
Title A CANONICAL RANK-THREE TENSOR MODEL WITH A
SCALING CONSTRAINT

Author(s) SASAKURA, NAOKI

Citation International Journal of Modern Physics A (2013), 28(10)

Issue Date 2013-04

URL http://hdl.handle.net/2433/174132

Right © World Scientific Publishing Company

Type Journal Article

Textversion publisher

Kyoto University



April 15, 2013 13:37 WSPC/Guidelines-IJMPA S0217751X13500309

International Journal of Modern Physics A
Vol. 28, No. 10 (2013) 1350030 (11 pages)
c© World Scientific Publishing Company

DOI: 10.1142/S0217751X13500309

A CANONICAL RANK-THREE TENSOR MODEL

WITH A SCALING CONSTRAINT

NAOKI SASAKURA

Yukawa Institute for Theoretical Physics, Kyoto University,

Kyoto 606-8502, Japan

sasakura@yukawa.kyoto-u.ac.jp

Received 13 February 2013
Accepted 25 February 2013

Published 2 April 2013

A rank-three tensor model in canonical formalism has recently been proposed. The
model describes consistent local-time evolutions of fuzzy spaces through a set of first-
class constraints which form an on-shell closed algebra with structure functions. In fact,
the algebra provides an algebraically consistent discretization of the Dirac–DeWitt con-
straint algebra in the canonical formalism of general relativity. However, the configu-
ration space of this model contains obvious degeneracies of representing identical fuzzy
spaces. In this paper, to delete the degeneracies, another first-class constraint represent-
ing a scaling symmetry is added to propose a new canonical rank-three tensor model.
A consequence is that, while classical solutions of the previous model have typically
runaway or vanishing behaviors, the new model has a compact configuration space and
its classical solutions asymptotically approach either fixed points or cyclic orbits in time
evolution. Among others, fixed points contain configurations with group symmetries, and

may represent stationary symmetric fuzzy spaces. Another consequence on the unique-
ness of the local Hamiltonian constraint is also discussed, and a minimal canonical tensor
model, which is unique, is given.

Keywords: Quantum gravity; tensor models; fuzzy spaces; general relativity; canonical
formalism.

PACS numbers: 04.60.Ds, 04.60.Nc, 04.60.Pp

1. Introduction

The tensor models have first been proposed1–3 as analytical description of theD > 2

dimensional simplicial quantum gravity with the hope to extend the success of the

matrix models for the D = 2 dimensional case to the other dimensions. The idea of

the tensor models has also been applied to the loop quantum gravity as group field

theories by considering group-valued indices.4–8 In these approaches, the theoretical

interpretation of the tensor models is essentially based on the correspondence be-

tween perturbative Feynman diagrams of the tensor models and the dual diagrams
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of simplicial manifolds. In the original tensor models with Hermitian tensors, how-

ever, the correspondence has delicate issues,2,9 and it is not known how to take

the large N limit, which was essential in relating the matrix models to D = 2

quantum gravity. On the other hand, another kind of tensor models with unsym-

metric tensors, called colored tensor models,10 have been proposed. The colored

tensor models have good correspondence to simplicial manifolds, and various ana-

lytical results including the large N limit have been revealed.11 The colored tensor

models have also stimulated developments of renormalization of the tensor group

field theories.12–15 However, the present situation of the tensor models as quantum

gravity is still uncertain; in Feynman perturbation series, the large N limit of the

colored tensor models is dominated by the “melonic” diagrams,11,16 which are topo-

logically spheres but look rather singular17 unlike our actual space. The dominance

of the melonic diagrams in the large N limit has also been shown18 for other new

models which are called multi-orientable tensor models.19

In view of the present unsatisfactory status of the tensor models as quantum

gravity in the above interpretation, it would also be meaningful to pursue another

interpretation of the tensor models. In fact, the present author has proposed the

interpretation that the rank-three tensor models, which have a rank-three tensor

as their only dynamical variable, may be regarded as dynamical models of fuzzy

spaces.20,21 An advantage of this interpretation is that, since fuzzy spaces can

generally describe any dimensional spaces, any dimensional quantum gravity can be

considered to be incorporated in the rank-three tensor models. This is in contrast

to the fact that ranks of tensors are directly related to dimensions in the above

interpretation in terms of simplicial manifolds. In fact, by semiclassical analyses,

the present author has shown spontaneous generation of various dimensional fuzzy

spaces22 and Euclidean general relativity on them from a certain fine-tuned rank-

three tensor model.23,24

However, the above results of the Euclidean tensor model are not satisfactory.

The action is complicated and unnatural. Moreover, it must be fine-tuned so that

the above physically wanted results can be obtained, but there is no principle to

choose the action out of the other infinitely many possibilities. This drawback may

be solved by a kind of universality through quantum mechanical treatment. But

first of all, it is necessary to introduce a notion of time into tensor models before

discussing quantum mechanics.

Thus, to incorporate time into tensor models, the present author has proposed

a rank-three tensor model in a canonical formalism.25,26 The model is defined as a

pure constraint system with a set of first-class constraints which form an on-shell

closed algebra with structure functions. In fact, the algebra has a resemblance to the

Dirac–DeWitt first-class constraint algebra in the canonical formalism of general

relativity,27–29 and the former agrees with the latter in a formal limit of vanishing

fuzziness. Moreover, there exist a notion of local time and local time evolutions

controlled by local Hamiltonian constraints in the model, as in general relativity.
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The on-shell closure condition is so strong that the local Hamiltonian constraints

are (twofold) unique under some physically reasonable assumptions.

However, as will be discussed below, the canonical rank-three tensor model

above seems to have some unsatisfactory features concerning the classical solu-

tions. So, the main purpose of the present paper is to propose a new canonical

rank-three tensor model by adding a constraint representing a scaling symmetry

to the previous model. The scaling symmetry is natural from the perspective of

fuzzy spaces, and the new model has nice features for future study. The paper is

organized as follows. In Sec. 2, the canonical rank-three tensor model proposed in

the previous paper25 is summarized. In Sec. 3, the unsatisfactory features of the

previous model are discussed, and a new model is proposed by adding a new first-

class constraint representing a scaling symmetry. In Sec. 4, the configuration space

and fixed points of the classical equation of motion of the new model are discussed.

Among others, such fixed points contain configurations with group symmetries. In

Sec. 5, the uniqueness of the local Hamiltonian constraint for the tensor model with

a totally symmetric rank-three tensor is discussed. This provides a minimal canon-

ical tensor model. The final section is devoted to summary and future prospects.

2. The Previous Canonical Rank-Three Tensor Model

In this section, I will summarize the canonical rank-three tensor model proposed in

the previous paper.25

The dynamical variables of the canonical rank-three tensor model are given by

the canonical variables, Mabc, Pabc (a, b, c = 1, 2, . . . , N). They satisfy the general-

ized Hermiticity condition,

Xabc = Xbca = Xcab = X∗

bac = X∗

acb = X∗

cba , (1)

whereX = M , P and ∗ denotes complex conjugation. The Poisson brackets between

them are given by

{Mabc, Pdef} = δadδbeδcf + δaeδbfδcd + δafδbdδce , (2)

{Mabc,Mdef} = {Pabc, Pdef} = 0 . (3)

Here, the first Poisson bracket is taken to be consistent with the generalized Her-

miticity condition (1).

The kinematical symmetry of the canonical tensor model is given by the orthog-

onal group O(N),

Xabc = GadGbeGcfXdef , G ∈ O(N) , (4)

where repeated indices are summed over. In what follows, this convention is used,

unless otherwise stated.

With the canonical variables, the Lie generators of the kinematical symmetry

are expressed by

J[ab] =
σ

2
(XacdYbcd −XbcdYacd) , (5)
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where the square bracket [ ] in the index symbolically represents the antisymmetry,

J[ab] = −J[ba]. As for X , Y , the following two cases,

(i) X = M , Y = P , (6)

(ii) X = P , Y = M , (7)

can be considered. The numerical factor σ in (5) takes for convenience the values,

σ =

{

−1 for (i) ,

1 for (ii) ,
(8)

respectively. With (8), the fundamental Poisson bracket (2) can be expressed as

{Xabc, Ydef} = −σ(δadδbeδcf + δaeδbfδcd + δafδbdδce) , (9)

for both cases (i) and (ii).

The two consistent local Hamiltonian constraints, which have a slight difference

in index contraction, are given bya

Ha = Xa(bc)XbdeYcde , (10)

Ha = Xa(bc)XbdeYced , (11)

where Xa(bc) = (Xabc +Xacb)/2.

Ha and J[ab] form a Poisson algebra given by

{H(T1), H(T2)} = J([T̃1, T̃2]) , (12)

{J(V ), H(T )} = H(V T ) , (13)

{J(V1), J(V2)} = J([V1, V2]) , (14)

where

H(T ) = TaHa , (15)

J(V ) = V[ab]J[ab] , (16)

with a real vector Ta and an antisymmetric real matrix V[ab] = −V[ba]. On the

right-hand sides of the Poisson algebra,

T̃(bc) = TaXa(bc) , (17)

V T is the usual multiplication of a matrix and a vector, and [ , ] denotes the matrix

commutator. Since the right-hand side of (12) contains T̃ dependent on X , the

algebra has structure functions, but not structure constants. This feature makes

the apparently simple Poisson algebra (12)–(14) highly nontrivial, and plays an

essential role in deriving from the Poisson algebra the Dirac–DeWitt first-class

aStrictly speaking, the previous paper25 only deals with the case (ii). As for the case (i), Ha

satisfies the conditions of the previous paper, if the time reversal symmetry is replaced with
Ha → −Ha.
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constraint algebra in the canonical formalism of general relativity27–29 by taking a

formal limit of vanishing fuzziness.26 It is also an important fact that the multiple

possibilities (6), (7), (10) and (11) actually lead to the same Poisson algebra

(12)–(14).

The closure of the Poisson algebra (12)–(14) on the on-shell subspace defined by

J[ab] = Ha = 0 implies that a canonical rank-three tensor model can consistently be

defined as a constraint system with a set of first-class constraints, J[ab] = Ha = 0.

In analogy with general relativity, J[ab] and Ha may be called the momentum and

Hamiltonian constraints, respectively.

3. A New Canonical Rank-Three Tensor Model

As explained in Sec. 2, the canonical tensor model is a pure constraint system

with the first-class constraints, J[ab] = Ha = 0. Following the standard method for

singular systems, the total Hamiltonian is given by

Htot = NaHa +N[ab]J[ab] , (18)

where Na, N[ab] are arbitrary variables, the actual values of which may be fixed

by some gauge fixing conditions. For the choice of the local Hamiltonian (10), the

classical equation of motion for X is given by

dXabc

dt
= {Xabc, Htot}

≈ −σNd(Xd(ae)Xebc +Xd(be)Xeca +Xd(ce)Xeab) +N[de](· · · ) , (19)

where ≈ denotes the so-called weak equality, and · · · are the terms representing

the infinitesimal O(N) transformation. The choice (11) as Ha instead of (10) will

change the order of abc on the right-hand side of (19), but this is not important for

the following discussions.

It is not difficult to numerically study the equation of motion (19) simultaneously

taking into account the constraints Ha = J[ab] = 0 and some appropriate gauge

fixing conditions. This has been carried out, and it has turned out that the time-

dependence of the classical solutions is rather extreme. This can essentially be

captured by considering the following simplified version of (19),

dx

dt
= x2 . (20)

The behavior in time evolution is obviously given by

x(t) → ∞ for x(0) > 0 ,

x(t) = 0 for x(0) = 0 ,

x(t) → −0 for x(0) < 0 ,

(21)

for initial values x(0). Thus, the point x = 0 is the only fixed point, and x(t)

either diverges or asymptotically vanishes for nonvanishing initial values. From the

numerical study, it seems that the original equation (19) has similar properties.

1350030-5

In
t. 

J.
 M

od
. P

hy
s.

 A
 2

01
3.

28
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 K

Y
O

T
O

 U
N

IV
E

R
SI

T
Y

 o
n 

05
/2

1/
13

. F
or

 p
er

so
na

l u
se

 o
nl

y.



April 15, 2013 13:37 WSPC/Guidelines-IJMPA S0217751X13500309

N. Sasakura

There does not seem to exist any other fixed points but the trivial one ∀Xabc =

0 and Xabc seem to either diverge or asymptotically vanish for nontrivial initial

configurations. These extreme behaviors cast doubts on the physical sense of the

model.

On the other hand, in the numerical study, it has often been observed that the

ratios Xabc/Xdef have finite and nonvanishing asymptotic values. This suggests

that the model should be modified so that only the ratios of Xabc become the true

dynamical variables. This can easily be realized by introducing a gauge symmetry

of common rescaling,

Xabc → γXabc for all Xabc , (22)

where γ is real and arbitrary.

The gauge symmetry (22) is also natural from the perspective of fuzzy

spaces.20,21 In the interpretation, a configuration Xabc of the tensor model is

assumed to correspond to a fuzzy space defined by an algebra of the functions

fa on it,

fa · fb = Xabcfc . (23)

Here, Xabc plays the role of the structure constants of the function algebra. Since,

the essential properties of the functions do not change under the common rescaling

fa → γfa for all fa, imposing the gauge symmetry (22) is a natural requirement.

The above discussions imply the necessity of adding a new constraint D = 0

with

D =
σ

3
XabcYabc , (24)

which generates a scaling transformation,

{D, Xabc} = Xabc , (25)

{D, Yabc} = −Yabc . (26)

The newly introduced D forms a closed algebra with J[ab] and Ha as

{D, H(T )} = H(T ) , (27)

{D, J(V )} = 0 . (28)

The algebraic on-shell closure of (12)–(14), (27) and (28) on the constraint subspace

Ha = J[ab] = D = 0 implies that a new canonical tensor model can consistently be

defined as a constraint system Ha = J[ab] = D = 0.b

bIn fact, it seems possible to consider a shifted constraint D−d = 0 with a nonzero real parameter
d. This ambiguity may be avoided by embedding the algebra into a larger one, which has D as a
result of Poisson brackets between constraints. This possibility is left for future study.
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4. The Configuration Space and Classical Fixed Points

The total Hamiltonian of the new system is given by

Hnew
tot = NaHa +ND +N[ab]J[ab] , (29)

where N is a new variable. Then, the equation of motion is given by

dXabc

dt
= {Xabc, H

new
tot }

≈ −σNd

(

Xd(ae)Xebc +Xd(be)Xeca +Xd(ce)Xeab

)

− σNXabc +N[de](· · · ) , (30)

where Ha is taken to be (10).

Since the trivial configuration, ∀Xabc = 0, is a fixed point of the classical equa-

tion of motion (30), one cannot get to it with a finite time starting from another

configuration. Therefore, one can consistently decouple the trivial point from the

rest of the configuration space. By using D, which generates (25), an arbitrary

configuration in the rest space can be gauge fixed as

Xabc X
∗

abc = 1 . (31)

Thus, the configuration space of the new model can be represented by the inter-

section of the compact space (31) and some other gauge-fixing conditions. In such

a compact space, classical solutions will in general asymptotically approach either

fixed points or cyclic orbits, but will not have the extreme behaviors as the previous

model explained in Sec. 3.

It is not difficult to give a general example for fixed points of the classical

equation of motion (30). Suppose that there exists an index value 0, which satisfies

X0ab = x0δab , (32)

with a real parameter x0. Suppose also a gauge which takes Na = n0δ0a with a real

parameter n0 and N[ab] = 0. Then the equation of motion (30) becomes

dXabc

dt
= −σn0

(

X0(ae)Xebc +X0(be)Xeca +X0(ce)Xeab

)

− σNXabc

= −σ(3n0x0 +N )Xabc . (33)

Then, a fixed point solution can be obtained by x0 = −N/3n0. One can further set
∀Yabc = 0 for the equation of motion of Yabc and the constraints to be satisfied.

The above setup for fixed point solutions naturally appears for configurations

with group symmetries. To see this, consider a configuration X̄abc which is invariant

under a group L embedded in O(N) asc

la
dlb

elc
f X̄def = X̄abc ,

∀l ∈ L ⊂ O(N) . (34)

cFor concrete examples, X̄abc can be taken to be CG coefficients among various representations
of groups such as the 3j-symbol of SO(3).
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Here, the representation of L on X̄abc is assumed to be reducible to a number

of irreducible representations by the O(N) transformation and contain uniquely a

one-dimensional trivial representation. Then,

X̄0ab = xR(a)δab , (35)

where 0 denotes the index value in the trivial representation, and xR(a) are real

parameters which can depend on each irreducible representation R(a) to which the

index value a belongs. On such a symmetric configuration, one can in principle take

a gauge which is consistent with the group symmetry. This requiresNa = n0δ0a, and

thatN[ab] take a gauge in whichN[ab]J[ab] generates the infinitesimal transformation

of the group symmetry (34).d Then, since {Xabc,N[de]J[de]}|X=X̄ ≈ 0 because of

(34), the situation becomes the same as the previous paragraph, and

xR(a) = −
N

3n0
, (36)

is a fixed point of the classical equation of motion.

It is noteworthy that the above solution satisfies a simple usual property of a

space, when it is interpreted as a fuzzy space defined by (23). From (35) and (36),

one obtains, after proper rescaling of fa with D,e

f0 · fa = fa for all fa . (37)

This implies that there exists a constant function f0 on the space. This is actually

nontrivial, since a fuzzy space defined by (23) does not necessarily have such a

constant function for general Xabc.

5. The Minimal Tensor Model

Because of a vast number of degrees of freedom of tensor models, it should be

useful to think of a minimal model. This is the tensor model with a real symmetric

rank-three tensor,

X∗

abc = Xabc , (38)

Xabc = Xbca = Xcab = Xbac = Xacb = Xcba . (39)

In the canonical formalism, X = M , P . In this section, I will discuss the unique-

ness of the local Hamiltonian constraint of the canonical real symmetric rank-three

tensor model with the new constraint D = 0.

The (twofold) uniqueness (10), (11) of the local Hamiltonian constraint shown

in the previous paper25 is only for the canonical rank-three tensor model with

the Hermiticity condition (1). In fact, if the dynamical variables are the totally

symmetric real tensors (38) and the new constraint D = 0 is not introduced, the

dIf the group symmetry does not have infinitesimal transformations, such as in case of a discrete
symmetry, N[ab] are taken to vanish.
eThis is equivalent to take a gauge N = −3n0.
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most general form of the local Hamiltonian constraint under the physically reason-

able assumptions of the previous paper can be shown to have a one-parameter

ambiguity as

Hsym,noD
a = XabcXbdeYcde + λYabb , (40)

where λ is an arbitrary real constant. This can easily be shown by applying the

former part of the previous paper25 to this case, and checking the on-shell algebraic

closure.f

From (25) and (26), one can see that the two terms in (40) are transformed

differently by D. Therefore, λ = 0 is required for the algebraic closure of the con-

straints, Ha, Jab, D. Thus

Hsym
a = XabcXbdeYcde , (41)

is the unique local Hamiltonian constraint for the real symmetric rank-three tensor

model with the constraints, Ha = Jab = D = 0.

6. Summary and Future Prospects

The canonical rank-three tensor model proposed in the previous paper has the bad

feature that the solutions to the classical equation of motion have extreme beha-

viors. There exist no other fixed points other than the trivial one, and the classical

solutions either diverge or asymptotically vanish in time evolution. These extreme

behaviors would become major obstacles in future study such as of obtaining sta-

tionary spaces and quantizing the model.

To improve the previous model, this paper has proposed a new canonical rank-

three tensor model by adding a scaling constraint. This constraint is a natural

expectation from the interpretation that the rank-three tensor model describes

dynamics of fuzzy spaces. The new constraint makes the configuration space com-

pact, and the classical solutions asymptotically approach either fixed points or cyclic

orbits in general. It is shown that configurations with group symmetries provides

a general class of such fixed points. These fixed points would represent stationary

fuzzy spaces in physical interpretation of the model.

With the scaling constraint, it is also shown that the local Hamiltonian con-

straint is unique in the minimal case, namely, the canonical real symmetric rank-

three tensor model. This is in contrast with that, without the scaling constraint,

the local Hamiltonian has one parameter ambiguity. The new canonical symmetric

rank-three tensor model will provide the simplest setup for future study.

fThe most difficult issue in the previous paper was how to incorporate the complications originating
with the change of orders of the indices of Mabc and Pabc, since it generates quite a large number
of distinct terms which potentially compose a local Hamiltonian constraint. This issue was treated
in the latter part of the previous paper, after the former part of the analysis ignoring the orders.
On the other hand, in the present case, Mabc and Pabc are symmetric and therefore the former
part is enough. The conclusion of the former part is that the diagrams G4 and G1 are allowed,
which correspond to the two terms in (40), respectively.
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It would obviously be interesting to study the large N dynamics of the canonical

tensor models. Since the local Hamiltonians have rather simple polynomial forms,

the corresponding Lagrangians and hence the Feynman rules will become involved.

This in turn would potentially make the large N behaviors of the canonical tensor

models significantly different from those of the unsymmetric tensor models.11,16–18

Or an alternative way of study would be to carry out perturbative expansions

around fixed points discussed in Sec. 4. In this case, the fixed points would provide

backgrounds, and the situation would rather have similarity to the formalism of the

tensor group field theories.12–15
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