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RIMS Kôkyûroku Bessatsu B6
(2008), 31–37

Compact excessive functions and Markov processes:

a general case and applications

By

Lucian Beznea, Aurel Cornea ∗ and Michael Röckner

Abstract

In this paper we present simple conditions for a Markovian resolvent of kernels on a

general state space to be associated with a right process. We apply this to the construction of

Brownian motion on abstract Wiener space and to identify new potential theoretic properties

for it. In particular, we can define natural associated capacities and obtain new results for the

solution of the Dirichlet problem with measurable boundary data.

§ 1. Introduction

The purpose of this paper is twofold: First, we want to present simple conditions for
a Markovian resolvent U of kernels on a general (Lusin measurable) state space E to be
associated with a right process, a classical problem even on more regular state spaces. As
a consequence we can define associated capacities. Furthermore, various other potential
theoretic notions, techniques and results become available for U . Second, we show
that the said conditions are fulfilled for the resolvent of the Brownian semigroup on an
abstract Wiener space. Thus, we obtain a new construction of the classical Brownian
motion on abstract Wiener space first studied by L. Gross in [Gr 67]. But, in addition,
we can then apply the powerful machinery of potential theory to this process, since
our construction implies that this Brownian motion falls into the class of (Borel) right
processes (see e.g. [BeBo 04] for the precise definition). In particular, we have naturally
associated capacities as in the finite dimensional case. This positively answers an old
question of R. Carmona from the seventies of last century.

We also adapt and employ a technique, earlier developed by the second named
author, for essentially finite dimensional (more, precisely, locally compact) state spaces,
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named “controlled convergence”. Thus, we obtain new results on the boundary be-
haviour of the Dirichlet problem on an abstract Wiener space, when the boundary data
are merely measurable.

§ 2. Framework and main results

Let (E,B) be a Lusin measurable space (i.e. it is measurable isomorphic to a Borel
subset of a metrizable compact space endowed with the Borel σ-algebra) and L be a
vector lattice of bounded B-measurable real-valued functions on E, 1 ∈ L, and F0 be
a countable subset of L+ separating the points of E such that the topologies on E

generated by L and F0 coincide.
Let further U = (Uα)α>0 be a Markovian resolvent of kernels on (E,B), such that

(a) Uα(L) ⊂ L for all α > 0

(b) lim
α→∞

‖αUαf − f‖∞ = 0 for all f ∈ L.

We shall denote by E(U) the set of all B-measurable U-excessive functions: u ∈ E(U)
if and only if u is a positive numerical B-measurable function, αUαu ≤ u for all α > 0
and limα→∞ αUαu(x) = u(x) for all x ∈ E. If β > 0 we denote by Uβ the sub-Markovian
resolvent of kernels (Uβ+α)α>0.

Note that σ(F0) = B and using (b) one obtains that for all β > 0 we have:

σ
(
E(Uβ)

)
= B and E(Uβ) is min-stable.(2.1)

Recall that a Ray cone associated with Uβ is a cone R of bounded Uβ-excessive
functions such that: Uα(R) ⊂ R for all α > 0, Uβ

(
(R − R)+

)
⊂ R, σ(R) = B, it is

min-stable, separable in the supremum norm and 1 ∈ R. The topology on E generated
by a Ray cone is called Ray topology.

If M ∈ B and u ∈ E(Uβ), then the reduced function (with respect to Uβ) of u on
M is the function RM

β u defined by

RM
β u := inf

{
v ∈ E(Uβ)

∣∣ v ≥ u on M
}

.

Then (see e.g. [BeBo 04]) RM
β u is universally B-measurable. Let

R̂M
β u := sup

α>0
αUβ+α(RM

β u).

The set M ∈ B is called polar (resp. µ-polar ; where µ is a σ-finite measure on (E,B)) if
R̂M

β 1 = 0 (resp. R̂M
β 1 = 0 µ-a.e.). Recall that if U = (Uα)α>0 is the resolvent associated

with a right process X = (Ω,F ,Ft, Xt, θt, P
x) with state space E, i.e.

Uαf(x) = Ex

∫ ∞

0

e−αtf ◦ Xt dt



Compact excessive functions and Markov processes: a general case and applications 33

for all α > 0, x ∈ E and f ∈ pB (:= the set of all positive B-measurable functions on
E), then by a theorem of Hunt we have:

RM
β u(x) = Ex(e−αDM u◦XDM

; DM < ∞) , R̂M
β u(x) = Ex(e−αTM u◦XTM

; TM < ∞) ,

where DM (ω) := inf
{
t ≥ 0

∣∣ Xt(ω) ∈ M
}
, TM (ω) := inf

{
t > 0

∣∣ Xt(ω) ∈ M
}
, ω ∈ Ω.

Theorem 2.1.

(a) The topology on E generated by L is a Ray topology.

(b) Assume that:

(∗) there exists a Uβ-excessive compact function v which is finite U-a.e. and has
compact level sets, i.e. Uβ(1[v=∞]) = 0 and the set [v ≤ α] is compact for all
α > 0.

Then the resolvent U is associated with a Borel right (Markov) process with state
space E. If v is real-valued, then the process is càdlàg.

(c) Assume that (∗) holds and let p := Uβf0, with 0 < f0 ≤ 1, f0 ∈ pB, and let µ be a
finite measure on (E,B). Then the following assertions hold:

(i) The functional M 7→ cµ(M), M ⊂ E, defined by

cµ(M) := inf
{
µ(RG

β p)
∣∣ M ⊂ G open

}
is a Choquet capacity on E; see e.g. [BeBo 04]. If the function v is finite
µ-a.e., then the capacity cµ is tight, i.e. there exists an increasing sequence
(Kn)n of compact sets such that infn cµ(E \ Kn) = 0.

(ii) Let M ∈ B. Then

cµ(M) = µ(RM
β p) = sup

{
ν(p · 1M )

∣∣ ν ◦ Uβ ≤ µ ◦ Uβ

}
.

The set M will be µ-polar and µ-negligible if and only if cµ(M) = 0.

Remark. A function v as in Theorem 2.1(b) above is also called Lyapunov
function.

Sketch of the proof. (For a detailed proof we refer to [BeCoRö 07]). We shall outline
two steps of the proof of (b).

(I) Starting with property (2.1), one can show (cf. [BeBo 04] and [BeBoRö 06]) that
there exist a larger Lusin topological space E1, E ⊂ E1, E ∈ B1 (= the Borel
σ-algebra on E1) and a Borel right process with state space E1 having as associated
resolvent an extension U1 = (U1

α)α>0 of U to E1, U1
α(1E1\E) = 0.
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(II) By assumption (∗) it follows that there exists an increasing sequence (Kn)n of Ray
compact sets such that infn R

E1\Kn

β 1 = 0 U1-a.e. Consequently, the set E1 \ E is
polar and therefore U is the resolvent associated with the restriction of the process
to E.

§ 3. Application to the construction of Brownian motion on an abstract
Wiener space

Let (E,H, µ) be an abstract Wiener space, i.e.
(
H, 〈 , 〉

)
is a separable real Hilbert

space with corresponding norm | · |, which is continuously and densely embedded into
a Banach space

(
E, ‖ · ‖

)
, which is hence also separable; µ is a Gaussian measure on

B (= the Borel σ-algebra of E), that is, each ` ∈ E′, the dual space of E, is normally
distributed with mean zero and variance |`|2. Here we use the standard continuous and
dense embeddings

E′ ⊂ (H ′ ≡)H ⊂ E .

We recall that the embedding H ⊂ E is automatically compact (see Ch.III, Section 2
in [Bo 98]). One can show that the norm ‖ · ‖ is measurable in the sense of L. Gross (cf.
[Gr 67]). Hence also the Gaussian measures µt, t > 0, exist on B, whose variance are
given by t|`|2, ` ∈ E′, t > 0. So,

µ1 = µ .

For x ∈ E, the probability measure pt(x, · ) is defined by

pt(x,A) := µt(A − x) , for all A ∈ B.

Let (Pt)t>0 be the associated family of Markovian kernels:

Ptf(x) :=
∫

E

f(y) pt(x, dy) =
∫

E

f(x + y) µt(dy) , f ∈ pB, x ∈ E.

By Proposition 6 in [Gr 67] it follows that (Pt)t≥0 (where P0 := idE) induces a strongly
continuous semigroup of contractions on the space Cu(E) of all bounded uniformly
continuous real-valued functions on E. Let U = (Uα)α>0 be the associated strongly
continuous resolvent of contractions. Taking L = Cu(E) it follows that U satisfies (a)
and (b).

Theorem 3.1. There exists a Borel right (Markov) process with continuous
paths and state space E, having (Pt)t≥0 as transition function.
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Sketch of the proof. (For a detailed proof we refer to [BeCoRö 07]). The proof is
based on an application of Theorem 2.1. The main point is to verify condition (∗) (the
existence of a real-valued compact excessive function). It turns out that it is sufficient
to do this on the subspace E0 of E considered in [Ku 82] and [AlRö 88].

Let W = (Ω,F ,Ft,Wt, θt, P
x) be the path continuous Borel right process with

state space E, having (Pt)t≥0 as transition function, given by Theorem 3.1; W is called
the Brownian motion on E.

By Remark 3.5 in [Gr 67] it follows that the process W is transient, i.e. the potential
kernel

Uf =
∫ ∞

0

Ptf dt

is proper (that is, there exists a bounded strictly positive B-measurable function f such
that Uf is finite). Let M ∈ B and PTM

be the associated hitting kernel,

PTM
f(x) = Ex(f ◦ WTM

; TM < ∞) , x ∈ E, f ∈ pB.

If u ∈ E(U), then PTM u = R̂Mu, and for each x ∈ E \ M the measure f 7→ PTM f(x) is
carried by the boundary ∂M of M .

Remark. By assertion c) of Theorem 2.1 (since condition (∗) is verified) we
obtain a natural capacity associated with the Brownian motion on an abstract Wiener
space, consequently we answer to the question formulated by R. Carmona in [Ca 80],
page 41.

§ 4. Dirichlet problem and controlled convergence

Following [Go 72], a real-valued function f defined on an open set V ⊂ E is called
harmonic on V , if it is locally bounded, Borel measurable, finely continuous and there
exists ρ > 0 such that

f(x) = PTE\Br(x)f(x)

for all r < ρ whenever B̄r(x) ⊂ V ; B̄r(x) denotes the closed ball or radius r centered at
x, the fine topology is the topology on E generated by E(Uβ).

We shall denote by HV : pB(∂V ) → pB(V ) the kernel defined by

HV f := PTE\V
f̄ �V , f ∈ pB(∂V ),

where f̄ is a Borel measurable extension of f to E, hence

HV f(x) = Ex(f ◦ WTE\V
; TE\V < ∞) , x ∈ V.
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HV f is called the stochastic solution of the Dirichlet problem for f (cf. [Go 72]).
By Corollary 1.2 and Remark 3.4 in [Gr 67] it follows that if V is strongly regular

(i.e., for each y ∈ ∂V there exists a cone K in E with vertex y such that V ∩ K = ∅; a
cone in E with vertex y is the closed convex hull of the set {y} ∪ B̄r(z) and y /∈ B̄r(z))
and f ∈ Cb(∂V ), then HV f is harmonic on V and lim

V 3x→y
HV f(x) = f(y) for all y ∈ ∂V .

Furthermore, if f ∈ pB(∂V ) is bounded, then HV f is harmonic on V . Consequently,
for every f ∈ pB(∂V ), HV f is the sum of a series of positive harmonic functions on V .

Let f : ∂V → R̄ and h, k : V → R be such that k ≥ 0. We say that h converges to
f controlled by k, if the following conditions hold: For every set A ⊂ V and y ∈ ∂V ∩ Ā

we have

(c1) If lim sup
A3x→y

k(x) < ∞, then f(y) ∈ R and f(y) = lim
A3x→y

h(x).

(c2) If lim
A3x→y

k(x) = ∞, then lim
A3x→y

h(x)
1+k(x) = 0.

Remark. Following [Co 95] and [Co 98], the controlled convergence intends to
offer a new method for setting and solving the Dirichlet problem for general open sets
and general boundary data. In the above definition the function f should be interpreted
as being the boundary data of the harmonic function h. The function k is controlling
the convergence of the solution h to the given boundary data f . Note that the case
k = 0 corresponds to the classical solution: lim

V 3x→y
h(x) = f(y) for any boundary point

y.

Theorem 4.1. Let V ⊂ E be a strongly regular open set, λ be a finite measure
on V and λ̂ be the measure on ∂V defined by λ̂ := λ ◦ HV . If f ∈ L1

+(λ̂), then there
exists g ∈ pB(∂V ) such that k := HV g ∈ L1

+(λ̂) and HV f converges to f controlled by
k on the set [k < ∞].

Proof. See [BeCoRö 07].
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