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Abstract

The aim of this paper is threefold. First, we review the results of [1] on a scaling limit for

weakly pinned Gaussian random walks. Secondly, two different proofs, one based on the FKG

inequality and the other relying on the renewal theory, are given for an exponential decay

estimate on certain probabilities related to the random walks. This plays a crucial role to

establish the large deviation principle. Finally, randomly pinned random walks are introduced.

§ 1. Model and results

In this section, we introduce the d-dimensional Gaussian random walks with pinning
at the origin 0. Then the results of [1] on a macroscopic scaling limit for such random
walks are reviewed. See Section 6 of [3] for further related results. The paper [4]
discusses the same problem in a critical situation for the pinned Wiener measures with
weak self potentials.

§ 1.1. Weakly pinned Gaussian random walks

For ε ≥ 0, let φ = (φi)i∈DN
be the Markov chain on Rd with transition probability

P ε(x, dy) =
1

Zε(x)
e−|x−y|2/2

(
ε δ0(dy) + dy

)
, x, y ∈ Rd,

where DN = {0, 1, 2, . . . , N}, N ∈ N and Zε(x) = ε e−|x|2/2 +(2π)d/2 is the normalizing
constant. If ε = 0, the Markov chain φ is the d-dimensional Brownian motion viewed
at integer times. The parameter ε represents the strength of the pinning at the origin
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0. In [1], the random walks weakly pinned at a general subspace M of Rd are studied,
but in the present paper we take M = {0} for simplicity.

Given a ∈ Rd, the distribution on (Rd)DN of the Markov chain φ starting at aN is
denoted by µa,F,ε

N , i.e.,

µa,F,ε
N (dφ) =

1

Za,F,ε
N

e−HN (φ)δaN (dφ0)
N∏

i=1

(
ε δ0(dφi) + dφi

)
,(1.1)

where Za,F,ε
N is the normalizing constant and

HN (φ) =
1
2

N−1∑
i=0

|φi+1 − φi|2.

Given b ∈ Rd, the distribution of the Markov chain conditioned to arrive at bN is
denoted by µa,b,ε

N ; in other words, µa,b,ε
N is the probability measure given by the formula

(1.1) with the last factor (ε δ0(dφN ) + dφN ) replaced by δbN (dφN ) and Za,F,ε
N by a new

normalizing constant Za,b,ε
N , respectively.

We also consider the Markov chains moving only on the upper half space Rd
+ =

Rd−1 × [0,∞) of Rd. Namely, for a, b ∈ Rd
+, we consider the conditional distributions

µa,F,ε,+
N and µa,b,ε,+

N of µa,F,ε
N and µa,b,ε

N , respectively, on the event {φ; φi ∈ Rd
+ for

all i ∈ DN}
(

= (Rd
+)DN

)
. The corresponding normalizing constants are denoted by

Za,F,ε,+
N and Za,b,ε,+

N , respectively. These Markov chains are defined under the presence
of a wall at ∂Rd

+.
The following table shows the difference of these four measures in short:

No Wall Wall at ∂Rd
+

Pinned at N µa,b,ε
N µa,b,ε,+

N

Free at N µa,F,ε
N µa,F,ε,+

N

Table 1. Distributions of Markov chains

§ 1.2. Results

1.2.1. Free energies and phase transitions
We define the free energies associated with the weakly pinned random walks by the
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thermodynamic limits under the absence or presence of a wall:

ξε = lim
N→∞

1
N

log
Z0,0,ε

N

Z0,0
N

(
= lim

N→∞

1
N

log
Z0,F,ε

N

Z0,F
N

)
,

ξε,+ = lim
N→∞

1
N

log
Z0,0,ε,+

N

Z0,0,+
N

(
= lim

N→∞

1
N

log
Z0,F,ε,+

N

Z0,F,+
N

)
.

We have chosen a = b = 0 and the partition functions (normalizing constants) in the
denominators are defined without pinning; for example, Z0,0

N = Z0,0,0
N (i.e., ε = 0). One

can show that the limits exist and are independent of the conditions at i = N (pinned
or free), and ξε > ξε,+ ≥ 0 for all ε ≥ 0 unless ξε = 0. The random walks exhibit the
phase transition (localization/delocalization transition or recurrence/transience transi-
tion) depending on the strength ε of the pinning as is summarized in the next table:

d ≥ 3 :∃ εc > 0 s.t.
Pinning transition ε > εc ⇒ ξε > 0 (positive recurrent regime)
(Absence of wall) 0 ≤ ε ≤ εc ⇒ ξε = 0 (null recur./transient regime)

d = 1, 2 : εc = 0

Wetting transition d ≥ 1 :∃ ε+c > εc s.t.
(Presence of wall) ε > ε+c ⇒ ξε,+ > 0 (positive recurrent regime)

0 ≤ ε ≤ ε+c ⇒ ξε,+ = 0 (null recur./transient regime)

Table 2. Phase transitions

Explicit formulae determining ξε and εc are found in Section 2.2.1, while those for
ξε,+ and ε+c are in Section 2.2.2. Asymptotic behaviors of ξε or ξε,+ as ε ↓ εc or ε ↓ ε+c
can be studied and, especially, the critical exponents associated with the free energies
can be computed explicitly, see [1].

1.2.2. Sample path large deviation principle
We are interested in a macroscopic behavior of the Markov chains. Let hN =

{hN (t), t ∈ D} be the macroscopic path of the Markov chain determined from the
microscopic one φ under the scaling defined through a polygonal approximation of(
hN (i/N) = φi/N

)
i∈DN

:

hN (t) =
[Nt] − Nt + 1

N
φ[Nt] +

Nt − [Nt]
N

φ[Nt]+1, t ∈ D,

where D = [0, 1]. Then, as N → ∞, the sample path large deviation principle holds for
hN under each of the four distributions µa,b,ε

N , µa,b,ε,+
N , µa,F,ε

N and µa,F,ε,+
N introduced in
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Section 1.1 on the space C = C(D, Rd) equipped with the uniform topology. The speed
of the large deviation principle is always N and the unnormalized rate functionals are
given by Σa,b,ε, Σa,b,ε,+, Σa,F,ε and Σa,F,ε,+, respectively, of the form

Σ(h) =
1
2

∫
D

|ḣ(t)|2dt − ξ
∣∣{t ∈ D; h(t) = 0}

∣∣,(1.2)

for h ∈ H1(D, Rd), where ξ = ξε for Σ = Σa,b,ε, Σa,F,ε and ξ = ξε,+ for Σ = Σa,b,ε,+,
Σa,F,ε,+, | · | stands for the Lebesgue measure on D and H1(D, Rd) is the usual Sobolev
space.

The large deviation principle immediately implies the concentration for each of the
distributions µε

N = µa,b,ε
N , µa,b,ε,+

N , µa,F,ε
N and µa,F,ε,+

N :

lim
N→∞

µε
N

(
dist∞(hN ,H) ≤ δ

)
= 1,(1.3)

for every δ > 0, where H = {h∗;minimizers of Σ} and dist∞ denotes the distance on C
under the uniform norm ‖ · ‖∞.

There are at most two possible minimizers of Σ:

Functionals Σa,b,ε Σa,b,ε,+ Σa,F,ε Σa,F,ε,+

Possible minimizers h̄, ĥ h̄, ĥ+ h̄F , ĥF h̄F , ĥF,+

Table 3. Possible minimizers

Here, the functions h̄, ĥ, h̄F and ĥF are defined as follows:

h̄(t) = (1 − t)a + tb, ĥ(t) =


(t1 − t)a/t1, t ∈ [0, t1],

0, t ∈ [t1, 1 − t2],
(t + t2 − 1)b/t2, t ∈ [1 − t2, 1],

h̄F (t) = a, ĥF (t) =

{
(t1 − t)a/t1, t ∈ [0, t1],

0, t ∈ [t1, 1],

for t ∈ D, where t1 = |a|/
√

2ξε and t2 = |b|/
√

2ξε. The functions ĥ+ and ĥF,+ are
defined similarly to ĥ and ĥF , respectively, with ξε replaced by ξε,+. The functions h̄

and h̄F are linear, i.e., h̄ linearly interpolates between a and b, while h̄F stays at a.
On the other hand, the functions ĥ, ĥF , ĥ+ and ĥF,+ visits 0 to gain a reward from the
second term of (1.2), paying a penalty for the first term.

In particular, if the minimizer of Σ is unique, we see from (1.3) that the law of
large numbers holds for hN under µε

N and the limit is the unique minimizer.
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1.2.3. Scaling limits in a critical situation
Of particular interest is the critical situation that the two possible minimizers are

actually the minimizers of Σ simultaneously: Σa,b,ε(h̄) = Σa,b,ε(ĥ) and others. The
results, summarized in the next table, are superficially independent of the presence or
absence of a wall, but depend on the conditions at i = N and the dimension d of the
space.

Limits

Pinned at N d = 1 ĥ (or ĥ+)
(µa,b,ε

N , µa,b,ε,+
N ) d = 2 Coexistence

d ≥ 3 h̄

Free at N d = 1 Coexistence
(µa,F,ε

N , µa,F,ε,+
N ) d ≥ 2 h̄F

Table 4. Scaling limits at criticality

Here, “Coexistence” means that the distribution on C of hN under µε
N converges weakly

to the superposition of positive masses at two minimizers as N → ∞. See [1] for details.
The central limit theorem is also established in [1] for the first or last hitting times

of the Markov chains φ at 0.

§ 2. Large deviation type estimates

The following estimates play a crucial role to establish the sample path large de-
viation principle for hN under µa,b,ε

N , µa,b,ε,+
N , µa,F,ε

N and µa,F,ε,+
N , cf. Section 4 of [1]. In

fact, the proof of the large deviation principle can be reduced to the following rough
large deviation estimates under the 0-boundary conditions (i.e., a = b = 0).

Proposition 2.1. For every δ > 0, there exists C, c > 0 independent of N such
that

µε
N (‖hN‖∞ ≥ δ) ≤ Ce−cN

for µε
N = µ0,0,ε

N , µ0,0,ε,+
N , µ0,F,ε

N and µ0,F,ε,+
N .

We give two different proofs of this proposition. Section 2.1, based on a stochastic
domination for Euclidean norms, is for two measures µ0,0,ε

N and µ0,F,ε
N , i.e., under the

absence of a wall; also based on a stochastic domination, [1] covered all four measures
by viewing conditional distributions. The method of Section 2.2, based on a renewal
theory and announced in Remark 4.1-(2) of [1], is applicable to all four measures.
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§ 2.1. Proof based on a stochastic domination

Let R : (Rd)DN → (R+)DN be a mapping defined by Rφ = x with x = (xi =
|φi|)i∈DN

for φ = (φi)i∈DN
. The space (R+)DN is equipped with a natural partial order

x ≤ y for x = (xi)i∈DN and y = (yi)i∈DN defined by xi ≤ yi for every i ∈ DN . For two
probability measures ν1 and ν2 on (R+)DN , we say that ν2 stochastically dominates ν1

(written as ν1 ≤ ν2) if Eν1 [F ] ≤ Eν2 [F ] holds for all bounded non-decreasing functions
F on (R+)DN .

Lemma 2.1. We have the stochastic dominations:

µ0,0,ε
N ◦ R−1 < µ0,0

N ◦ R−1,

µ0,F,ε
N ◦ R−1 < µ0,F

N ◦ R−1.

Proof. Since x = (xi)i∈DN
is a d-dimensional Bessel process viewed at integer

times under µ0,F
N ◦R−1, it enjoys the FKG inequality; see Proposition 5.6 of [5]. However,

the probability measure µ0,F,ε
N ◦R−1 is given by the weak limit of a sequence of certain

probability measures {νk}k∈N having non-increasing densities with respect to µ0,F
N ◦R−1.

Therefore, the FKG inequality for µ0,F
N ◦ R−1 implies the stochastic domination νk <

µ0,F
N ◦R−1 for every k, and this concludes µ0,F,ε

N ◦R−1 < µ0,F
N ◦R−1 by taking the limit

k → ∞.
On the other hand, the density of µ0,0

N ◦R−1 satisfies the so-called Holley’s condition
(since we may only consider the density of the joint distributions of the d-dimensional
Bessel processes at integer times under the condition xN = 0) and thus the FKG
inequality holds for µ0,0

N ◦ R−1. The rest of the proof for µ0,0,ε
N ◦ R−1 < µ0,0

N ◦ R−1 is
similar.

Proof of Proposition 2.1 for µ0,0,ε
N and µ0,F,ε

N . The proof for µ0,0,ε
N is immediate:

µ0,0,ε
N (‖hN‖∞ ≥ δ) ≤ µ0,0

N (‖hN‖∞ ≥ δ) ≤ Ce−cN ,

where we have applied Lemma 2.1 for the first inequality and then the standard large
deviation principle for µ0,0

N , under which φ is a Brownian bridge viewed at integer times.
The proof for µ0,F,ε

N is similar.

§ 2.2. Proof based on a renewal theory

We give the proof only for µ0,0,ε
N and µ0,0,ε,+

N , the case where the Markov chains are
pinned at N , since the free case can be discussed in a parallel way.

2.2.1. The pinned case without a wall
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For δ > 0 and ε ≥ 0, set

pε
n(δ) =

Z0,0,ε
n

Z0,0
n

µ0,0,ε
n (‖hn‖∞ ≥ δ).

Then, by expanding the measure as in the proof of Lemma 2.1 (or (3.3)) of [1], we have

pε
n(δ) =µ0,0

n (‖hn‖∞ ≥ δ)

+
n−1∑
i=1

ε
Z0,0

i Z0,0,ε
n−i

Z0,0
n

µ0,0
i (‖hn‖∞,[0,i/n] ≥ δ)µ0,0,ε

n−i (‖hn‖∞,[i/n,1] ≥ δ)

=p0
n(δ) +

n−1∑
i=1

εZ0,0
i,n−ip

0
i (nδ/i)pε

n−i(nδ/(n − i)),

where

Z0,0
i,n−i ≡

Z0,0
i Z0,0

n−i

Z0,0
n

=
(2πn)d/2

(2πi)d/2(2π(n − i))d/2
.

The last line for pε
n(δ) and the last identity for Z0,0

i,n−i follow from {‖hn‖∞,[0,i/n] ≥
δ} = {‖hi‖∞ ≥ nδ/i}, {‖hn‖∞,[i/n,1] ≥ δ} = {‖hn−i‖∞ ≥ nδ/(n − i)} and Z0,0

n =
(2π)dn/2/(2πn)d/2, respectively. Since p0

i (nδ/i) ≤ p0
i (δ) and pε

n−i(nδ/(n−i)) ≤ pε
n−i(δ),

the above calculation leads to the inequality:

un ≤ bn +
n∑

i=0

aiun−i, n ≥ 0,

for three sequences {un ≡ un(x; ε), an ≡ an(x; ε), bn ≡ bn(x)}∞n=0 defined by

un =
xn

(2πn)d/2
pε

n(δ),

bn =
xn

(2πn)d/2
p0

n(δ)
(

= un(x; 0)
)
,

an =
εxn

(2πn)d/2
p0

n(δ)
(

= εbn

)
,

for n ≥ 1 and u0 = a0 = b0 = 0, respectively, where x ≥ 0.
Compared with the solution {vn ≡ vn(x; ε)}∞n=0 of the renewal equation:

vn = bn +
n∑

i=0

aivn−i, n ≥ 0,(2.1)

it is immediate to see that 0 ≤ un ≤ vn by induction, since the coefficients ai are
non-negative.
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To find the asymptotic behavior of vn(x; ε) as n → ∞, define an increasing function
f(x) for x ≥ 0 by

f(x) =
∞∑

n=1

xn

(2πn)d/2
µ0,0

n (‖hn‖∞ ≥ δ)

(
≡

∞∑
n=1

bn(x)

)
.

Then we have the following lemma.

Lemma 2.2. (1) Let x∗ be the radius of convergence of f . Then x∗ > 1.
(2) For ε > 1/f(x∗−)

(
∈ [0,∞)

)
, we have

lim
n→∞

vn(x̄ε; ε) =
1

ε2x̄εf ′(x̄ε)
(> 0),

where x̄ε ∈ (0, x∗) is the unique solution of f(x) = 1/ε.
(3) If f(x∗−) < ∞ and 0 < ε ≤ 1/f(x∗−), the sequence {vn(x∗ − δ; ε) > 0}n∈N is
bounded for every δ ∈ (0, x∗).

Proof. The assertion (1) follows from the fact that µ0,0
n (‖hn‖∞ ≥ δ) decays expo-

nentially fast in n. For (2), since
∑∞

n=0 an(x̄ε; ε) = 1 under the choice of x = x̄ε, the
renewal theory (Chapter XIII of [2]) shows that

vn ∼
∑∞

n=0 bn∑∞
n=0 nan

=
1

ε2x̄εf ′(x̄ε)
,

as n → ∞, where ∼ means that the ratio of both sides tends to 1. The assertion (3)
follows again by applying the renewal theory to vn(x∗ − δ; ε) noting that

∑∞
n=0 an(x∗ −

δ; ε) = εf(x∗ − δ) < 1.

Let g be the function defined by

g(x) =
∞∑

n=1

xn

(2πn)d/2
,

for x ≥ 0. It is shown in [1] that the free energy ξε is given by ξε = − log xε, where
xε ∈ (0, 1] is the unique solution of g(x) = 1/ε for ε > εc := 1/g(1−) and xε = 1 for
0 < ε ≤ εc. Since 0 < f(x) < g(x) for x > 0 (as long as f(x) < ∞), choosing x̄ε ∈ (0, x∗)
as in Lemma 2.2 for ε > 1/f(x∗−) and x̄ε ∈ (1, x∗) arbitrarily for ε ≤ 1/f(x∗−) (if
f(x∗−) < ∞), we have

0 < xε < x̄ε(2.2)

for all ε > 0. Under the choice of x = x̄ε, we have

µ0,0,ε
n (‖hn‖∞ ≥ δ) = (2πn)d/2(x̄ε)−nun(x̄ε; ε)

(
Z0,0,ε

n

Z0,0
n

)−1

,
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and therefore

lim sup
n→∞

1
n

log µ0,0,ε
n (‖hn‖∞ ≥ δ)

≤ − log x̄ε + lim sup
n→∞

1
n

log vn(x̄ε; ε) − ξε

≤ log xε − log x̄ε < 0,

from Lemma 2.2 and (2.2). This completes the proof of Proposition 2.1 for µ0,0,ε
N .

2.2.2. The pinned case with a wall
For δ > 0 and ε ≥ 0, set

pε,+
n (δ) =

Z0,0,ε,+
n

Z0,0,+
n

µ0,0,ε,+
n (‖hn‖∞ ≥ δ).

Then, an identity similar to that for pε
n(δ) holds for pε,+

n (δ) by replacing Z0,0
i,n−i with

Z0,0,+
i,n−i ≡

Z0,0,+
i Z0,0,+

n−i

Z0,0,+
n

.

Since Z0,0,+
n = Z0,0

n /n, this proves

u+
n ≤ b+

n +
n∑

i=0

a+
i u+

n−i, n ≥ 0,

for three sequences {u+
n ≡ u+

n (x; ε), a+
n ≡ a+

n (x; ε), b+
n ≡ b+

n (x)}∞n=0 defined by

u+
n =

xn

n(2πn)d/2
pε,+

n (δ),

b+
n = u+

n (x; 0),

a+
n = εb+

n ,

for n ≥ 1 and u+
0 = a+

0 = b+
0 = 0, respectively, where x ≥ 0. We define two increasing

functions f+(x) and g+(x) for x ≥ 0 by

f+(x) =
∞∑

n=1

xn

n(2πn)d/2
µ0,0,+

n (‖hn‖∞ ≥ δ)

(
≡

∞∑
n=1

b+
n (x)

)
,

g+(x) =
∞∑

n=1

xn

n(2πn)d/2
.

It is shown in [1] that the free energy ξε,+ is given by ξε,+ = − log xε,+, where xε,+ ∈
(0, 1] is the unique solution of g+(x) = 1/ε for ε > ε+c := 1/g+(1) and xε,+ = 1 for
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0 < ε ≤ ε+c . Since 0 < f+(x) < g+(x) for x > 0 (as long as f+(x) < ∞), the rest of the
proof of Proposition 2.1 for µ0,0,ε,+

N is similar to Section 2.2.1.

2.2.3. Further application of the renewal theory
As another application of the renewal theory, we give the proof of the following

proposition. This proposition is shown in [1] as a direct consequence of the precise
asymptotics for the ratios of partition functions, see Remark 2.1-(2) of [1]. In a sense,
we repeat the argument there from a slightly different view point.

Proposition 2.2. If ε > ε+c , we have that

µ0,0,ε
N (φi ∈ Rd

+ for all i ∈ DN ) ∼ Ce−N(ξε−ξε,+),

as N → ∞, where C = xεg′(xε)/g(xε,+).

Proof. As in Section 2.2.1, we have

qε
n = q0

n +
n−1∑
i=1

εZ0,0
i,n−iq

0
i qε

n−i,

for

qε
n =

Z0,0,ε
n

Z0,0
n

µ0,0,ε
n (φi ∈ Rd

+ for all i ∈ Dn).

Therefore, three sequences {vn ≡ vn(x; ε), an ≡ an(x; ε), bn ≡ bn(x)}∞n=0 defined by

vn =
xn

(2πn)d/2
qε
n,

bn = vn(x; 0),

an = εbn,

with v0 = a0 = b0 = 0 fulfill the renewal equation (2.1), where x ≥ 0. Since

q0
n = µ0,0

n (φi ∈ Rd
+ for all i ∈ Dn) =

1
n

,

we see that
∞∑

n=1

an = ε

∞∑
n=1

xn

n(2πn)d/2
= εg+(x) = 1

under the choice of x = xε,+ = e−ξε,+
. Thus, the renewal theory implies that

vn ∼ 1
ε2xε,+(g+)′(xε,+)

=
1

ε2g(xε,+)
,
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as n → ∞. The conclusion follows from

Z0,0,ε
n

Z0,0
n

∼ (2πn)d/2

ε2xεg′(xε)
enξε

,

which is shown in Proposition 2.2 of [1].

§ 3. Pinning model in a random environment

Finally in this section, we propose a model of Gaussian random walks perturbed
by an attractive force toward a subspace of Rd, which is chosen randomly at every time
i. The model is stated for the free case, but the pinned case can be discussed similarly.
Related random polymer models are studied in Giacomin [6], for instance, see case A
in Section 1.1 of [6].

Let ε = (εα)d
α=1 ∈ (0,∞)d be given; ε represents the direction-dependent strength

of the pinning. Set

ε(a) =
∏
α∈a

εα and ρa(dx) =
∏
α∈a

δ0(dxα)
∏
β /∈a

dxβ ,

for a ∈ Ω̄ and x = (xα)d
α=1 ∈ Rd, where Ω̄ = {a; non-empty subsets of {1, . . . , d}}. The

measure ρa on Rd is concentrated on its subspace:

Ma = {x ∈ Rd; xα = 0 for α ∈ a}.

Let p be an arbitrary probability measure on Ω̄ such that p(a) > 0 for each a ∈ Ω̄. We
denote Ω = Ω̄DN .

Definition 3.1. We define a (quenched) pinning model in an environment ω =
(a1, . . . , aN ) ∈ Ω by

µa,F,ω
N (dφ) =

1

Za,F,ω
N

e−HN (φ)δaN (dφ0)
N∏

i=1

(
ε(ai)
p(ai)

ρai(dφi) + dφi

)
,

where a ∈ Rd and Za,F,ω
N is the normalizing constant.

Under µa,F,ω
N , the pinning occurs randomly in i to the subspace Mai with the

strength ε(ai)/p(ai). Denoting a = (aα)d
α=1 ∈ Rd, let us consider the distribution

µaα,F,εα

N on RDN of the one-dimensional Markov chains defined by (1.1) for each 1 ≤
α ≤ d. We then define the distribution on (Rd)DN by the product

µa,F,ε
N (dφ) =

d∏
α=1

µaα,F,εα

N (dφα).
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Proposition 3.1. We have that

µa,F,ε
N (dφ) = E[Zωµa,F,ω

N (dφ)],

where E stands for the expectation on the probability space (Ω, p⊗N ), Zω = Za,F,ω
N /Za,F,ε

N

and Za,F,ε
N =

∏d
α=1 Zaα,F,εα

N .

Proof. Rewrite µa,F,ε
N as

µa,F,ε
N (dφ) =

1

Za,F,ε
N

e−HN (φ)δaN (dφ0)
N∏

i=1

d∏
α=1

(
εαδ0(dφα

i ) + dφα
i

)
,

and expand the measure as

d∏
α=1

(
εαδ0(dxα) + dxα

)
=

∑
a′⊂{1,... ,d}

ε(a′)ρa′(dx)

=
∑
a6=∅

ε(a)ρa(dx) + dx

=
∑
a∈Ω̄

(
ε(a)ρa(dx) + p(a)dx

)
,

for x = (xα)d
α=1 ∈ Rd, where ε(∅) = 1 and ρ∅(dx) = dx. Thus, we have

µa,F,ε
N (dφ) =

1

Za,F,ε
N

e−HN (φ)δaN (dφ0)
N∏

i=1

∑
ai∈Ω̄

(
ε(ai)ρai(dφi) + p(ai)dφi

)
=

1

Za,F,ε
N

∑
ω=(a1,... ,aN )∈Ω

(
N∏

i=1

p(ai)

)
e−HN (φ)

× δaN (dφ0)
N∏

i=1

(
ε(ai)
p(ai)

ρai(dφi) + dφi

)

=E

[
Za,F,ω

N

Za,F,ε
N

µa,F,ω
N (dφ)

]
.

This concludes the proof.

An asymptotic behavior of hN under the annealed measure µa,F,ε
N is not difficulty

to study. In fact, since it is a product measure, the large deviation principle holds for
hN ∈ C under µa,F,ε

N and the corresponding unnormalized rate functional is given by

Σ(h) =
1
2

∫
D

|ḣ(t)|2 dt −
d∑

α=1

ξεα∣∣{t ∈ D;hα(t) = 0}
∣∣.
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