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RIMS Kok:yuraku Bessatsu 
B8 63-70 

COMPOUND BASIS FOR THE SPACE OF' SYMMETRIC 
FUNCTIONS 

KAZUYA AOK.AGE, HIROSHI MIZUKAWA AND HIRO-FUMI YAMADA 

1. INTRODUCTION 

The aim of this note is to introduce a compound basis for the space of ,~vn11TlP•tr11{' 
functions. Our basis consists of of Schur functions and Q-functions. The 
basis elements are indexed the It is well known that the Schur 
functions form an orthononnal ba.sis for our space. A natural sxises. How 
are these two bases connected? In this note vve present some numerical results of 
the transition matrix fbr these bf:l,ses. In we will see that the determinant 
of the transition matrix is a power of 2. This is not a fact, However the 
/C'vnl·'""'t formula involves an mi~eres·tm.rz 

comi)OliJn,d basis is 
This note is not WTitten in a standard 

like a draft of a talk. In particular 
will be elsewhere, 

realization of the 

Schur functions 

of mathematical articles. It is more 
are not given here. Details and 

:iL SPACE OF SYMMETRIC FUNCTIONS 

this note V denotes the space of 
variables: 

Here 
deg tJ j. This space can be 
id•sn1titiirirtg tj with a constant multiple of the 
where Xk 's are the variables. 

00 

nmny 

we'""~'"''·" of n, subject to 
ring of symmetric functions by 
power sum P.i = ::zr{ + + · · ,, , 

The first basis for V consists of the Schur functions. Let P(n) denote the set of 
the of n. For A E the Schur function S.\ indexed by ,\ is defined 

E 
pEP(n) 

Here the summation runs over all p = (Fn1 2m2 • • ) E P('n), and the x~ is 
the irreducible character of A of the symmetric group Sn, evaluated at the conjugacy 
class p. The "original" (symmetric) Schur function is recovered tj = 
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It is known that these Schur functions are orthonormal with respect to the 
inner product 

(F, 
-- (L l a 1 a._ ... ) B··, t'1i« 
- 8t1 ' 2 at:;' :3 8t3 ' · · .'! I ·•' 

forms an orthonormal basis for the space 
The second basis for V is ealled the compound basis. 

of the strict partitions of n. For .\ E 

Let SP(n) denote the set 
b-'-J'"'u"""'u Q;Jt) indexed 

by ,\ is defined 

"\'· 2 f.(:•)-g(.a)+e 

.L' 
pEOP(n) 

Here the summation runs over all odd p = a·ms 5ms · · · ) of n, the 
is the irreducible character of), of the symmetric group S,., evaluated 

class p, and <' = 0 or 1 according to that is even or 
odd. The "original" (symmetric) is recovered putting tj = 
It is known that the Q-functions are to each other with respect to the 
inner 

(F, 

virtue of this 

forms a basis for the space 

This basis of rectangular Schur functions 

as weight vectors of the heBic r"''""''""''n [4], 
and [3]). 

We 

defined 
spectively 

and 

ip: 

3, rfRANSITION l\1ATRICES 

m., :::::::1 

rni(A.) = 0 

and 

2) 
'1) ~ , 

= 1 (mod 2) 

= 0 (mod 

are given re-

For example, if..\= (5344 271), then ,~r = (521) and = (54223 ). We set 

nl) = 1p-1 x P(n1)). 
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The second is 

_, P(nz) 

defined by Here A0 is obtained picking 
of A, while ),e halve::J of the even 
A= then .>1° = and .:\e = (24 17). 

The third bijection is called the 2~Glaisher map. Let 
strict of n. that Ai = (i = 1, 2, · · · , 
Then an odd partition .X of n is defined 

6,4,8, l) then:\= 11 This gives a 

up the odd parts 
For if 

,,\z,"·, be a 
where qi is odd. 

between 

Here ar10 several identities for the 
Then we have 

of the partitions. Let be fixed. 

~ 

L 
AEP(n) 

2: 
AEP(no,nl) 

L: 
AEP(n) 

for .\ E 
bases. Let 

for A E 

and 

AEP(n) 

"'"' 2.4 
AEP(no,n1) 

- ,-, 
~- L 

.AEP(n) 

r~ 
AEP(no1·n1) 

+ 

+ 

,, 
L, 

AEP(n) 

+ 

+ + 
AEP(n) AEP(n) 

+ 
AE:P(nolnl) 

+ 

Our problem is to determine the tr<:msition rnatrix between two 
be defined by 

i!EP(n) 

Here is a small list of 

(3,0) 
1 
1 
1 

(21,0) 
0 
1 
0 

0 
-1 
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I (4, 0) (31, 0) (2, 1) (0,2) (0, 12) 

W' 1 0 1 1 0 
(31} 1 1 1 1 --1 0 
(22) 0 1 0 1 1 

(212) I 1 1 i 0 -1 --1. 

(14) 1 0 --1 0 1 

(5,0) (41,0) (~2, 0) (3, 1) (21,1) (1,2) (1, 12 ) 

(5) 1 0 0 1 0 1 0 
(41) 1 1 0 1 1 0 0 
(32) 0 1 1 1 0 0 1 , __ 
(312 ) 1 -1 1 0 0 -1 -1 _._ 

(221) 0 1 1 -1 0 1 0 
(213 ) 1 1 0 -1 -1 0 0 

1 0 0 -1 0 0 1 

One readily sees that the entries are integers, Also, looking at the columns 
corresponding to (11, 0) with 11 E 8P(n), entries are integers. The 
submatrix consisting of these columns will be denoted by r n· The entries of r n 

are called the Stembridge coefficients, whose combinatorial nature has been known 
([6], 

Here we recall the definition of matrices for the rep-
resentations of the group Let p be a fixed prime number. A par-

tition A = )% · · · , is said to be p-regular if there are no parts 
= AHp-1 2:: L Note that a 2-regular partition is nothing but 

of n is denoted by pr(p) A 

""rnnl·m p = of mp = rn2p = ::::: 0. 
Note that a 2-class is nothing but an odd partition. The set of 
p-class partitions of n is denoted pc(p) (n). The p-Glaisher map A f-1- X is 
defined in a natural way. This a between pr(p) and pc(p) For 

), E , we define the Brauer·Sclmr function indexed by ), as follows. 

)"'' 
~.,d 

pEP"(P)(n) 

t~"1t~'2 ... 
rn.1!m2l· · · 

E V(n), 

is the irreducible Brauer character corresponding to >., evaluated at the 

class p. These functions form a bsBis for the space 

· j;::: l,j ¢ 0 (modp)}. 

Given a Schur function S;.(t), define the ]rreduced Schur function s~P)(t) by 

"killing" all variables hp, · · ·; 

sip) = s,\(t)ltjp=O· 

These p-reduced Schur functions a.re no longer linearly independent. All linear 
relations among these polynomials are known (cf. [2]), The p-decomposition matrix 
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is defined 

,u.EP~·(p)(n) 

for >. E 

Now let us go back to the case of p = 2. We shall write 
the coefficients E ft E 

~' = '\. 
LA 

~tESP(n) 

uu•vn.Hl,fS at the matrices and r n = one observes that are 
"very similar". In fact one can prove that they are transformed to each other by 
column \Ve eonsider the Cartan matrix = t D,Dn and the corre-

= tr ,,r,. The divisors of and coincide. 
;)\ E Our transition matrix 

can be as a common generalization of the xnatrbi: r n of 
ficients and the matrix 

\TI/e have a formula for the determinant of 

I det 

+i 1 2 3 4 5 6 
n;, 0 l 1 4 5 11 

7 8 
15 28 

It is natural to consider the Cartan-like matrix Let us look a.t some of 
these matrices. 

(2,0) 1) 

tA2A2 = 0) ( 2 0 \ 
1) \ 0 2 ) 

0) (21, 0) (1, 1) 

( " 1 0 ) ~) 

1 1 0 
0 0 2 

0) (31,0) 1) 2) 

( 
4 2 0 0 0 

J 
2 3 0 0 0 

tA4A4 = 0 0 4 0 0 
0 0 0 <I 1 ,_, 

0 0 0 1 3 \ 
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(5, 0) (41, 0) (32,0) (3, 1) (21, 1) (1, 2) (1, 12) 

(5; 0) 5 3 1 0 0 0 0 

(41, 0) 3 5 3 0 0 0 0 

(32,0) 1 3 3 0 0 0 0 

tA5A5 = (3, 1) 0 0 0 6 2 0 0 

(21, 1) 0 0 0 2 2 0 0 

(1,2) 0 0 0 0 0 3 1 

(1,12 ) 0 0 0 0 0 1 3 

It can be verified that t AnAn is block diagonal indexed by the pairs (no, n 1). 

Let Bn0 ,n1 be the corresponding block in t AnAn. Note that the principal block 

Bn,o is nothing but the matrix Gn. It is plausible that there is a nice formula 

for elementary divisors of the block Bn0 ,n1 • At present, however, we only have a 

formula for the determinant. 

4. TOWARDS THE GENERAL CHARACTERISTIC 

We want a compound basis for the general characteristic p, i.e., a basis for the 

space 
v = y(p) ® V(p)• 

where V(p) = Q[tpj;j ;::: 1]. However, since Schur's Q-functions are defined only 

for the strict partitions, we must give up taking Q-functions. We saw that the 

Stembridge matrix r n and the decomposition matrix Dn are similar. Therefore, 

for the case of general p, we adopt the Brauer-Schur functions Bf) (t) instead of 

Q-functions. 
Let p be a fixed prime number. For a partition>.= (>.1, · · · , At) of n, partitions 

>.r(p) and >.d(p) are defined in the following way. The multiplicities mi(V(P)) and 

mi(>.d(p)) are given respectively by 

mi(>.r(p)) = k if mi(>.) = k (mod p) 

and 

mi(>.d(p)) = mi(>.)- k if mi(>.) == k (mod p). 
. p 

For example, if p = 3 and>.= (534421112), then ).r(p) = ( 42212 ) and >.d(p) = (5423). 

This gives a bijection 

cp(P): P(n)------+ U pr(Pl(no) x P(n1). 

no+pn1"'n 

In view of this bijection, we define, for >. E P(n), 

W~P)(t) = B~~v>(t)S>.<t<v>(t(p)), 
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where = (tp, t2p, · · · ). These functions are linearly independent and form a 
compound basis for the space Inconsistently W.~2l and W>.(t) are not the 
same. Unfortunately we do not know any connection with representation theory of 
affine Lie algebras At present >ve only some numerical properties of this 
compound basis. 

Let be the transition matrix defined 

= I: 
MEP(n) 

One verifies that is an ma.trix and 

det 

As in the case of p = 2, we consider the matrix 

. This is a block diagonal matrix indexed by the Let Bf!;/,.,.. 1 

bl ." t;(P)A(p) ! 4 • b·' 'l '· 1 ·- ·· nJb' kB(p) cmore~;pomtmg ock m il.n n . L IS o vwus r..lao t 1e prmclpcL lac. n,o 

coincides with the Cartan matrix c~) at characteristic p. The elementary diviBors 
of are (['7]) 

where 5- denotes the 
the block we are 

where 

l!.no,nl = 

;), E 

partition.:\ via the p-Glaisher map. For 
aware of the determinant. 

det 

L ( C(jl) - ~(~t) + 
p-J. 

(1-',v)EPT(p) (no) X P(nl) 

We the matrices and A~) for the case Jl = 3 and n = 5. 

I (5, 0) (22 1,0) ( 41, 0) (32,0) (31 2 ,0) (2,1) (1 2 ,1) 
(5) 1 0 0 0 0 1 0 
(41) 0 0 1 0 0 0 1 
(32) 0 0 1 1 0 0 -1 
(31 2 ) 0 0 0 0 1 0 0 
(221) 1 1 0 0 0 -1 0 
(213 ) 0 1 0 0 0 1 0 
(15) 0 0 0 1 0 0 1 

(5,0) (221,0) ( 41, 0) (32,0) (312 , 0) (2, 1) (12, 1) 

(5, 0) ( 2 1 0 0 0 0 0 I (221, 0) 1 2 0 0 0 0 0 

(41, 0) l 0 0 2 1 0 0 0 
tA~3) A~3) = (32, 0) 0 0 1 2 0 0 0 

) (31 2,0) 0 0 0 0 1 0 0 
(2, 1) 0 0 0 0 0 3 0 
(12 ,1) 0 0 0 0 0 0 3 
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There may be another natural generalization using the Hall-Littlewood symmet-

ric The Brauer-Schur function Bfl(t) can be 
F\ ( t; exp for any natural number r, This version of com-

bases should be investigated 
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