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RIMS Kôkyûroku Bessatsu B6
(2008), 111–128

Reflecting Ornstein-Uhlenbeck processes

on pinned path spaces

By

Masanori Hino∗ and Hiroto Uchida∗∗

Abstract

Consider a set of continuous maps from the interval [0, 1] to a domain in Rd. Although

the topological boundary of this set in the path space is not smooth in general, by using the

theory of functions of bounded variation (BV functions) on the Wiener space and the theory of

Dirichlet forms, we can discuss the existence of the surface measure and the Skorokhod repre-

sentation of the reflecting Ornstein-Uhlenbeck process associated with the canonical Dirichlet

form on this set.

§ 1. Introduction

In [7], Hariya obtained an integration by parts formula on a subset of the pinned
path space on Rd, which is a partial generalization of the work by Zambotti [12]. To
state it more precisely, let Ω be a bounded domain in Rd. We assume that the boundary
of Ω is sufficiently smooth. Take a, b ∈ Ω and define the path spaces as follows:

Wa,b = {w ∈ C([0, 1] → Rd) | w(0) = a, w(1) = b},
WΩ

a,b = {w ∈ C([0, 1] → Ω) | w(0) = a, w(1) = b},

H0 =

{
h ∈ C([0, 1] → Rd)

∣∣∣∣∣ h(0) = h(1) = 0, h is absolutely continuous
and

∫ 1

0
|ḣ(s)|2Rd ds < ∞

}
.

We regard WΩ
a,b as a subset of Wa,b. The topological boundary ∂WΩ

a,b of WΩ
a,b with

respect to the uniform topology is given by

∂WΩ
a,b =

{
w ∈ Wa,b

∣∣∣∣∣w(t) ∈ Ω for every t ∈ [0, 1] and
w(s) ∈ ∂Ω for some s ∈ (0, 1)

}
,
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where Ω and ∂Ω denote the closure and the boundary of Ω in Rd, respectively. We
define a subset ∂′WΩ

a,b of ∂WΩ
a,b by

∂′WΩ
a,b = {w ∈ ∂WΩ

a,b | there exists a unique s ∈ (0, 1) such that w(s) ∈ ∂Ω}.

Let µa,b be the pinned Wiener measure on Wa,b. For a smooth cylindrical function F

on Wa,b and h ∈ H0, Hariya [7] proved the identity∫
WΩ

a,b

∂hF (w)µa,b(dw) =
∫

WΩ
a,b

F (w)〈h,w〉µa,b(dw) + (BC),(1.1)

where ∂h is the partial derivative along the direction of h, 〈h,w〉 denotes the Wiener
integral

∫ 1

0
h(s) dw(s), and (BC) is the “boundary contribution,” which is expressed as

an integral over ∂WΩ
a,b. The explicit expression of (BC) is provided in [7]. In this study,

we provide only the following remarks on (BC).

(a) The mass of the measure on ∂WΩ
a,b appearing in the integral representation of (BC)

concentrates on ∂′WΩ
a,b.

(b) The integrand in (BC) contains the normal derivatives of the heat kernel density
on Ω at ∂Ω with the Dirichlet boundary condition.

The integration by parts formula (1.1) implies that the indicator function 1WΩ
a,b

of WΩ
a,b

is a BV function, and we can construct the reflecting Ornstein-Uhlenbeck process on
WΩ

a,b with the Skorokhod representation (cf. Section 2 below). On the other hand,
property (b) above imposes on the strong regularity of Ω since we cannot expect the
normal derivatives of the heat kernel density to exist at the boundary if ∂Ω is not very
smooth. If we are only interested in the probabilistic aspect, it is sufficient to prove that
1WΩ

a,b
is a BV function; in other words, even if we do not know the explicit expression of

(BC), only proving the validity of the integration by parts is sufficient. This is expected
to be done under a milder assumption on Ω since such a claim can be proved only by a
series of inequalities and not by equalities. This is the objective of this paper.

In this paper, we introduce the concept of the uniform exterior ball condition for Ω,
which allows some singularity at ∂Ω, and prove that 1WΩ

a,b
is a BV function under such a

condition. Based on this, we can construct the reflecting Ornstein-Uhlenbeck process on
the closure of WΩ

a,b and prove its Skorokhod representation. Further, we prove that the
mass of the measure on ∂WΩ

a,b appearing in the Skorokhod representation concentrates
on ∂′WΩ

a,b, which is consistent with property (a) above. The proof is based on the
quantitative estimates of Brownian motion on Rd, and the method is different from
that used in [7]. We expect that our method is sufficiently flexible to discuss more
general situations.
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This paper is organized as follows. In Section 2, we provide a framework and state
the main theorem. Some key estimates for the Brownian motion on Rd are proved in
Section 3. These estimates are obtained by reducing them to a few detailed estimates of
a one-dimensional Brownian motion with a constant drift. The main theorem is proved
in Section 4. In the last section, we provide a few remarks.

§ 2. Framework and the main result

First, we recall the concept of the BV functions on the Wiener space, according to
[5]. Let (E,H, µ) be an abstract Wiener space, that is, E is a separable Banach space,
H is a separable Hilbert space densely and continuously embedded in E, and µ is a
Gaussian measure on E that satisfies the condition∫

E

exp
(√

−1 l(z)
)
µ(dz) = exp

(
−|l|2H/2

)
, l ∈ E∗.

Here, ∗ denotes the topological dual and we use natural inclusions and an identification
E∗ ⊂ H∗ ∼= H ⊂ E. When M is a separable Hilbert space, Lp(E → M) denotes the Lp-
space on E with respect to µ which consists of M -valued functions. When M = R, we
omit M from the notation. Let C1

b (Rm) be the set of all bounded continuous functions f

on Rm such that all the first-order partial derivatives of f are bounded and continuous.
Define

FC1
b =

{
u : E → R

∣∣∣∣∣ u(z) = f(l1(z), . . . , lm(z)), l1, . . . , lm ∈ E∗,

f ∈ C1
b (Rm) for some m ∈ N

}
,

(FC1
b )E∗ =

{
G : E → E∗

∣∣∣∣∣ G(z) =
∑m

i=1 ui(z)li, l1, . . . , lm ∈ E∗,

u1, . . . , um ∈ FC1
b for some m ∈ N

}
.

For u ∈ FC1
b , an H-valued function ∇u on E is given by the following identity:

〈∇u(z), l〉H = lim
ε→0

(u(z + εl) − u(z))/ε, l ∈ E∗ ⊂ H, z ∈ E.

Let ∇∗ be a (formal) adjoint operator of ∇, which is defined by the following relation:

〈∇∗G, u〉L2(E) = 〈G,∇u〉L2(E→H), u ∈ FC1
b .

We define the set of BV functions on E as

BV (E) =

ρ : E → R

∣∣∣∣∣∣∣
∫

E
|ρ|max{0, log |ρ|}1/2 dµ < ∞ and there exists

C ≥ 0 such that
∣∣∫

E
(∇∗G)ρ dµ

∣∣ ≤ C‖|G|H‖L∞(E)

for all G ∈ (FC1
b )E∗

 .

We shall now revisit several properties of BV functions on E.
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Theorem 2.1 (([5, Theorems 3.7, 3.9])). For ρ ∈ L1(E), the following are equiv-
alent conditions.

(1) ρ ∈ BV (E).

(2) There exists a sequence {ρn} in D1,1 := FC1
b

‖∇·‖L1(E→H)+‖·‖L1(E) such that ρn con-
verges to ρ in L1(E) and ‖∇ρn‖L1(E→H) is bounded in n.

(3) (Integration by parts formula) There exist, a finite Borel measure ν and an H-valued
function σ on E such that |σ|H = 1 ν-a.e. and∫

E

(∇∗G)ρ dµ =
∫

E

〈G, σ〉H dν, G ∈ (FC1
b )E∗ .

Theorem 2.2 (([5, Theorem 4.2])). Let ρ ∈ BV (E) and assume ρ ≥ 0 µ-a.e.
Let S be the support of the measure ρ dµ. Define a bilinear form on L2(S, ρ dµ) by

E(f, g) =
1
2

∫
S

〈∇f,∇g〉Hρ dµ, f, g ∈ FC1
b .

Assume that (E ,FC1
b ) is closable on L2(S, ρ dµ). Then, its closure (E ,F) is a quasi-

regular, local, and conservative Dirichlet form on L2(S, ρ dµ), and the following Sko-
rokhod representation holds:

Xt = X0 + Bt −
1
2

∫ t

0

Xs ds +
1
2

∫ t

0

σ(Xs) dAs, t ≥ 0, Pw-a.e. for q.e. w.(2.1)

Here, (Xt, Pw) is a diffusion process on S associated with (E ,F), {Bt} is an E-valued
Brownian motion starting at 0, {At} is an additive functional in Revuz correspondence
with ν, and ν and σ are provided in Theorem 2.1 (3).

Note that ν above is smooth with respect to the (E ,F) from [5, Theorem 3.9], which
justifies the consideration of the Revuz correspondence of ν. When ρ is an indicator
function, we term {Xt} a reflecting Ornstein-Uhlenbeck process on S. In such a case,
the measure ν can be regarded as a surface measure of S.

Theorem 2.3 (([5, Theorem 3.15])). Under the conditions described in Theo-
rem 2.2, if moreover ρ is an indicator function of a set U , then the mass of ν concen-
trates on the topological boundary of U .

We remark that the original assertion of Theorem 3.15 in [5] provides more detailed
information on the support of ν.

For t > 0, x, y ∈ Rd, we define

pt(x, y) = (2πt)−d/2 exp
(
−
|x − y|2Rd

2t

)
.
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Fix a, b ∈ Rd, and let Wa,b and H0 as defined in Section 1. The pinned Wiener measure
µa,b on Wa,b is a Borel probability measure such that for 0 = t0 < t1 < · · · < tN+1 = 1
and Borel sets A1, . . . , AN of Rd,

µa,b[w ∈ Wa,b | wti − wti−1 ∈ Ai, i = 1, . . . , N ]

= p1(a, b)−1

∫
· · ·
∫

A1×···×AN

N+1∏
i=1

pti−ti−1(xi−1, xi) dx1 · · · dxN ,

where x0 = a and xN+1 = b. Then, (W0,0,H0, µ0,0) is an abstract Wiener space. When
(a, b) 6= (0, 0), Wa,b is not a linear space. However, Wa,b is isomorphic to W0,0 as an
affine space according to the shift map

λa,b : Wa,b 3 w 7→ w − ha,b ∈ W0,0,

where ha,b(t) = a + (b − a)t, t ∈ [0, 1], and (Wa,b, µa,b) is isomorphic to (W0,0, µ0,0) as
a measure space according to the map λa,b. Therefore, by pushing everything forward
to (W0,0, µ0,0), we can define the concepts of FC1

b , ∇, the BV space BV (Wa,b) etc.,
on (Wa,b,H0, µa,b). Furthermore, Theorems 2.1, 2.2, and 2.3 are valid on this space by
appropriate modification.

Let Ω be a domain of Rd. We do not assume that Ω is bounded, but assume
Ω 6= Rd. For x ∈ Rd and r > 0, B(x, r) denotes the closed ball in Rd with center x and
radius r.

Definition 2.1. We state that Ω satisfies the uniform exterior ball condition
if there exists δ > 0 such that for every y ∈ ∂Ω, there exists z ∈ Rd \ Ω satisfying
B(z, δ) ∩ Ω = {y}.

For example, bounded domains with boundaries in the C2-class and convex domains
satisfy the uniform exterior ball conditions. It may be said that this condition allows
outward cusps, but not inward cusps.

We consider WΩ
a,b, ∂WΩ

a,b, and ∂′WΩ
a,b as defined in Section 1. Let WΩ

a,b = WΩ
a,b ∪

∂WΩ
a,b. The main theorem in this paper is as follows.

Theorem 2.4. Assume that Ω satisfies the uniform exterior ball condition. Then,
1

WΩ
a,b

∈ BV (Wa,b). Further, the bilinear form (E ′,FC1
b ) on L2(WΩ

a,b, µa,b|WΩ
a,b

) defined

by

E ′(f, g) =
1
2

∫
WΩ

a,b

〈∇f,∇g〉H0 dµa,b, f, g ∈ FC1
b

is closable, and its closure (E ′,F ′) is a quasi-regular, local, and conservative Dirich-
let form. Moreover, when (X ′

t, P
′
w) denotes the diffusion process on WΩ

a,b associated
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with (E ′,F ′), (Xt, Pw) := (λa,b(X ′
t), P

′
λ−1

a,b(w)
◦ λ−1

a,b) satisfies the Skorokhod representa-

tion (2.1) with (E,H, µ) = (W0,0,H0, µ0,0) and ρ = 1
λa,b

�
WΩ

a,b

�. Furthermore, ∂WΩ
a,b \

∂′WΩ
a,b has a null capacity that is associated with (E ′,F ′). In particular, the mass of the

measure ν that corresponds to ρ in Theorem 2.1 (3) concentrates on λa,b(∂′WΩ
a,b).

§ 3. Some estimates for (pinned) Brownian motion

Subsequently, Ci denotes an insignificant positive constant and a domain Ω in Rd

is assumed to satisfy the uniform exterior ball condition.
We define a Lipschitz function q on Rd by

q(x) = inf
y∈Rd\Ω

|x − y|Rd − inf
y∈Ω

|x − y|Rd .

For r ≥ 0, set Ωr = {x ∈ Rd | q(x) > r}. Note that Ω0 = Ω and {q(x) ≥ 0} = Ω.
Let W = C([0,∞) → Rd). Let {P̂x}x∈Rd be the probability measures on W such

that the coordinate process {ωt}t≥0 is a d-dimensional Brownian motion starting at
x under P̂x for each x ∈ Rd. For t ≥ 0, let F̂t be a σ-field generated by {{ωs ∈
D}; s ∈ [0, t], D is a Borel set of Rd}. Then, {F̂t} is a minimal filtration to which {ωt}
is adapted on the canonical measurable space (W, F̂∞). For an {F̂t}-stopping time τ ,
define F̂τ = {A ∈ F̂∞ | A ∩ {τ ≤ t} ∈ F̂t for all t ≥ 0}. We denote the integral with
respect to P̂x by Êx. The shift operator θs : W → W is defined by (θsω)t = ωs+t, t ≥ 0.

Lemma 3.1. Let x ∈ Ω. Choose y ∈ ∂Ω and z ∈ Rd\Ω such that q(x) = |x−y|Rd

and B(z, δ)∩Ω = {y}, where δ is provided in Definition 2.1. Let K = (d− 1)/(2δ) and
Rt = |ωt − z|Rd for ω = {ωt} ∈ W . Then, for each u > 0,

{Rt ≥ δ for all t ∈ [0, u]} ⊂ {Rt ≤ q(x) + δ + Kt + St for all t ∈ [0, u]}

up to a P̂x-null set. Here, St is a one-dimensional Brownian motion under P̂x starting
at 0 that is defined by

St(ω) =
d∑

i=1

∫ t

0

ω
(i)
s − z(i)

Rs
dω(i)

s , ωs = (ω(1)
s , . . . , ω(d)

s ), z = (z(1), . . . , z(d)).

Proof. Define an {F̂t}-stopping time σ by σ = inf{t ≥ 0 | Rt = 0}. Note that
R0 = |x − z|Rd = q(x) + δ P̂x-a.e. By virtue of Itô’s formula,

Rt = q(x) + δ +
∫ t

0

d − 1
2Rs

ds + St on {t < σ} P̂x-a.e.

Therefore, the assertion holds.
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Proposition 3.1. There exists C1 > 0 such that for every u > 0 and x ∈ Ω,

P̂x

[
inf

t∈[0,u]
q(ωt) ≥ 0

]
≤ C1(1 + u−1/2)q(x).

Proof. We retain the notations in Lemma 3.1, from which

P̂x [Rt ≥ δ for all t ∈ [0, u]] ≤ P̂x [q(x) + δ + Kt + St ≥ δ for all t ∈ [0, u]] .

Let r > q(x) and define η = inf{t ≥ 0 | Kt + St ≤ −r}. The law of η under P̂x is given
by

P̂x[η ∈ dt] = 1(0,∞)(t)
r√
2πt3

exp
(
− (r + Kt)2

2t

)
dt + (1 − exp(−2Kr))δ∞(dt),

where δ∞ is a delta measure at ∞. (See, e.g., [2, p. 295].) Then, we have

P̂x

[
inf

t∈[0,u]
q(ωt) ≥ 0

]
≤ P̂x [Rt ≥ δ for all t ∈ [0, u]] ≤ P̂x[η > u]

=
∫ ∞

u

r√
2πt3

exp
(
− (r + Kt)2

2t

)
dt + 1 − exp(−2Kr)

≤
∫ ∞

u

r√
2πt3

dt + 2Kr =

√
2
π

r√
u

+ 2Kr.

Letting r → q(x), we obtain the desired inequality.

For r > 0, define an {F̂t}-stopping time τr by τr = inf{t ≥ 0 | ωt 6∈ Ωr}. Let P̂ r
x

be the law of τr under P̂x.

Lemma 3.2. P̂ r
x ([0, t]) is differentiable in t on (0,∞) and there exists a constant

C2 > 0 such that d
dt P̂

r
x ([0, t]) ≤ C2t

−1. The constant C2 is taken independently of x, r

and t.

Proof. It is sufficient to consider the case that x ∈ Ωr. Let pr
t (·, ·) be the transition

density of the Brownian motion of Ωr killed at ∂Ωr. Then,

P̂ r
x ([0, t]) = P̂x[τr ≤ t] = 1 −

∫
Ωr

pr
t (x, z) dz

= 1 −
∫∫

Ωr×Ωr

pr
s(x, y)pr

t−s(y, z) dy dz

for 0 < s < t. From [10, Theorem 6.17], pr
t−s(y, z) is differentiable in t on (s,∞) for a.e.
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(y, z) and the following estimate holds:

d

dt
P̂ r

x ([0, t]) ≤
∫∫

Ωr×Ωr

pr
s(x, y)

∣∣∣∣ ∂

∂t
pr

t−s(y, z)
∣∣∣∣ dy dz

≤ C3

∫∫
Ωr×Ωr

pr
s(x, y)(t − s)−d/2−1 exp

(
−

C4|y − z|2Rd

t − s

)
dy dz

≤ C5(t − s)−1

∫
Ωr

pr
s(x, y) dy ≤ C5(t − s)−1,

where C3, C4 and C5 are taken independently of x, r, s and t. By letting s = t/2, we
complete the proof.

Proposition 3.2. There exists C6 > 0 such that for all u > 0, r > 0, and x ∈ Ω,

P̂x

[
0 ≤ inf

t∈[0,u]
q(ωt) ≤ r

]
≤ C6(1 + u−1/2)r.

Proof. First, let x ∈ Ω \Ωr. From Proposition 3.1 and the fact that 0 < q(x) ≤ r,

P̂x

[
0 ≤ inf

t∈[0,u]
q(ωt) ≤ r

]
≤ C1(1 + u−1/2)q(x) ≤ C1(1 + u−1/2)r.

Next, let x ∈ Ωr. Then,

P̂x

[
0 ≤ inf

t∈[0,u]
q(ωt) ≤ r

]
= P̂x

[
τr ≤ u, 0 ≤ inf

t∈[τr,u]
q(ωt)

]
= P̂x

[
τr ≤ u, 0 ≤ inf

t∈[0,u−τr]
q((θτrω)t)

]
=

∞∑
k=1

P̂x

[
2−ku < u − τr ≤ 2−k+1u, 0 ≤ inf

t∈[0,u−τr ]
q((θτrω)t)

]

≤
∞∑

k=1

P̂x

[
2−ku < u − τr ≤ 2−k+1u, 0 ≤ inf

t∈[0,2−ku]
q((θτrω)t)

]
.

Here, we used P̂x[τr = u] = 0 in the third line, which follows from Lemma 3.2. From
the strong Markov property and Proposition 3.1,

P̂x

[
2−ku < u − τr ≤ 2−k+1u, 0 ≤ inf

t∈[0,2−ku]
q((θτrω)t)

∣∣∣∣ F̂τr

]
= 1{2−ku<u−τr≤2−k+1u} · P̂ωτr

[
0 ≤ inf

t∈[0,2−ku]
q(ωt)

]
≤ C11{2−ku<u−τr≤2−k+1u} · (1 + (2−ku)−1/2)r

≤ C11{2−ku<u−τr≤2−k+1u} · (1 + ((u − τr)/2)−1/2)r.
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Therefore,

P̂x

[
0 ≤ inf

t∈[0,u]
q(ωt) ≤ r

]
≤ C1rÊx[1 + ((u − τr)/2)−1/2; τr ≤ u]

≤ C1r

∫ u

0

(
1 +

(
u − s

2

)−1/2
)

P̂ r
x (ds)

≤ C1r(1 + (u/4)−1/2)P̂x[τr ≤ u/2] + C1r

∫ u

u/2

(
1 +

(
u − s

2

)−1/2
)

C2s
−1 ds

≤ C1r(1 + (u/4)−1/2) +
2C1C2r

u

∫ u

u/2

(
1 +

(
u − s

2

)−1/2
)

ds

≤ C6(1 + u−1/2)r.

Here, we used Lemma 3.2 in the third line. This completes the proof.

Let P̂a,b be a probability measure on W such that {ωt}t∈[0,1] is a pinned Brownian
motion under P̂a,b with ω0 = a and ω1 = b. The following lemma is proved by the
definition of P̂a,b and the monotone class theorem.

Lemma 3.3. For t ∈ [0, 1), A ∈ F̂t, and a Borel set D of Rd,

P̂a,b[A ∩ {ωt ∈ D}] ≤ P̂a[A ∩ {ωt ∈ D}] · sup
y∈D

p1−t(y, b)
p1(a, b)

.

Lemma 3.4. Let τ be an {F̂t}-stopping time and A ∈ F̂τ . Let D be an open set
of Rd. Then,

P̂a,b[{τ < 1} ∩ A ∩ {ωτ ∈ D}] ≤ P̂a[{τ < 1} ∩ A ∩ {ωτ ∈ D}] · sup
t∈(0,1], y∈D

pt(y, b)
p1(a, b)

.

Here, D is a closure of D in Rd.

Proof. Consider a sequence of {F̂t}-stopping times {τn} such that each τn takes
only finite values of {t(k)

n }k∈Λn and τn ↓ τ . Here, Λn is an index set consisting of finite
elements. Then,

{τ < 1} ∩ A ∩ {ωτ ∈ D} ⊂ lim inf
n→∞

({τn < 1} ∩ A ∩ {ωτn ∈ D})

⊂ lim sup
n→∞

({τn < 1} ∩ A ∩ {ωτn ∈ D})

⊂ {τ < 1} ∩ A ∩ {ωτ ∈ D}.
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For t ∈ [0, 1), {τn = t} ∩ A ∩ {ωτn ∈ D} ∈ F̂t. Therefore, from Lemma 3.3,

P̂a,b[{τn < 1} ∩ A ∩ {ωτn ∈ D}]

=
∑

k∈Λn, t
(k)
n <1

P̂a,b[{τn = t(k)
n } ∩ A ∩ {ωτn ∈ D}]

≤
∑

k∈Λn, t
(k)
n <1

P̂a[{τn = t(k)
n } ∩ A ∩ {ωτn ∈ D}] · sup

y∈D

p
1−t

(k)
n

(y, b)

p1(a, b)

≤
∑

k∈Λn, t
(k)
n <1

P̂a[{τn = t(k)
n } ∩ A ∩ {ωτn ∈ D}] · sup

t∈(0,1], y∈D

pt(y, b)
p1(a, b)

= P̂a[{τn < 1} ∩ A ∩ {ωτn
∈ D}] · sup

t∈(0,1], y∈D

pt(y, b)
p1(a, b)

.

By letting n → ∞, we complete the proof from Fatou’s lemma.

Denote the Borel σ-field on [0,∞) by B([0,∞)).

Lemma 3.5. Let τ be an {F̂t}-stopping time such that τ ≤ 1 and Γ ⊂ [0,∞)×W

an element in B([0,∞)) ⊗ F̂∞. Assume that

{τ < 1} ∩ {((1 − τ)/2, θτω) ∈ Γ} ∈ F̂(1+τ)/2.

Then, for a Borel set D of Rd,

P̂a,b[{τ < 1} ∩ {ωτ ∈ D} ∩ {((1 − τ)/2, θτω) ∈ Γ}]

≤ sup
x∈D

Êx

[
sup

s∈(0,1/2]

1Γ(s, ω) · s−d/2

]
exp(|a − b|2Rd/2).

Proof. Let c ∈ (0, 1). Then,

P̂a,b[{τ < 1} ∩ {ωτ ∈ D} ∩ {((1 − τ)/2, θτω) ∈ Γ}]

=
∞∑

k=0

P̂a,b[{ck+1 < 1 − τ ≤ ck} ∩ {ωτ ∈ D} ∩ {((1 − τ)/2, θτω) ∈ Γ}].

Since ck+1 < 1 − τ ≤ ck implies that τ < 1 − ck+1 and (1 + τ)/2 < 1 − ck+1/2, by
combining the assumption, the set in P̂a,b[ · · · ] belongs to F̂1−ck+1/2. From Lemma 3.3
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and the strong Markov property, the above equation is dominated by
∞∑

k=0

P̂a[{ck+1 < 1 − τ ≤ ck} ∩ {ωτ ∈ D} ∩ {((1 − τ)/2, θτω) ∈ Γ}]

· p1(a, b)−1(πck+1)−d/2

≤ Êa[1{τ<1}∩{ωτ∈D}∩{((1−τ)/2,θτ ω)∈Γ} · (π(1 − τ)c)−d/2] · p1(a, b)−1

≤ Êa

[
1{τ<1}∩{ωτ∈D} sup

s∈(0,1/2]

(
1Γ(s, θτω) · (2πsc)−d/2

)]
· p1(a, b)−1

= Êa

[
1{τ<1}∩{ωτ∈D}Êωτ

[
sup

s∈(0,1/2]

1Γ(s, ω) · (2πsc)−d/2

]]
· p1(a, b)−1

≤ sup
x∈D

Êx

[
sup

s∈(0,1/2]

1Γ(s, ω) · s−d/2

]
· c−d/2 exp(|a − b|2Rd/2).

By letting c → 1, we reach the conclusion.

Proposition 3.3. There exists C7 > 0 such that for every r > 0,

µa,b

[
w ∈ Wa,b

∣∣∣∣ 0 ≤ inf
t∈[0,1]

q(w(t)) ≤ r

]
≤ C7r.(3.1)

Proof. Let α = min{q(a), q(b)}/2. It is sufficient to prove that there exists C7 > 0
such that (3.1) holds for all r ∈ (0, α/3). Choose r ∈ (0, α/3) and let V = B(b, α) and
V ′ = B(b, α/2). Then,

µa,b

[
w ∈ Wa,b

∣∣∣∣ 0 ≤ inf
t∈[0,1]

q(w(t)) ≤ r

]
≤ P̂a,b[τr < 1 and ωt ∈ Ω \ V for all t ∈ [τr, (τr + 1)/2]]

+ P̂a,b

[
τr < 1, ωt ∈ V for some t ∈ [τr, (τr + 1)/2],
and ωt ∈ Ω for all t ∈ [τr, (τr + 1)/2]

]
=: I1 + I2.

For I1, Lemma 3.4 with τ = min{(τr + 1)/2, 1} implies

I1 = P̂a,b[τr < 1, ωt ∈ Ω \ V for all t ∈ [τr, τ ], and ωτ ∈ Rd \ V ′]

≤ P̂a[τr < 1, ωt ∈ Ω \ V for all t ∈ [τr, τ ]] · sup
t∈(0,1], y∈Rd\V ′

pt(y, b)
p1(a, b)

.

Now,

sup
t∈(0,1], y∈Rd\V ′

pt(y, b)
p1(a, b)

≤ p1(a, b)−1 sup
t∈(0,1]

(2πt)−d/2 exp
(
− (α/2)2

2t

)
≤ C8
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and

P̂a[τr < 1, ωt ∈ Ω \ V for all t ∈ [τr, τ ]]

≤ P̂a[τr < 1, (θτrω)t ∈ Ω for all t ∈ [0, (1 − τr)/2]]

≤
∞∑

k=1

P̂a[2−k < 1 − τr ≤ 2−k+1, (θτrω)t ∈ Ω for all t ∈ [0, 2−k−1]].

Since

P̂a[2−k < 1 − τr ≤ 2−k+1, (θτrω)t ∈ Ω for all t ∈ [0, 2−k−1] | F̂τr ]

= 1{2−k<1−τr≤2−k+1} · P̂ωτr
[ωt ∈ Ω for all t ∈ [0, 2−k−1]]

≤ 1{2−k<1−τr≤2−k+1} · C1(1 + 2(k+1)/2)r

≤ 1{2−k<1−τr≤2−k+1} · C1(1 + 2(1 − τr)−1/2)r

from the strong Markov property and Proposition 3.1,

I1 ≤ C8C1rÊa[1{τr<1} · (1 + 2(1 − τr)−1/2)]

≤ C8C1r(1 + 2
√

2)P̂a[τr ≤ 1/2] + C8C1r

∫ 1

1/2

(1 + 2(1 − s)−1/2) · C2s
−1 ds

≤ C9r,

by virtue of Lemma 3.2.
We will estimate a value for I2. From Lemma 3.5 with τ = min{τr, 1}, D = ∂Ωr,

and

Γ =

{
(s, ω) ∈ [0,∞) × W

∣∣∣∣∣ ωt ∈ V for some t ∈ [0, s] and
ωt ∈ Ω for all t ∈ [0, s]

}
,

we obtain

I2 ≤ C10 sup
x∈∂Ωr

Êx

[
sup

s∈(0,1/2]

1Γ(s, ω) · s−d/2

]
.

By letting f(ω) = sups∈(0,1/2] 1Γ(s, ω) · s−d/2, we have

I2 ≤ C10 sup
x∈∂Ωr

Êx[f ] = C10 sup
x∈∂Ωr

∫ ∞

0

P̂x[f > u] du.(3.2)

Let x ∈ ∂Ωr, and define y, z, K, Rt, and St as in Lemma 3.1. We have |x − z|Rd =
δ + r ∈ (δ, δ + α) and |b − z|Rd ≥ δ + q(b) ≥ δ + 2α. Define the stopping times with
respect to the canonical augmentation of {F̂t} by {P̂x}x∈Rd as follows:

ρ = inf{t ≥ 0 | Rt /∈ [δ, δ + α)},
ρ′ = inf{t ≥ 0 | r + δ + Kt + St /∈ [δ, δ + α)}.
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Since ωt ∈ V implies Rt ≥ |b − z|Rd − α ≥ δ + α,

P̂x [f > u]

≤ P̂x[(s, ω) ∈ Γ for some s < u−2/d]

≤ P̂x[ρ < u−2/d and Rρ = δ + α]

≤ P̂x[ρ′ < u−2/d and r + δ + Kρ′ + Sρ′ = δ + α] (from Lemma 3.1)

≤ Êx[exp(1 − u2/dρ′); r + Kρ′ + Sρ′ = α]

= e1+K(α−r)sinh
(
r
√

2u2/d + K2
)/

sinh
(
α
√

2u2/d + K2
)

. (cf. [2, p. 309])

Since (v/4)ev/2 ≤ sinh v ≤ vev for v ≥ 0, the above term is dominated by

e1+K(α−r)r
√

2u2/d + K2 exp
(
r
√

2u2/d + K2
)

(α/4)
√

2u2/d + K2 exp
(
α
√

2u2/d + K2/2
)

= 4α−1e1+K(α−r)r exp
(
(r − α/2)

√
2u2/d + K2

)
≤ 4α−1e1+Kαr exp(−

√
2αu1/d/6).

Substituting this estimate into (3.2), we obtain I2 ≤ C11r. This completes the proof.

§ 4. Proof of Theorem 2.4

In this section, we prove Theorem 2.4. We retain the notations in the previous
sections. We will utilize the following theorem.

Theorem 4.1 (([3])). Let F be a measurable function on Wa,b and H0-Lipschitz;
in other words, there exists C > 0 such that

|F (w + h) − F (w)| ≤ C|h|H0 , w ∈ Wa,b, h ∈ H0.

Then, if
∫

Wa,b
F 2 dµa,b < ∞, F belongs to D1,2. Here, D1,2 is a first order L2-Sobolev

space on Wa,b that is defined as the completion of FC1
b with respect to the norm (‖∇ ·

‖2
L2(Wa,b→H0,µa,b)

+ ‖ · ‖2
L2(Wa,b,µa,b)

)1/2. Moreover, |∇F (ω)|H0 ≤ C µa,b-a.e.

From Proposition 3.3, for any r > 0,

µa,b

[
WΩ

a,b \ WΩ
a,b

]
= µa,b

[
inf

s∈[0,1]
q(w(s)) = 0

]
≤ C7r.

Therefore, µa,b

[
WΩ

a,b \ WΩ
a,b

]
= 0. By combining this with the remark in [4, p. 230],

the bilinear form (E ′,FC1
b ) is closable on L2(WΩ

a,b, µa,b|WΩ
a,b

), and the closure (E ′,F ′)
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is a quasi-regular, local, and conservative Dirichlet form. In particular, we obtain the
diffusion process (X ′

t, P
′
x) on WΩ

a,b associated with (E ′,F ′).
Next, we prove that 1

WΩ
a,b

∈ BV (Wa,b). Define F (w) = inft∈[0,1] q(w(t)) for w ∈
Wa,b. For n ∈ N, we define fn(s) = min{max{0, ns}, 1} for s ∈ R and ρn(w) =
fn (F (w)) for w ∈ Wa,b. Then, since WΩ

a,b = {F (w) > 0}, we obtain limn→∞ ρn = 1WΩ
a,b

µa,b-a.e. and in L1(Wa,b, µa,b). Therefore, from Theorem 2.1, it is sufficient to prove
supn ‖∇ρn‖L1(Wa,b→H0,µa,b) < ∞. We note that q(x) is a Lipschitz function on Rd with
Lipschitz constant 1; thus, we obtain the following estimate for w ∈ Wa,b and h ∈ H0

|F (w + h) − F (w)| =
∣∣∣∣ inf
t∈[0,1]

q(w(t) + h(t)) − inf
t∈[0,1]

q(w(t))
∣∣∣∣

≤ sup
t∈[0,1]

|q(w(t) + h(t)) − q(w(t))|

≤ sup
t∈[0,1]

|h(t)| ≤ |h|H0 .

Thus, F is H0-Lipschitz continuous. From Theorem 4.1, we deduce that F ∈ D1,2 and
|∇F |H0 ≤ 1 µa,b-a.e.

Now, we use the chain rule of H0-derivative to obtain

‖∇ρn‖L1(Wa,b→H0,µa,b) ≤
∥∥n1{0≤F≤1/n}|∇F |H0

∥∥
L1(Wa,b,µa,b)

≤ nµa,b

[
0 ≤ inf

t∈[0,1]
q(w(t)) ≤ 1

n

]
.

According to Proposition 3.3, supn ‖∇ρn‖L1(Wa,b→H0,µa,b) < ∞.
By virtue of Theorem 2.2, the process Xt := λa,b(X ′

t) satisfies the Skorokhod
equation (2.1).

Next, we will prove Cap
(
∂WΩ

a,b \ ∂′WΩ
a,b

)
= 0, where Cap denotes the capacity

associated with (E ′,F ′). When w ∈ ∂WΩ
a,b \ ∂′WΩ

a,b, there exist at least two points
t ∈ (0, 1) such that w(t) ∈ ∂Ω. Therefore,

∂WΩ
a,b \ ∂′WΩ

a,b(4.1)

⊂
∪

0<s1<s2<1
s1,s2∈Q

{
w ∈ Wa,b

∣∣∣∣ inf
t∈[0,s1]

q(w(t)) = 0, inf
t∈[s1,s2]

q(w(t)) = 0
}

.

For α, β ∈ R and s1, s2 ∈ (0, 1) with s1 < s2, we define

As1,s2,(α,β) =
{

w ∈ Wa,b

∣∣∣∣ inf
t∈[0,s1]

q(w(t)) = α, inf
t∈[s1,s2]

q(w(t)) = β

}
.

The right-hand side of (4.1) is rewritten as
∪

0<s1<s2<1, s1,s2∈Q As1,s2,(0,0). For a subset
G of R2, we denote

∪
(α,β)∈G As1,s2,(α,β) by As1,s2,G.
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Fix s1, s2 ∈ (0, 1) with s1 < s2. We define a map f : Wa,b → R2 by

f(w) =
(

inf
t∈[0,s1]

q(w(t)), inf
t∈[s1,s2]

q(w(t))
)
.

We denote an open ball in R2 with its center at 0 and radius r by B(r). By the continuity
of f , As1,s2,B(r) is an open neighborhood of As1,s2,(0,0) in Wa,b.

Take ε > 0 and λ ∈ (0, 1). We choose a smooth function g on [0,∞) such that

g(t) =


1 for t ∈ [0, λε),
3 log(t/ε)

log λ
− 1 for t ∈ (λ5/9ε, λ4/9ε),

0 for t ∈ (ε,∞),

and 3(t log λ)−1 ≤ g′(t) ≤ 0 for all t ∈ (0,∞). We define a function ζ : R2 → R by
ζ(x, y) =

√
x2 + y2 and set ι = g ◦ ζ. Since ι ◦ f is a bounded H0-Lipschitz continuous

function, it belongs to D1,2 — to F ′ in particular — by virtue of Theorem 4.1. Moreover,
ι ◦ f = 1 on As1,s2,B(λε). Denoting the gradient operator on R2 by ∇R2 , we have

E ′(ι ◦ f, ι ◦ f) =
1
2

∫
WΩ

a,b

|∇(ι ◦ f)|2H0
dµa,b

=
1
2

∫
WΩ

a,b

|〈(∇f)(w), (∇R2 ι)(f(w))〉R2 |2H0
µa,b(dw)

≤ C12

∫
WΩ

a,b

|(∇R2 ι)(f(w))|2R2 µa,b(dw)

= C12

∫
{(x,y)∈R2|x≥0,y≥0}

|∇R2 ι|2R2 d(f∗(µa,b|WΩ
a,b

))

=: I3.

Here, f∗(µa,b|WΩ
a,b

) denotes the image measure of µa,b|WΩ
a,b

by f . In the second line,

〈·, ·〉R2 denotes a pairing between the elements in H0 ⊗ R2 and in R2 and has values
in H0. The inequality from the second line to the third follows from the fact that f is
H0-Lipschitz continuous. Now,

|∇R2 ι|2R2 = (∂ι/∂x)2 + (∂ι/∂y)2

= (g′ ◦ ζ(x, y))2
x2

x2 + y2
+ (g′ ◦ ζ(x, y))2

y2

x2 + y2

= (g′ ◦ ζ(x, y))2 .

By considering ξ = (ζ ◦ f)∗(µa,b|WΩ
a,b

), we obtain

I3 = C12

∫ ∞

0

g′(r)2 ξ(dr) ≤ 9C12

∫ ε

λε

(log λ)−2r−2 ξ(dr) =: I4.
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From Lemma 3.3, the Markov property of (ωt, P̂x) and Proposition 3.2,

Ξ(r) := ξ([0, r]) = (f∗(µa,b|WΩ
a,b

))(ζ−1([0, r]))

= µa,b

[
w ∈ WΩ

a,b

∣∣∣∣ inf
t∈[0,s1]

q(w(t))2 + inf
t∈[s1,s2]

q(w(t))2 ≤ r2

]
≤ µa,b

[
w ∈ WΩ

a,b

∣∣∣∣ 0 ≤ inf
t∈[0,s1]

q(w(t)) ≤ r, 0 ≤ inf
t∈[s1,s2]

q(w(t)) ≤ r

]
≤ P̂a

[
0 ≤ inf

t∈[0,s1]
q(ωt) ≤ r, 0 ≤ inf

t∈[s1,s2]
q(ωt) ≤ r

]
· p1−s2(b, b)

p1(a, b)

= C13Êa

[
1{0≤inft∈[0,s1] q(ωt)≤r}P̂ωs1

[
0 ≤ inf

t∈[0,s2−s1]
q(ωt) ≤ r

]]
≤ C14(1 + (s2 − s1)−1/2)rP̂a

[
0 ≤ inf

t∈[0,s1]
q(ωt) ≤ r

]
≤ C15(1 + (s2 − s1)−1/2)(1 + s

−1/2
1 )r2 = C16r

2.

Thus, we obtain

I4 = 9C12

∫ ε

λε

(log λ)−2 1
r2

dΞ(r)

= 9C12(log λ)−2

{[
Ξ(r)
r2

]ε

λε

+
∫ ε

λε

2Ξ(r)
r3

dr

}
≤ C17(log λ)−2

(
1 +

∫ ε

λε

1
r

dr
)

= C17(log λ)−2(1 − log λ).

Therefore,

Cap(As1,s2,(0,0)) ≤ Cap(As1,s2,B(λε))

≤ E ′(ι ◦ f, ι ◦ f) + ‖ι ◦ f‖2

L2(WΩ
a,b,µ|

WΩ
a,b

)

≤ E ′(ι ◦ f, ι ◦ f) + Ξ(ε)

≤ C17(log λ)−2(1 − log λ) + C16ε
2.

By letting ε → 0 and λ → 0, we obtain Cap(As1,s2,(0,0)) = 0. Therefore,

Cap(∂WΩ
a,b \ ∂′WΩ

a,b) ≤
∑

0<s1<s2<1, s1,s2∈Q
Cap(As1,s2,(0,0)) = 0.

The last claim follows from the above result and Theorem 2.3, and the fact that ν is a
smooth measure. This completes the proof of Theorem 2.4.
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§ 5. Concluding remarks

(1) In a similar and simpler way, we can prove the counterpart of Theorem 2.4 that
concerns the one-sided pinned path space on Ω; this theorem was proved in [11].
More precisely, we define the path spaces as follows:

Wa = {w ∈ C([0, 1] → Rd) | w(0) = a},
WΩ

a = {w ∈ C([0, 1] → Ω) | w(0) = a},

H =

{
h ∈ C([0, 1] → Rd)

∣∣∣∣∣ h(0) = 0, h is abslutely continuous
and

∫ 1

0
|ḣ(s)|2Rd ds < ∞

}
,

∂WΩ
a =

{
w ∈ Wa

∣∣∣∣∣ w(t) ∈ Ω for every t ∈ [0, 1] and
w(s) ∈ ∂Ω for some s ∈ (0, 1]

}
,

∂′WΩ
a =

{
w ∈ ∂WΩ

a

∣∣∣∣∣ there exists a unique s ∈ (0, 1]
such that w(s) ∈ ∂Ω

}
,

WΩ
a = WΩ

a ∪ ∂WΩ
a .

Let µa be the probability measure on Wa that is the law of the d-dimensional
Brownian motion starting at a. Then, we can prove the claim that is modified by
replacing Wa,b, WΩ

a,b, µa,b, W0,0, µ0,0, H0, and λa,b in Theorem 2.4 by Wa, WΩ
a ,

µa, W0, µ0, H, and λa : Wa 3 w 7→ w − a ∈ W0, respectively. Also, from [9,
Theorem 4.4], BV (W0) ∩

∩
q>1 Lq(W0, µ0) ⊂ Dα,p if p > 1 and αp < 1, where Dα,p

is a Sobolev space on W0 with differentiability index α and integrability index p

according to the Malliavin calculus. Therefore, we obtain the following theorem,
which is a generalization of a part of the results of [1].

Theorem 5.1. Assume that 0 ∈ Ω and Ω satisfies the uniform exterior ball
condition. Then, µ0(∂WΩ

0 ) = 0 and 1WΩ
0

∈ BV (W0). Moreover, for any real
numbers α and p such that p > 1 and αp < 1, the function 1WΩ

0
belongs to Dα,p.

(2) Precisely speaking, the diffusion process associated with (E ′,F ′) should be called
the modified reflecting Ornstein-Uhlenbeck process as in [4, 5], since F ′ is defined
as the completion of FC1

b and may be strictly smaller than the “canonical” first
order L2-Sobolev space H1(WΩ

a,b). When F ′ is equal to H1(WΩ
a,b) remains an open

problem; a partial answer is provided in [8].
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