^{\text {up }}$ the dual space $\left\{v \in V_{\theta}(\lambda) \mid\left(V_{\theta}(\lambda)_{\mathrm{A}}^{\text {low }}, v\right) \in \mathbb{A}\right\}$. Then Conjecture 4.4 is equivalent to the following conjecture.

Conjecture 4.6. $\left(L_{\theta}(\lambda), c\left(L_{\theta}(\lambda)\right), V_{\theta}(\lambda)_{A}^{u p}\right)$ is balanced.
Here c is a unique endomorphism of $V_{\theta}(\lambda)$ such that $c\left(\phi_{\lambda}\right)=\phi_{\lambda}$ and $c(a v)=\bar{a} c(v)$, $c\left(E_{i} v\right)=E_{i} c(v)$ for any $a \in \mathbb{K}$ and $v \in V_{\theta}(\lambda)$. We have $\left(c\left(v^{\prime}\right), v\right)=\overline{\left(v^{\prime}, \vec{v}\right)}$ for any $v, v^{\prime} \in V_{\theta}(\lambda)$.

Note that $V_{\theta}(\lambda)_{\mathrm{A}}^{\text {up }}$ is the largest A -submodule M of $V_{\theta}(\lambda)$ such that M is invariant by the $E_{i}^{(n)}$'s and $M \cap E \phi_{\lambda}=\mathbb{A} \phi_{\lambda}$.

By Conjecture 4.6, $L_{\theta}(\lambda) \cap c\left(L_{\theta}(\lambda)\right) \cap V_{\theta}(0)^{\text {up }} \rightarrow L_{\theta}(\lambda) / q L_{\theta}(\lambda)$ is an isomorphism. Let G_{θ}^{up} be its inverse. Then $\left\{G_{\theta}^{\mathrm{up}}(b)\right\}_{b \in B_{\theta}(\lambda)}$ is a basis of $V_{\theta}(\lambda)$, which we call the upper global basis of $V_{\theta}(\lambda)$. Note that $\left\{G_{\theta}^{\text {up }}(b)\right\}_{b \in B_{\theta}(\lambda)}$ is the dual basis to $\left\{G_{\theta}^{\text {low }}(b)\right\}_{b \in B_{\theta}(\lambda)}$ with respect to the inner product of $V_{\theta}(\lambda)$.

5. Symmetric Crystals for gl_{∞}

In this section, we consider the case $\mathfrak{g}=\mathfrak{g l}_{\infty}$ and the Dynkin involution θ of I defined by $\theta(i)=-i$ for $i \in I=\mathbb{Z}_{\text {odd }}$.

We shall prove in this case Conjectures 4.3 and 4.4 for $\lambda=0$.
We set

$$
\widetilde{V}_{\theta}(0):=B_{\theta}(\mathfrak{g}) /\left(\sum_{i} B_{\theta}(\mathfrak{g}) E_{i}+\sum_{i} B_{\theta}(\mathfrak{g})\left(F_{i}-F_{\theta(i)}\right)\right) \simeq U_{q}^{-}\left(\mathfrak{g} l_{\infty}\right) / \sum_{i} U_{q}^{-}\left(\mathfrak{g l} l_{\infty}\right)\left(f_{i}-f_{\theta(i)}\right) .
$$

Since $F_{i} \phi_{0}^{\prime \prime}=\left(f_{i}+f_{\theta(i)}\right) \phi_{0}^{\prime \prime}=F_{\theta(i)} \phi_{0}^{\prime \prime}$, we have an epimorphism

$$
\begin{equation*}
\tilde{V}_{\theta}(0) \rightarrow V_{\theta}(0) . \tag{5.1}
\end{equation*}
$$

It is in fact an isomorphism (see Theorem 5.9).

5.1. θ-restricted multisegments.

Definition 5.1. If a multisegment mas the form

$$
\mathbb{M}=\sum_{-j \leqslant i \leqslant j} m_{i j}\langle i, j\rangle,
$$

we call m a θ-xestricted multisegment. We denote by \mathcal{M}_{θ} the set of θ-restricted multisegments.
Definition 5.2. For a θ-restricted segment $\langle i, j\rangle$, we define its modified divided power by

$$
\langle i, j\rangle^{[m]}= \begin{cases}\langle i, j\rangle^{(m)}=\frac{1}{[m]!}\langle i, j\rangle^{m} & (i \neq-j), \\ \frac{1}{\prod_{\nu=1}^{m}[2 \nu]}\langle-j, j\rangle^{m} & (i=-j)\end{cases}
$$

Definition 5.3. For $\mathrm{m} \in \mathcal{M}_{\theta}$, we define the elements $P_{\theta}(\mathbf{m}) \in U_{q}^{-}(\mathfrak{g}) \subset B_{\theta}(\mathfrak{g})$ by

$$
P_{\theta}(\mathrm{mm})=\prod_{\langle i, j\rangle \in \mathrm{m}}\langle i, j\rangle^{\left[m_{i j}\right]} .
$$

Here the product $\vec{\Pi}$ is taken over the segments appearing in m from large to small with respect to the PBW-ordering.

5.z. Crystal structure on \mathcal{M}_{θ}.

Definition 5.4. Suppose $k>0$. For a θ-restricted multisegment $\mathrm{m}=\sum_{-j \leqslant i \leqslant j} m_{i, j}\langle i, j\rangle$, we set

$$
\varepsilon_{-k}(\mathrm{~m})=\max \left\{A_{\ell}^{(-k)}(\mathrm{m}) \mid \ell \geqslant-k\right\},
$$

where

$$
\begin{aligned}
& A_{\ell}^{(-k)}(\mathrm{m})= \sum_{\ell^{\prime} \geqslant \ell}\left(m_{-k, \ell}-m_{-k+2, \ell+2}\right) \quad \text { for } \ell>k, \\
& A_{k}^{(-k)}(\mathrm{m})= \sum_{\ell>k}\left(m_{-k, \ell}-m_{-k+2, \ell}\right)+2 m_{-k, k}+\delta\left(m_{-k+2, k} \text { is odd }\right), \\
& A_{j}^{(-k)}(\mathrm{m})= \sum_{\ell>k}\left(m_{-k, \ell}-m_{-k+2, \ell}\right)+2 m_{-k, k}-2 m_{-k+2, k-2}+\sum_{-k+2<i \leqslant j+2} m_{i, k}-\sum_{-k+2<i \leqslant j} m_{i, k-2} \\
& \quad \text { for }-k+2 \leqslant j \leqslant k-2 .
\end{aligned}
$$

(i) Let n_{f} be the smallest $\ell \geqslant-k+2$, with respect to the ordering $\cdots>k+2>k>$ $-k+2>\cdots>k-2$, such that $\varepsilon_{-k}(\mathbf{m})=A_{\ell}^{(-k)}(\mathbf{m})$. We define

$$
\tilde{F}_{-k}(\mathrm{~m})= \begin{cases}\mathrm{m}-\left\langle-k+2, n_{f}\right\rangle+\left\langle-k, n_{f}\right\rangle & \text { if } n_{f}>k, \\ \mathrm{~m}-\langle-k+2, k\rangle+\langle-k, k\rangle & \text { if } n_{f}=k \text { and } m_{-k+2, k} \text { is odd, } \\ \mathrm{m}-\delta_{k \neq 1}\langle-k+2, k-2\rangle+\langle-k+2, k\rangle & \text { if } n_{f}=k \text { and } m_{-k+2, k} \text { is even, } \\ \mathrm{m}-\delta_{n_{f} \neq k-2}\left\langle n_{f}+2, k-2\right\rangle+\left\langle n_{f}+2, k\right\rangle & \text { if }-k+2 \leqslant n_{f} \leqslant k-2 .\end{cases}
$$

(ii) If $\varepsilon_{-k}(\mathrm{~m})=0$, then $\widetilde{E}_{-k}(\mathrm{~m})=0$. If $\varepsilon_{-k}(\mathrm{~m})>0$, then let n_{e} be the largest $\ell \geqslant-k+2$, with respect to the above ordering, such that $\varepsilon_{-k}(\mathrm{~m})=A_{\ell}^{(-k)}(\mathrm{m})$. We define
$\widetilde{E}_{-k}(\mathrm{~m})= \begin{cases}\mathrm{m}-\left\langle-k, n_{e}\right\rangle+\left\langle-k+2, n_{e}\right\rangle & \text { if } n_{\mathrm{e}}>k, \\ \mathrm{~m}-\langle-k, k\rangle+\langle-k+2, k\rangle & \text { if } n_{e}=k \text { and } m_{-k+2, k} \text { is even, } \\ \mathrm{m}-\langle-k+2, k\rangle+\delta_{k \neq 1}\langle-k+2, k-2\rangle & \text { if } n_{\mathrm{e}}=k \text { and } m_{--k+2, k} \text { is odd, } \\ \mathrm{m}-\left\langle n_{e}+2, k\right\rangle+\delta_{n_{e} \neq k-2}\left\langle n_{e}+2, k-2\right\rangle & \text { if }-k+2 \leqslant n_{e} \leqslant k-2 .\end{cases}$
Remark ${ }^{3}$.5. For $0<k \in I$, the actions of \widetilde{E}_{-k} and \widetilde{F}_{-k} on m $\in \mathcal{M}_{\theta}$ are described by the following algorithm.
Step 1. Arrange segments in mof the form $\langle-k, j\rangle(j \geqslant k),\langle-k+2, j\rangle(j \geqslant k-2,0),\langle i, k\rangle$ $(-k \leqslant i \leqslant k),\langle i, k-2\rangle(-k+2 \leqslant i \leqslant k-2)$ in the order

$$
\begin{array}{r}
\cdots,\langle-k, k+2\rangle,\langle-k+2, k+2\rangle,\langle-k, k\rangle,\langle-k+2, k\rangle,\langle-k+2, k-2\rangle, \\
\langle-k+4, k\rangle,\langle-k+4, k-2\rangle, \cdots,\langle k-2, k\rangle,\langle k-2, k-2\rangle,\langle k\rangle .
\end{array}
$$

Step 2. Write signatures for each segment appearing in m by the following rules.
(i) If a segment is not $\langle-k+2, k\rangle$, then

- For $\langle-k, k\rangle$, write -- ,
- For $\langle-k, j\rangle$ with $j>k$, write -,
- For $\langle-k+2, k-2\rangle$ with $k>1$, write ++ ,
- For $\langle-k+2, j\rangle$ with $j>k$, write + ,
- For $\langle j, k\rangle$ if $-k<j \leqslant k$, write -
- For $\langle j, k-2\rangle$ if $-k+2<j \leqslant k-2$, write + ,
- If otherwise, write no signature.
(ii) For segments $m_{-k+2, k}\langle-k+2, k\rangle$, if $m_{-k+2, k}$ is even, then write no signature, and if $m_{-k+2, k}$ is odd, then write a sequence -+ .
Step 3. In the resulting sequence of + and - , delete a subsequence of the form +- and keep on deleting until no such subsequence remains.
Then we obtain a sequence of the form $-\cdots \cdots-++\cdots+$.
(1) $\varepsilon_{-k}(m)$ is given as the total number of - in the resulting sequence.
(2) $\widetilde{F}_{-k}(\mathrm{~m})$ is given as follows:
(i) if the leftmost + corresponds to a segment $\langle-k+2, j\rangle(j\rangle k)$, then replace the segment with $\langle-k, j\rangle$,
(ii) if the leftmost + corresponds to a segment $\langle j, k-2\rangle$, then replace the segment with $\langle j, k\rangle$,
(iii) \mathfrak{f} the leftmost + corresponds to segment $\langle-k+2, k\rangle^{m_{-k+2, k}}$, then replace one of the segments with $\langle-k, k\rangle$,
(iv) if no + exists, add a segment $\langle k, k\rangle$ to m .
(3) $\widetilde{E}_{-k}(\mathbb{m})$ is given as follows:
(i) if the rightmost - corresponds to a segment $\langle-k, j\rangle$, then replace the segment with $\langle-k+2, j\rangle$,
(ii) if the rightmost - corresponds to a segment $\langle j, k\rangle(j \neq-k+2)$, then replace the segment with $\langle j, k-2\rangle$,
(iii) if the rightmost - corresponds to segments $m_{-k+2, k}\langle-k+2, k\rangle$, then replace one of the segment with $\langle-k+2, k-2\rangle$,
(iv) if no - exists, then $\widetilde{E}_{-k}(\mathrm{ma})=0$.

Definition 5.6. For $k \in I_{>0}$, we defne $\widetilde{F}_{k}, \widetilde{E}_{k}$ and ε_{k} by the same rule as in Definition 2.15 for \tilde{f}_{k} and \tilde{e}_{k}.
Theoren 5.7. By $\widetilde{F}_{k}, \widetilde{E}_{k}, \varepsilon_{k}(k \in I), \mathcal{M}_{\theta}$ is a crystal, in the sense that, for any $k \in I$, we have
(i) $\widetilde{F}_{k} \mathcal{M}_{\theta} \subset \mathcal{M}_{\theta}$ and $\widetilde{E}_{k} \mathcal{M}_{\theta} \subset \mathcal{M}_{\theta} \sqcup\{0\}$,
(ii) $\widetilde{F}_{k} \widetilde{E}_{k}(\mathrm{~m})=$ mif $\tilde{E}_{k}(\mathrm{~m}) \neq 0$, and $\widetilde{E}_{k} \circ \widetilde{F}_{k}=\mathrm{id}$,
(iii) $\varepsilon_{k}(\mathrm{~m})=\max \left\{n \geqslant 0 \mid \widetilde{E}^{n}(\mathrm{ra}) \neq 0\right\}<\infty$ for any $\mathfrak{m} \in \mathcal{M}_{\theta}$.

Wxample 5.8. (1) We shall write $\{a, b\}$ for $a\langle-1,1\rangle+b\langle 1\rangle$. The following diagram is the part of the crystal graph of $B_{\theta}(0)$ that concerns only the 1 -arrows and the (-1)-arrows.

Especially the part of (-1)-arrows is the following diagram.

$$
\{0,2 n\} \xrightarrow{-1}\{0,2 n+1\} \xrightarrow{-1}\{1,2 n\} \xrightarrow{-1}\{1,2 n+1\} \xrightarrow{-1}\{2,2 n\} \xrightarrow{-1} \cdots
$$

(2) The following diagram is the part of the crystal graph of $B_{\theta}(0)$ that concerns only the (-1)-arrows and the (-3)-arrows. This diagram is isomorphic as a graph to the crystal graph of A_{2}.

(3) Fiere is the part of the crystal graph of $B_{\theta}(0)$ that concerns only the n-arrows and the $(-n)$-arrows for an odd integer $n \geqslant 3$:

$$
\phi \xrightarrow[-n]{n}\langle n\rangle \underset{-n}{n} 2\langle n\rangle \stackrel{n}{-n} 3\langle n\rangle \stackrel{n}{-n} 4\langle n\rangle \cdots
$$

5.3. Main Theorem. We write ϕ for the generator ϕ_{0} of $V_{\theta}(0)$, for short.

Theorem 5.9. (i) The morphism

$$
\widetilde{V}_{\theta}(0)=\bar{U}_{q}^{-}(\mathfrak{g}) / \sum_{k \in I} U_{q}^{-}(\mathfrak{g})\left(f_{k}-f_{-k}\right) \rightarrow V_{\theta}(0)
$$

is an isomorphism.
(ii) $\left\{P_{\theta}(\mathbf{m}) \phi\right\}_{\mathrm{m} \in \mathcal{M}_{\theta}}$ is a basis of the \mathbb{K}-vector space $V_{\theta}(0)$.
(iii) Set

$$
\begin{aligned}
& L_{\theta}(0):=\sum_{\ell \geqslant 0, i_{1}, \ldots, i_{\ell} \in I} \mathbb{A}_{0} \widetilde{F}_{i_{1}} \cdots \widetilde{F}_{i_{\ell}} \phi \subset V_{\theta}(0), \\
& B_{\theta}(0)=\left\{\widetilde{F}_{i_{1}} \cdots \widetilde{F}_{i_{\ell}} \phi \bmod q L_{\theta}(0) \mid \ell \geqslant 0, i_{1}, \ldots, i_{\ell} \in I\right\} .
\end{aligned}
$$

Then, $B_{\theta}(0)$ is a basis of $L_{\theta}(0) / q L_{\theta}(0)$ and $\left(L_{\theta}(0), B_{\theta}(0)\right)$ is a crystal basis of $V_{\theta}(0)$, and the crystal structure coincide with the one of \mathcal{M}_{θ}.
(iv) More precisely, we have
(a) $L_{\theta}(0)=\sum_{m \in \mathcal{M}_{9}} A_{0} P_{\theta}(\mathrm{m}) \phi$,
(b) $B_{\theta}(0)=\left\{P_{\theta}(\operatorname{m}) \phi \bmod q L_{\theta}(0) \mid \mathrm{m} \in \mathcal{M}_{\theta}\right\}$,
(c) for any $k \in I$ and $m \in \mathcal{M}_{\theta}$, we have
(1) $\widetilde{F}_{k} P_{\theta}(\mathrm{m}) \phi \equiv P_{\theta}\left(\widetilde{F}_{k} \mathrm{~m}\right) \phi \bmod q L_{\theta}(0)$,
(2) $\widetilde{E}_{k} P_{\theta}(\mathrm{m}) \phi \equiv P_{\theta}\left(\widetilde{E}_{k} \mathrm{~m}\right) \phi \bmod q L_{\theta}(0)$, where we understand $P_{\theta}(0)=0$,
(3) $\widetilde{E}_{k}^{n} P_{\theta}(\mathrm{m}) \phi \in q L_{\theta}(0)$ if and only if $n>\varepsilon_{k}(\mathrm{~m})$.
5.3.1. Global Basis of $V_{\theta}(0)$. Recall that $\mathbb{A}=\mathbb{Q}\left[q, q^{-1}\right]$, and $V_{\theta}(0)_{\mathbb{A}}=U_{q}^{-}\left(g l_{\infty}\right)_{\mathbf{A}} \phi$.

Lemma 5.In. (i) $V_{\theta}(0)_{\mathbb{A}}=\bigoplus_{m \in \mathcal{M}_{\theta}} \mathbb{A} P_{\theta}(\mathrm{m}) \phi$.
(ii) For $\mathrm{m} \in \mathcal{M}$,

$$
\overline{P_{\theta}(\mathrm{m}) \phi} \in P_{\theta}(\mathrm{m}) \phi+\sum_{\substack{n<\mathrm{m} \\ \mathrm{cry}}} \mathbb{A} P_{\theta}(\mathrm{n}) \phi .
$$

By the above lemma, we obtain the following theorem.
Theorem 5.11. (i) $\left(L_{\theta}(0), \overline{L_{\theta}(0)}, V_{\theta}(0)_{A}\right)$ is balanced.
(ii) For any $\mathfrak{m} \in \mathcal{M}_{\theta}$, there exists a unique $G_{\theta}^{\mathrm{low}}(\mathrm{m}) \in L_{\theta}(0) \cap V_{\theta}(0)_{\mathrm{A}}$ such that $\overline{G_{\theta}^{\mathrm{low}}(\mathrm{m})}=$ $G_{\theta}^{\text {low }}(\mathrm{m})$ and $G_{\theta}^{\text {low }}(\mathrm{m}) \equiv P_{\theta}(\mathbb{m}) \phi \bmod q L_{\theta}(0)$.
(iii) $G_{\theta}^{\mathrm{low}}(\mathrm{m}) \in P_{\theta}(\mathrm{m}) \phi+\sum_{\mathrm{n}<\mathrm{cry}} q \mathbb{C}[q] P_{\theta}(\mathrm{n}) \phi$ for any $\mathrm{m} \in \mathcal{M}_{\theta}$.

6. Representation Theory of \mathcal{H}_{n}^{B} and LLtA Type Conjectures

6.1. The affine Hecke algebra of type B.

Definition 6.1. For $p_{0}, p_{1} \in \mathbb{C}^{*}$, the affine Hecke algebra \mathcal{H}_{n}^{B} of type B is a \mathbb{C}-algebra generated by

$$
T_{0}, T_{1}, \cdots, T_{n-1}, X_{1}^{ \pm 1}, \cdots, X_{n}^{ \pm 1}
$$

satisfying the following defining relations:
(i) $X_{i} X_{j}=X_{j} X_{i}$ for any $1 \leqslant i, j \leqslant n$.
(ii) [The braid relations of type B]

$$
\begin{array}{ll}
T_{0} T_{1} T_{0} T_{1}=T_{1} T_{0} T_{1} T_{0}, & \\
T_{i} T_{i+1} T_{i}=T_{i+1} T_{i} T_{i+1} & (1 \leqslant i \leqslant n-2), \\
T_{i} T_{j}=T_{j} T_{i} & (|i-j|>1) .
\end{array}
$$

(iii) [The Hecke relations]

$$
\left(T_{0}-p_{0}\right)\left(T_{0}+p_{0}^{-1}\right)=0, \quad\left(T_{i}-p_{1}\right)\left(T_{i}+p_{1}^{-1}\right)=0 \quad(1 \leqslant i \leqslant n-1) .
$$

(iv) [The Bernstein-Lusztig relations]

$$
\begin{aligned}
& T_{0} X_{1}^{-1} T_{0}=X_{1}, \\
& T_{i} X_{i} T_{i}=X_{i+1} \quad(1 \leqslant i \leqslant n-1), \\
& T_{i} X_{j}=X_{j} T_{i} \quad(j \neq i, i+1) .
\end{aligned}
$$

Note that the subalgebra generated by $T_{i}(1 \leqslant i \leqslant n-1)$ and $X_{j}^{ \pm 1}(1 \leqslant j \leqslant n)$ is isomorphic to the affine Hecke algebra \mathcal{H}_{n}^{A}.

We assume that $p_{0}, p_{1} \in \mathbb{C}^{*}$ satisfy

$$
p_{0}^{2} \neq 1, p_{1}^{2} \neq 1 .
$$

Let us denote by $\mathbb{P o l}_{n}$ the Laurent polynomial ring $\mathbb{C}\left[X_{1}^{ \pm 1}, \ldots, X_{n}^{ \pm 1}\right]$, and by $\widetilde{\mathbb{P o l}_{n}}$ its quotient field $\mathbb{C}\left(X_{1}, \ldots, X_{n}\right)$. Then \mathcal{H}_{n}^{B} is isomorphic to the tensor product of $\mathbb{P o l}_{n}$ and
the subalgebra generated by the T_{i} 's that is isomorphic to the Hecke algebra of type B_{n}. We have

$$
T_{i} a=\left(s_{i} a\right) T_{i}+\left(p_{i}-p_{i}^{-1}\right) \frac{a-s_{i} a}{1-X^{-a_{i}^{v}}} \quad \text { for } a \in \mathbb{P o l}_{n}
$$

Here $p_{i}=p_{1}(1<i<n)$, and $X^{-\alpha_{i}^{\vee}}=X_{1}^{-2}(i=0)$ and $X^{-\alpha_{i}^{\vee}}=X_{i} X_{i+1}^{-1}(1 \leqslant i<n)$. The s_{i} 's are the Weyl group action on $\mathbb{P o l}_{n}:\left(s_{i} a\right)\left(X_{1}, \ldots, X_{n}\right)=a\left(X_{1}^{-1}, X_{2}, \ldots, X_{n}\right)$ for $i=0$ and $\left(s_{i} a\right)\left(X_{1}, \ldots, X_{n}\right)=a\left(X_{1}, \ldots, X_{i+1}, X_{i}, \ldots, X_{n}\right)$ for $1 \leqslant i<n$.

Note that $\mathcal{H}_{n}^{B}=\mathbb{C}$ for $n=0$.
The algebra \mathcal{H}_{n}^{B} acts faithfully on $\mathcal{H}_{n}^{B} / \sum_{i=0}^{n-1} \mathcal{H}_{n}^{B}\left(T_{i}-p_{i}\right) \simeq \mathbb{P o l}_{n}$. Set

$$
\varphi_{i}=\left(1-X^{-\alpha_{i}^{\vee}}\right) T_{i}-\left(p_{i}-p_{i}^{-1}\right) \in \mathcal{H}_{n}^{B}
$$

and

$$
\tilde{\varphi}_{i}=\left(p_{i}^{-1}-p_{i} X^{-\alpha_{i}^{\gamma}}\right)^{-1} \varphi_{i} \in \widetilde{\mathbb{P O l}_{n}} \otimes_{\mathbb{P o l}_{n}} \mathcal{H}_{n}^{B}
$$

Then the action of $\tilde{\varphi}_{i}$ on Pol \mathcal{l}_{n} coincides with s_{i}. They are called intertwiners.
6.2. Block decomposition of $\mathcal{H}_{n}^{B}-\bmod ^{\mathrm{fd}}$. For $n, m \geqslant 0$, set

$$
F_{n, m}:=\mathbb{C}\left[X_{1}^{ \pm 1}, \ldots, X_{n+m}^{ \pm 1}, D^{-1}\right]
$$

where

$$
D:=\prod_{1 \leqslant i \leqslant n<j \leqslant n+m}\left(X_{i}-p_{1}^{2} X_{j}\right)\left(X_{i}-p_{1}^{-2} X_{j}\right)\left(X_{i}-p_{1}^{2} X_{j}^{-1}\right)\left(X_{i}-p_{1}^{-2} X_{j}^{-1}\right)\left(X_{i}-X_{j}\right)\left(X_{i}-X_{j}^{-1}\right)
$$

Then we can embed \mathcal{H}_{n}^{B} into $\mathcal{H}_{n+m}^{B} \otimes \otimes_{\mathbb{P o}_{n+m}} \mathbb{F}_{n, m}$ by

$$
T_{0} \mapsto \tilde{\varphi}_{n} \cdots \tilde{\varphi}_{1} T_{0} \tilde{\varphi}_{1} \cdots \tilde{\varphi}_{n}, \quad T_{i} \mapsto T_{i+n}(1 \leqslant i<m), \quad X_{i} \mapsto X_{i+n}(1 \leqslant i \leqslant m)
$$

Its image commute with $\mathcal{H}_{n}^{B} \subset \mathcal{H}_{n+m}^{B}$. Hence $\mathcal{H}_{n+m}^{B} \otimes_{\mathbb{P} o_{n+m}} E_{n, m}$ is a right $\mathcal{H}_{n}^{B} \otimes \mathcal{H}_{m}^{B}$ module. Note that $\left(\mathcal{H}_{n}^{B} \otimes \mathcal{H}_{m}^{B}\right) \otimes_{\mathbb{T o l}_{n+m}} \mathbb{F}_{n, m}=\mathbb{F}_{n, m} \otimes_{\operatorname{Pol}_{n+m}}\left(\mathcal{H}_{n}^{B} \otimes \mathcal{H}_{m}^{B}\right)$ is an algebra.
Lemma 6.2. $\mathcal{H}_{n+m}^{A} \underset{\mathcal{H}_{n}^{A} \otimes \mathcal{H}_{m}^{s}}{\otimes}\left(\mathcal{H}_{n}^{B} \otimes \mathcal{H}_{m}^{B}\right) \otimes_{\text {Pol }_{n+m}} \mathbb{F}_{n, m} \xrightarrow{\sim} \mathcal{H}_{n+m}^{B} \otimes \otimes_{\operatorname{Tol}_{n+m}} \mathbb{F}_{n, m}$.
Proof. Let W_{n}^{A} and W_{n}^{B} be the finite Weyl group of type A and B. Note that $\left|W_{n+m}^{A}\right|$. $\left|W_{n}^{B}\right| \cdot\left|W_{m}^{B}\right| /\left(\left|W_{n}^{A}\right| \cdot\left|W_{m}^{A}\right|\right)=\left|W_{n+m}^{B}\right|$. Hence the both sides are free modules of rank $\left|W_{n+m}^{B+m}\right|$ over $\mathbb{F}_{n, m}$. We prove that the map is surjective.

For short, we denote the image of $\mathcal{H}_{n+m_{\mathcal{H}_{n}^{A}}^{A} \otimes \mathcal{H}_{m}^{A}}\left(\mathcal{H}_{n}^{B} \otimes \mathcal{H}_{m}^{B}\right) \otimes_{\mathrm{Pol}_{n+m}} \mathrm{~F}_{n, m}$ by $\mathcal{H}_{n, m}^{\mathrm{loc}} \subset$ $\mathcal{H}_{n+m}^{\mathrm{B}} \otimes_{\mathrm{Pol}_{n+m}} \mathbb{F}_{n, n}$. Note that $\tilde{\varphi}_{i} \cdots \tilde{\varphi}_{n} \in \mathcal{H}_{n+m}^{\mathrm{A}} \otimes_{\mathrm{Pol}_{n+m}} F_{n, m}$ for $1 \leqslant i \leqslant n$.

First, we have $\tilde{\varphi}_{n} \cdots \tilde{\varphi}_{1} T_{0} \tilde{\varphi}_{1} \cdots \tilde{\varphi}_{n} \in \mathcal{H}_{m}^{B} \otimes_{\text {Pol }_{n}} \mathbb{F}_{n, m}$. Since $\left(\tilde{\varphi}_{n} \cdots \tilde{\varphi}_{1}\right)^{-1}=\tilde{\varphi}_{1} \cdots \tilde{\varphi}_{n} \in$ $\mathcal{H}_{n+m}^{A} \otimes_{\mathrm{Pol}_{m}} \mathbb{F}_{n, m m}$ we have $T_{0} \tilde{\varphi}_{1} \cdots \tilde{\varphi}_{n} \in \mathcal{H}_{n, m}^{m o c}$.

Second, note that

$$
T_{i}=\left(\tilde{\varphi}_{i}\left(p_{i}^{-1}-p_{i} X_{i}^{-1} X_{i+1}\right)-\left(p_{i}-p_{i}^{-1}\right) X_{i}^{-1} X_{i+1}\right)\left(1-X_{i}^{-1} X_{i+1}\right)^{-1}(1 \leqslant i<n)
$$

If $T_{0} T_{1} \cdots T_{i-1} \tilde{\varphi}_{i} \cdots \tilde{\varphi}_{n} \in \mathcal{H}_{n, m}^{\text {loc }}$, then $T_{0} T_{1} \cdots T_{i} \tilde{\varphi}_{i+1} \cdots \tilde{\varphi}_{n} \in \mathcal{H}_{n, m}^{\text {loc }}$ for $1 \leqslant i<n$. Indeed, we have

$$
\begin{aligned}
T_{0} \cdots T_{i} \tilde{\varphi}_{i+1} \cdots \tilde{\varphi}_{n}= & T_{0} \cdots T_{i-1} \tilde{\varphi}_{i} \cdots \tilde{\varphi}_{n}\left(p_{i}^{-1}-p_{i} X_{i}^{-1} X_{n+1}\right)\left(1-X_{i}^{-1} X_{n+1}\right)^{-1} \\
& -\left(p_{i}-p_{i}^{-1}\right) T_{0} \cdots T_{i-1} \tilde{\varphi}_{i+1} \cdots \tilde{\varphi}_{n} X_{i}^{-1} X_{n+1}\left(1-X_{i}^{-1} X_{n+1}\right)^{-1}
\end{aligned}
$$

and

$$
T_{0} \cdots T_{i-1} \tilde{\varphi}_{i+1} \cdots \tilde{\varphi}_{n}=\tilde{\varphi}_{i+1} \cdots \tilde{\varphi}_{n} T_{0} \cdots T_{i-1} \in \mathcal{H}_{n+m}^{\mathrm{A}} \boldsymbol{F}_{n, m} \mathcal{H}_{n}^{\mathrm{B}}
$$

Therefore $T_{0} T_{1} \cdots T_{n} \in \mathcal{H}_{n, m}^{\text {loc }}$. Hence $T_{0} T_{1} \cdots T_{i} \in \mathcal{H}_{n, m}^{\text {loc }}(1 \leqslant i<n+m)$. Indeed, if $i<n$, then $T_{0} T_{1} \cdots T_{i} \in \mathcal{H}_{n}^{B}$. If $n \leqslant i$, then $T_{0} T_{1} \cdots T_{n} \in \mathcal{H}_{n, m}^{\text {loc }}$ and $T_{n+1} \cdots T_{i} \in \mathcal{H}_{m}^{B}$.

Finally, we prove the surjectivity by the induction on m. Note that

$$
\mathcal{H}_{n+m}^{B}=\sum_{i=1}^{n+m} T_{i} T_{i+1} \ldots T_{n+m-1} \mathcal{H}_{n+m-1}^{B}+\sum_{i=0}^{n+m-1} T_{i} \cdots T_{1} T_{0} T_{1} \cdots T_{n+m-1} \mathcal{H}_{n+m-1}^{\mathrm{B}}
$$

and $T_{i} T_{i+1} \cdots T_{n+m-1} \in \mathcal{H}_{n+m-1}^{A}$. Furthermore, $\mathcal{H}_{n+m-1}^{R} \subset \mathcal{H}_{n, m-1}^{\text {loc }}$ by the induction hypothesis. Thus it is sufficient to prove that $T_{0} \mathcal{H}_{n+m}^{A, f i n} \subset \mathcal{H}_{n, m}^{\text {loc }}$. Here, $\mathcal{H}_{n+m}^{A, \text { fin }}$ is the subalgebra of $\mathcal{H}_{n+m}^{\mathrm{A}}$ generated by T_{1}, \ldots, T_{n+m-1}. This follows from

$$
\mathcal{H}_{n+m}^{A, \sin }=\sum_{i=0}^{n+m-1}\left\langle T_{2}, \cdots, T_{n+m-1}\right\rangle T_{1} T_{2} \cdots T_{i}
$$

and $T_{0} T_{1} \cdots T_{i} \in \mathcal{H}_{n, m}^{\text {loc }}$.
Definition 4.3 . For a finite-dimensional \mathcal{H}_{n}^{B}-module M, let

$$
M=\bigoplus_{a \in\left(\mathbb{C}^{*}\right)^{n}} M_{a}
$$

be the generalized eigenspace decomposition with respect to X_{1}, \ldots, X_{n} :

$$
M_{a}:=\left\{u \in M \mid\left(X_{i}-a_{i}\right)^{N} u=0 \text { for any } 1 \leqslant i \leqslant n \text { and } N \gg 0\right\}
$$

for $a=\left(a_{1}, \ldots, a_{n}\right) \in\left(\mathbb{C}^{*}\right)^{n}$.
(1) We say that M is of iype J if all the eigenvalues of X_{1}, \ldots, X_{n} belong to $J \subset \mathbb{C}^{*}$. Put

$$
K_{J}^{B}:=\bigoplus_{n \geqslant 0} K_{J, n}^{B} .
$$

Here $K_{J, n}^{B}$ is the Grothendieck group of the abelian category of finite-dimensional \mathcal{H}_{n}^{B} modules of type J.
(2) The semi-direct product group $\mathbb{Z} \times \mathbb{Z}_{2}=\mathbb{Z} \times\{1,-1\}$ acts on \mathbb{C}^{*} by $(n, \epsilon): a \mapsto a^{\epsilon} p_{1}^{2 n}$.
(3) Let J_{1} and J_{2} be $\mathbb{Z} \times \mathbb{Z}_{2}$-invariant subsets of \mathbb{C}^{*} such that $J_{1} \cap J_{2}=\emptyset$. Then for an \mathcal{H}_{n}^{B}-module N of type J_{1} and an \mathcal{H}_{m}^{B}-module \bar{M} of type J_{2}, the action of $\mathbb{P}^{2} l_{n+m}$ on $N \otimes M$ extends to an action of $\mathbb{F}_{n, m}$. We set

$$
\left.N \diamond M:=\left(\mathcal{H}_{n+m}^{B} \otimes_{\mathbb{P o l}_{n+m}} F_{n, m}\right) \otimes_{(\mathcal{H}}^{n} \otimes \mathcal{H}_{m}^{B}\right) \otimes_{\mathrm{pol}_{n+m}} F_{n, m}(N \otimes M)
$$

By the lemma above, $N \diamond M$ is isomorphic to $\operatorname{Ind}_{\mathcal{H}_{n}^{(t)} \otimes \mathcal{H}_{m}^{A}}^{\mathcal{A} A+m}(N \otimes M)$ as an \mathcal{H}_{n+m}^{A}-module.
Proposition 6.4. Let J_{1} and J_{2} be $\mathbb{Z} \times \mathbb{Z}_{2}$-invariant subsets of \mathbb{C}^{*} such that $J_{1} \cap J_{2}=0$.
(1) Let N be an irreducible \mathcal{H}_{n}^{B}-module of type J_{1} and M an irreducible \mathcal{H}_{m}^{B}-module of type J_{2}. Then $N \diamond M$ is an irreducible \mathcal{H}_{n+m}^{D}-module of type $J_{1} \cup J_{2}$.
(2) Conversely if L is an irreducible \mathcal{T}_{n}^{B}-module of type $J_{1} \cup J_{2}$, then there exist an integer m $(0 \leqslant m \leqslant n)$, an irreducible $\mathcal{H}_{m}^{B}-$ module N of type J_{1} and an irreducible \mathcal{H}_{n-m}^{B}-module M of type J_{2} such that $L \simeq N \diamond M$.
(3) Assume that a $\mathbb{Z} \times \mathbb{Z}_{2}$-orbit J decomposes into $J=J_{+} \sqcup J_{-}$where $J_{ \pm}$are \mathbb{Z}-orbits and $J_{-}=\left(J_{+}\right)^{-1}$. Assume that $\pm 1, \pm p_{0} \notin J$. Then for any irreducible \mathcal{H}_{n}^{B}-module L of type J, there exists an irreducible \mathcal{H}_{n}^{A}-module M such that $L \simeq \operatorname{Ind}_{\mathcal{H}_{A}^{A}}^{\mathcal{H}^{B}} M$.
Proof. (1) Let $(N \diamond M)_{J_{1}, J_{2}}$ be the generalized eigenspace, where the eigenvalues of $X_{i}(1 \leqslant$ $i \leqslant n)$ are in J_{1} and the eigenvalues of $X_{j}(n<j \leqslant n+m)$ are in J_{2}. Then $(N \diamond M)_{J_{1}, J_{2}}=$ $N \otimes M$ by $J_{1} \cap J_{2}=\emptyset$ by the above lemma and the shuffle lemma (e.g. [G, Lemma 5.5]). Suppose there exists non-zero \mathcal{H}_{n+m}^{B}-submodule S in $N \diamond M$. Then $S_{J_{1}, J_{2}} \neq 0$
as an $\mathcal{H}_{n}^{B} \otimes \mathcal{H}_{m}^{B}$-module. Hence $S_{J_{1}, J_{2}}=N \otimes M$ by the irreducibility of $N \otimes M$ as an $\mathcal{H}_{n}^{B} \otimes \mathcal{H}_{m}^{B}$-module. We obtain $S=N \diamond M$.
(2) For an irreducible \mathcal{H}_{n}^{B}-module L, the $\mathcal{H}_{m}^{B} \otimes \mathcal{H}_{n-m}^{B}$-module $L_{J_{1}, J_{2}}$ does not vanish for some m. Take an irreducible $\mathcal{H}_{m}^{B} \otimes \mathcal{H}_{n-m}^{B}$-submodule S in L. Then there exist an irreducible \mathcal{H}_{m}^{B}-module N of type J_{1} and an irreducible \mathcal{H}_{n-m}^{B}-module M of type J_{2} such that $S=N \otimes M$. Hence there exists a surjective homomorphism Ind $(N \otimes M)=N \diamond M \rightarrow L$. Since $N \diamond M$ is irreducible, this is an isomorphism.
(3) See [M, Section 6].

Hence in order to study \mathcal{H}^{B}-modules, it is enough to study irreducible modules of type J for a $\mathbb{Z} \rtimes \mathbb{Z}_{2}$-orbit J in \mathbb{C}^{*} such that J is a \mathbb{Z}-orbit or J contains one of $\pm 1, \pm p_{0}$.

6.3. The a-restriction and a induction.

Definition 6.5. For $a \in \mathbb{C}^{*}$ and a finite-dimensional \mathcal{H}_{n}^{B}-module M, let us define the functors

$$
E_{a}: \mathcal{H}_{n}^{B}-\bmod ^{\mathrm{fd}} \rightarrow \mathcal{H}_{n-1}^{B}-\bmod ^{\mathrm{fd}}, \quad F_{a}: \mathcal{H}_{n}^{B}-\bmod ^{\mathrm{fd}} \rightarrow \mathcal{H}_{n+1}^{B}-\bmod ^{\mathrm{fd}}
$$

by: $E_{a} M$ is the generalized a-eigenspace of M with respect to the action of X_{n}, and

$$
F_{a} M:=\operatorname{Ind}_{\mathcal{H}_{n}^{B} \otimes \mathbb{C}\left[X_{n+1}^{ \pm \pm}\right]}^{\mathcal{T}^{B} B} M \otimes\langle a\rangle,
$$

where $\langle a\rangle$ is the 1-dimensional representation of $\mathbb{C}\left[X_{n+1}^{ \pm 1}\right]$ defined by $X_{n+1} \mapsto a$.
Define

$$
\widetilde{E}_{a} M:=\operatorname{soc} E_{a} M, \quad \widetilde{F}_{a} M:=\operatorname{cosoc} F_{a} M
$$

for $a \in \mathbb{C}^{*}$.
Theorem 6. 6 (Miemietz [M]). Suppose M is irreducible. Then $\widetilde{F}_{a} M$ is irreducible and $\widetilde{E}_{a} M$ is irreducible or 0 for any $a \in \mathbb{C}^{*} \backslash\{ \pm 1\}$.
6.4. LITA type conjectures for type \mathbb{B}. Now we take the case

$$
J=\left\{p_{1}^{k} \mid k \in \mathbb{Z}_{\text {odd }}\right\}
$$

Assume that any of ± 1 and $\pm p_{0}$ is not contained in J. For short, we shall write $E_{i}, \widetilde{E}_{i}, F_{i}$ and \widetilde{F}_{i} for $E_{p^{i}}, \widetilde{E}_{p^{i}}, F_{p^{i}}$ and $\widetilde{F}_{p^{i}}$, respectively.
Conjecture 6.7. (1) There are complete representatives

$$
\left\{L_{b} \mid b \in B_{\theta}(0)\right\}
$$

of the finite-dimensional irreducible \mathcal{H}^{B}-modules of type J such that

$$
\widetilde{E}_{i} L_{b}=L_{\widetilde{E}_{i} b}, \quad \widetilde{F}_{i} L_{b}=L_{\widetilde{F}_{i} b}
$$

for any $i \in I:=\mathbb{Z}_{\text {odd }}$.
(2) For any $i \in \mathbb{Z}_{\text {odd }}$, let us define $E_{i, b, b^{\prime}}, F_{i, b, b^{\prime}} \in \mathbb{C}\left[q, q^{-1}\right]$ by the coefficients of the following expansions:

$$
E_{i} G_{\theta}^{\mathrm{up}}(b)=\sum_{b^{\prime} \in B_{\}}(0)} E_{i, b, b^{\prime}} G_{\theta}^{\mathrm{up}}\left(b^{\prime}\right) ; \quad F_{i} G_{\theta}^{\mathrm{up}}(b)=\sum_{b^{\prime} \in B_{\theta}(0)} F_{i, b, b} G_{\theta}^{\mathrm{up}}\left(b^{\prime}\right)
$$

Then

$$
\left[E_{i} L_{b}: L_{b^{\prime}}\right]=\left.E_{i, b, b^{\prime}}\right|_{q=1}, \quad\left[F_{i} L_{b}: L_{b^{\prime}}\right]=\left.F_{i, b, b^{\prime}}\right|_{q=1}
$$

Here $[M: N]$ is the composition multiplicity of N in M on K_{J}^{B}.

Hemark 6.8. There is a one-to-one correspondence between the above index set $B_{\theta}(0)$ and Syu Kato's parametrization ([Kat]) of irreducible representations of \mathcal{H}_{n}^{B} of type J.
Remark 6.9. (i) For conjectures for other $\mathbb{Z} \rtimes \mathbb{Z}_{2}$-orbits J, see [EK1].
(ii) Similar conjectures for type D are presented by the second author and Vanessa Miemietz ([KM]).

Errata to "Symmetric crystals and affine Hecke algebras of type B, Proc. Japan Acad., 82, no. 8, 2006, 131-136":
(i) In Conjecture 3.8, $\lambda=\Lambda_{p_{0}}+\Lambda_{p_{0}^{-1}}$ should be read as $\lambda=\sum_{a \in A} \Lambda_{a}$, where $A=I \cap$ $\left\{p_{0}, p_{0}^{-1},-p_{0},-p_{0}^{-1}\right\}$. We thank S. Ariki who informed us that the original conjecture is false.
(ii) In the two diagrams of $B_{\theta}(\lambda)$ at the end of $\S 2, \lambda$ should be 0 .
(iii) Throughout the paper, $A_{\ell}^{(1)}$ should be read as $A_{\ell-1}^{(1)}$.

References

[A] Susumu Ariki, On the decomposition numbers of the Hecke algebra of $G(m, 1, n)$, J. Math. Kyoto Univ. 36 (1996), no. 4, 789-808.
[CG] Neil Chriss and Victor Ginzburg, Representation Theory and Complex Geometry, Birkhäuser, 1997.
[EK1] Naoya Enomoto and Masaki Kashiwara, Symmetric crystals and the affine Hecke algebras of type B, Proc. Japan. Acad. (2006), 82, no.8, 131-136.
[EK2] _, Symmetric Crystals for gl_{∞}, ArXiv:math. QA/0704.2817.
[GV] Ian Grojnowski and Monica Vazirani, Strong multiplicity one theorems for afine Hecke algebras of type A, Transform. Groups 6 (2001), no. 2, 143-155.
[G] Ian Grojnowski, Affine $\boldsymbol{s} l_{p}$ conirols the representation theory of the symmetric group and related Hecke algebras, ArXiv:math. RT/9907129.
[Kas] Masaki Kashiwara, On crystal bases of the Q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465-516.
[KM] Masaki Kashiwara and Vanessa Miemietz, Crystals and affine Hecke algebras of type D, ArXiv: math. QA/0703281.
[Kat] Syu Kato, An exotic Deligne-Langlands correspondence for symplectic groups, ArXiv: math. RT/0601155.
[KL] David Kazhdan and George Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math. 87 (1987), no. 1, 153-215.
[L] George Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447-498.
[LLT] Alain Lascoux, Bernard Leclerc and Jean Y. Thibon, Hecke algebras at rools of unity and crystal bases of quantum affine algebras, Comm. Math. Phys. 181 (1996), no. 1, 205-263.
[M] Vanessa Miemietz, On the representations of affine Hecke algebras of type B, to appear in Algebras and Representation theory.
[V] Monica Vazirani, Farameterizing Hecke algebra modules: Bernstein-Zelevinsky multisegments, Kleshchev multipartitions, and crystal graphs, Transform. Groups 7 (2002), no. 3, 267-303
[Z] Andrei V. Zelevinsky, Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n), Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 2, 165-2.10.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

E-mail address: henon@kurims.kyoto-u.ac.jp
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

E-mail address: masaki@kurims.kyoto-u.ac.jp

[^0]: The second anthor is partially supported by Grant-in-Aid for Scientific Research (B) 18340007, Japan Society for the Promotion of Science.

