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THE q-ANALOGUE OF
THE WILD FUNDAMENTAL GROUP (I)

J.-P. Ramis∗ J. Sauloy †

Abstract

We describe an explicit construction of galoisian Stokes operators for irregular
linear q-difference equations. These operators are parameterized by the points of an
elliptic curve minus a finite set of singularities. Taking residues at these singularities,
one gets q-analogues of alien derivations which “freely” generate the Lie algebra of
the Stokes subgroup of the Galois group.

1 Introduction
In this paper we return to the local analytic classification of q-difference modules. In
[23] we gave such a classification in Birkhoff style [2, 3], using normal forms and index
theorems. The classification of [23] is complete in the “integral slope case”. (One could
extend it to the general case using some results of [12].) In [29] (cf. also [22], [24])
appears another version of our classification, using non abelian cohomology of sheaves
on an elliptic curve.

Here our aim is to give a new version of our classification, based upon a “fundamental
group” and its finite dimensional representations, in the style of the Riemann-Hilbert
correspondence for linear differential equations. At some abstract level, such a classi-
fication exists: the fundamental group is the tannakian Galois group of the tannakian
category of our q-modules. But we want more information: our essential aim is to
get a smaller fundamental group (as small as possible !) which is Zariski dense in the
tannakian Galois group and to describe it explicitly. (As a byproduct, we shall get finally
a complete description of the tannakian Galois group itself.) It is important to notice that
the tannakian Galois group is an algebraic object, but that the construction of the smaller
∗Institut de France (Académie des Sciences) and Laboratoire Emile Picard.
†Laboratoire Emile Picard, CNRS UMR 5580, U.F.R. M.I.G., 118, route de Narbonne, 31062 Toulouse

CEDEX 4, France.
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group is based upon transcendental techniques (topology and complex analysis).

As in the differential case, the construction of the fundamental group is a Russian-
dolls construction using semi-direct products (heuristically, going from interior to
exterior, each new “slice of infinitesimal neighborhood” of the origin (each “scale”)
corresponds to an invariant subgroup in a new semi-direct product). At the end there
is a fascinating parallel between the differential and the q-difference case. However, it
has been impossible (for us) to mimick the differential approach (essentially based upon
the concept of solutions); instead, we shall follow a new path. In order to understand
our approach and our results in the q-difference case, it can be useful (even if not indis-
pensable) to have some ideas about what happens in the differential case (in this case the
“fundamental group” is the wild fundamental group introduced by the first author). In
this introduction, we shall detail only the simplest case, the local case of regular singular
linear differential equations, it will be our basic model. For the convenience of the reader,
we shall recall the general differential situation in the next section (without proof, but
with precise references); we shall insist on the underlying geometric ideas. The reader
can choose to skip this section if he prefers (we shall not use the corresponding results in
our paper, only their flavour).

We shall use tannakian categories as an essential tool (cf. [5], [31], §6, page 67).
First recall some basic facts. Assume E is a neutral tannakian category, with fiber
functor ω (to the category of C-vector spaces). Then Aut⊗(ω) has a structure of complex
pro-algebraic affine group scheme; we shall call it the tannakian group of the tannakian
category E . The category E is isomorphic to the category of finite dimensional represen-
tations 1 of Aut⊗(ω) (by definition, such a representation factors through a representation
of one of the algebraic quotients). Conversely, if G is a complex pro-algebraic group,
its category of complex representations RepC(G) is a neutral tannakian category with a
natural fiber functor ωG (the obvious forgetful functor) and G = Aut⊗(ωG,RepC(G)); the
complex space aut⊗(ωG,RepC(G)) of Lie-like ⊗-endomorphisms of the fiber functor
ωG is the Lie-algebra of Aut⊗(ωG,RepC(G)).

Assuming that Γ is a finitely generated group, a pro-algebraic completion of Γ is,
by definition, a universal pair (ιal,Γal) where ιal : Γ→ Γal is a group homomorphism
from Γ to a pro-algebraic group Γal . It is unique up to an isomorphism of pro-algebraic
groups. A finite dimensional representation of Γ clearly factors through a pro-algebraic
completion of Γ. We can get a pro-algebraic completion of Γ from the tannakian
mechanism: RepC(Γ) is a neutral tannakian category with a natural fiber functor (the
obvious forgetful functor) ω, and the group G = Aut⊗(ω,RepC(Γ)) is a pro-algebraic
completion of Γ. The groups Γ and G have the same representations, more precisely
the natural homomorphism of groups Γ → G induces an isomorphism of tannakian
categories: RepC(G)→ RepC(Γ). We shall encounter below similar situations associated

1Each time we speak of representations of a pro-algebraic group, they are tacitly assumed to be mor-
phisms for the pro-algebraic structure (i.e. rational representations).
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to different classification problems (in a little more general setting: Γ will not be in
general a finitely generated group).

The first example (our baby example) is the category of local meromorphic regular-
singular connections, or equivalently the category D (0)

f of regular singular D-modules,
where D = C({z})[d/dz] (C({z}) is the field of fractions of C{z}). A meromorphic
connection is equivalent to an equivalence class of differential systems ∆A : dY

dx = AY up
to the gauge-equivalence: ∆A ∼ ∆B if and only if there exists P ∈ Gln(C({z})) such that
B = P−1AP−P−1dP/dx. We consider the fundamental group π1(D∗,d) of a germ at
zero of punctured disk, pointed on a germ of direction d. We choose a generator γ (a one
turn loop in the positive sense) and we get an isomorphism Z→ π1(D∗,d), n 7→ γn. Then,
by a very simple application of the Riemann-Hilbert correspondance, our category D (0)

f
is equivalent (via the monodromy representation) to the category of finite dimensional
representations of the fundamental group π1(D∗,d). A regular singular D-module M
corresponds to a representation ρM of π1(D∗,d).

We can apply the tannakian machinery to the group Γ = Z (or equivalently to
Γ = π1(D∗,d)). Then our category D (0)

f is equivalent to the category of representations
of π1(D∗,d): a regular singular D-module M “is” a representation ρM of the topological
fundamental group π1(D∗,d), it is also equivalent to the category of representations
of the pro-algebraic completion π⊗1 (D∗,d) of π1(D∗,d): a regular singular D-module
“is” a representation ρ⊗M of the tannakian fundamental group π⊗1 (D∗,d). The “small
fundamental group” is the topological group π1(D∗,d), the “big fundamental group” is
the pro-algebraic group π⊗1 (D∗,d). The small group is Zariski-dense in the big group:
the image of ρM is the monodromy group of M, it is Zariski-dense in the image of ρ⊗M
which “is” the differential galois group of M.

It is not difficult but important to understand the classification mechanism on this baby
example: all the information is hidden in the group Z and we must extract it. The essential
point is to understand the structure of the pro-algebraic completion of Z. We can use the
tannakian machinery (this is “folklore knowledge”, a reference is [27]): the pro-algebraic
hull of Z is Zal = Aut⊗(ω), it is commutative and the product of its semi-simple part
Zal

s and its unipotent part Zal
u : Zal

s = Homgr(C∗,C∗), Zal
u = C (the additive group) and

ιal : Z→ Zal is defined by 1 7→ (idC∗,1) (n 7→ ((z 7→ zn),n)). In order to understand what
will happen in more difficult situations, it is interesting to understand the pro-algebraic
completion of Z using regular singular differential equations and differential galois the-
ory. We shall start from π1(D∗,d) and shall “compute” its pro-algebraic completion using
Riemann-Hilbert correspondance. The main tool is a universal Picard-Vessiot algebra U f
([14]). We consider some holomorphic functions on the Riemann surface of the loga-
rithm: log x and xα = eα log x (α ∈ C). They generate over C({z}) a differential algebra:
U f = C({z})

{

(xα)α∈C, log x
}

(it is a simple differential algebra; the brackets
{

· · ·
}

mean “differential algebra generated by” ...). For each object M of D (0)
f , the algebra U f
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contains one and only one Picard-Vessiot algebra for M. Equivalently we can solve any
regular-singular system ∆A : dY

dx = AY using U f (that is we can find a fundamental matrix
solution with entries in U f ). The differential Galois group G f of U f (or equivalently of
its field of fractions) is a pro-algebraic group (U f is an inductive limit of finite type dif-
ferential extensions). The monodromy, that is the action of the loop γ is galois, therefore
we can identify γ with an element of G f (γ(xα) = e2iπαxα and γ(log x) = log x + 2iπ),
and we get an injective homomorphism of groups: ι : π1(D∗,d)→ G f . It is not difficult
to prove that (G f , ι) is a pro-algebraic completion of π1(D∗,d) and to compute G f (we
shall admit these results here): its semi-simple part G f ,s = ˇC/Z is the topological dual
group of C/Z considered as the inductive limit of its finitely generated subgroups; its
unipotent part G f ,u is the differential Galois group of the extension C({z})

{

log z
}

, that
is the additive group C. We have an exact sequence of groups:

0→Q/Z→C/Z→C/Q→ 0

and an exact sequence of dual groups:

1→ T f →G f ,s→ Ẑ(1)→ 1.

(The proalgebraic group T f is the topological dual group of the group of “monodromy
exponents”). Here, G f ,s = Homgr(C/Z,C∗)≈ Homgr(C∗,C∗). The respective images of
γ in G f ,s and in G f ,u are z 7→ z and 2iπ.

The aim of this paper is to describe q-analogues of the differential fundamental
groups. The construction is independant of the construction of the differential case; yet,
like in that case it is done in three steps: (1) regular-singular or fuchsian equations, (2)
formal or pure equations, (3) arbitrary equations meromorphic at the origin. We shall
limit ourselves to the integral slopes case (cf. some comments below). (The reader of
section 2 will recognise the main actors of the differential case under various disguises.)
The first two steps are already well known and the new and difficult part is the last one.

Notations. We fix q ∈ C such that |q|> 1 and write q = e−2iπτ, Im τ > 0.

(1) We begin with the regular singular case: a germ of meromorphic system at
the origin σqY = AY is regular singular if and only if it is meromophically equivalent
to a fuchsian system σqY = BY (B(0) ∈ Gln(C)). We call the corresponding category
E (0)

f the category of fuchsian modules, its tannakian Galois group is isomorphic to
Homgr(Eq,C∗)×C, where Eq = C∗/qZ is (the underlying abstract group of) the elliptic
curve associated to q (cf. [27] 2.2.2). There exists also a “small group” Zariski dense
in the tannakian Galois group, and one can guess it using a q-analogy: the image of Z
in Homgr(C∗,C∗) is the subgroup of group homomorphisms which are algebraic group
homomorphisms, therefore it is natural to consider the subgroup Π of the elements
of Homgr(Eq,C∗) which are continuous. We use the decomposition C∗ = U× qR

(U ⊂ C∗ is the unit circle) and we denote γ1,γ2 ∈ Homgr(Eq,C∗) the continuous group

4



homomorphisms defined respectively by uqy 7→ u and uqy 7→ e2iπy. Then Π is generated
by γ1 and γ2 and is Zariski-dense in Homgr(C∗,C∗), the “fundamental group” of the
category E (0)

f (the local fundamental group) π1,q, f is by definition the subgroup of
Homgr(Eq,C∗×C) whose semi-simple component is generated by γ1 and γ2 and whose
unipotent component is Z (cf. [27] 2.2.2).

(2) The next step is the study of the category E f orm of formal q-difference modules.
We shall limit ourselves to the integral slope case: the category E f orm,int (or equivalently
of the category E (0)

p,1 of pure meromorphic modules with integral slopes, cf. below).
It is a neutral tannakian category. As in the differential case, in order to compute the
corresponding “fundamental groups”, it is necessary to understand the formal classi-
fication of q-difference equations of order one: two such equations σqy− ây = 0 and
σqy− b̂y = 0 (â, b̂ ∈ C((z))∗) are formally equivalent if and only if a−1b ∈ σq,log C((z)),
where σq,log f̂ = σq( f̂ )/ f̂ . Then the order one equations are classified by the abelian
group C∗/qZ× (zm)m∈Z ' Eq ×Z (Eq correspond to the fuchsian equations, (zm)m∈Z
to irregular equations). The “basic” irregular equation is σqy− zy = 0, it admits the
Jacobi theta function θq as a solution (cf. below) and its q-difference Galois group is
isomorphic to C∗. Then one can prove that the tannakian Galois group G f orm,int of
the category E f orm,int is isomorphic to the topological dual group of Eq × Z (where
Eq is interpreted as the inductive limit of its finitely generated subgroups), that is to
C∗× (Homgr(Eq,C∗)×C): C∗ is by definition the theta torus, it is the q-analogue of the
exponential torus, cf. section 2, below. (The tannakian Galois group G(0)

p,1 of the category

E (0)
p,1 of pure meromorphic modules with integral slope is isomorphic to G f orm,int .) We do

not know what will happen in the non integral slope case.

(3) The last step and the main purpose of this paper is the study of the category
E (0)

1 of q-difference modules whose Newton polygon admits only integral slopes. It is a
neutral tannakian category, we shall prove that there exists a semi-direct decomposition
of its tannakian Galois group G(0)

1 = St o G(0)
p,1, where St is a unipotent pro-algebraic

group, and we shall describe the Lie algebra st of St: like in the differential case this
Lie algebra is a “pro-algebraic completion” of a free complex Lie algebra generated by a
family of “q-alien derivations”:

(

∆̇(δ)
c

)

δ∈N∗,c̄∈Eq
.

These q-alien derivations are indexed by labels (δ,c) (which are the q-analogs of
the labels (q,d) of the differential case):δ is by definition a weight on the θ-torus C∗
(that is, an element of the topological dual group Z; actually, only the δ > 0 have a
non trivial action, so that we harmlessly take δ ∈ N∗), and c is a pair formed by c ∈ Eq
(i.e. a q-direction, representing a germ of q-spiral at the origin) and an element ξ of
the q-local fundamental group π1,q, f . In order to define the q-alien derivations, we will
use, as in the differential case, some summability tools (here, an algebraic version of the
q-multisummability due to the second author), but the approach will be different: we
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will no longer use solutions but replace them by fiber functors (⊗-functors). We will
deal with meromorphic families of Lie-like automorphisms of fiber functors (the variable
being the q-direction of summability) and extract their singularities by a residue process.
This will give birth to q-alien derivations ∆̇c.

In this paper, we define the q-alien derivations in all generality and compute them
in the one-level case using a q-Borel transform (of some convenient order). This relates
alien derivations to the irregularity invariants introduced in [22] and proves that, in this
case, q-alien derivations are a complete set of irregularity invariants. We shall extend
these results to the general case in a forthcoming paper [21]. The principle is similar but
it is necessary to introduce a double family of categories “interpolating” between E (0)

1

and respectively E f orm and E (0)
p,1 , in relation with slopes and q-Gevrey estimates. With

these tools, we are able to prove that, in the general case also, q-alien derivations are a
complete set of irregularity invariants and that the q-resurgence group is Zariski dense
in St. (The reader can check as an exercise that, in the general case, for an isoformal
family of meromorphic q-difference modules M, the dimensions of the C-vector space of
the irregular invariants of [22] and of the C-vector space generated by the “acting” q-alien
derivations are equal: they are equal to the area of the “closed Newton polygon” of M).

2 The differential case
As we explained in the introduction, we will give in this section, for the convenience of
the reader, a description of the wild fundamental group in the differential case. We will
not use these results later.

After the study of the category of local meromorphic regular-singular connections
(cf. the introduction), the next step is the study of the category of formal connections,
or equivalently the category D f orm of D̂-modules, where D̂ = C((z))[d/dz] (C((z))
is the field of fractions of C[[z]]). It is a neutral tannakian category (cf. for instance
[14]). One associates to a D̂-module M its Newton polygon N(M). The slopes of
N(M) are positive rational numbers. For sake of simplicity we shall limit ourselves to
the full subcategory D f orm,int of modules M whose Newton polygon has only integer
slopes. In order to compute the corresponding “fundamental groups”, it is necessary
to understand the formal classification of differential equations of order one: two such
equations dy/dx− ây = 0 and dy/dx− b̂y = 0 (â, b̂ ∈ C((z))) are formally equivalent
if and only if (b− a)dx ∈ dlog C((z)) (dlog C((z)) = {dĉ/ĉ| ĉ ∈ C((z))}). We have
dlog C((z)) = Zdx

x ⊕C[[z]]dx and C((z))dx/dlog C((z)) = C/Zdx
x ⊕C((z))/z−1C[[z]]dz.

By integration adx ∈ C((z))dx gives q =
R

adx and we get an isomorphism between
C((z))dx/dlog C((z)) and C/Z log x ⊕ C((z))/C[[z]] = C/Z log x ⊕ 1

z C[1
z ]. To

α log x ∈ C/Z log x corresponds eα log x = xα (a solution of dy/dx− αy = 0), to
q ∈ 1

z C[1
z ] corresponds eq (a solution of dy/dx− q′y = 0). Therefore it is natural to
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introduce the differential algebra U f orm,int = C((z))
{

(xα)α∈C,(eq)q∈ 1
z C[ 1

z ], log x
}

. It is
a universal Picard-Vessiot algebra for the formal connections whose Newton polygons
have only integer slopes and the differential Galois group of U f orm,int is isomorphic to
the tannakian Galois group of the category D f orm,int . We consider 1

z C[1
z ] as a Z-module.

It has no torsion, it is an infinite dimensional lattice and we consider it as the inductive
limit of its finite dimensional sublattices. The topological dual group of such a sublattice
is a torus (an algebraic group isomorphic to some (C∗)µ), therefore the dual of 1

z C[1
z ]

is a pro-torus; by definition it is the exponential torus Texp,int (integral slopes case).
Then the tannakian Galois group π⊗1, f orm,int of the category D f orm,int is isomorphic to
the product of the exponential torus Texp,int by the fuchsian group Homgr(C∗,C∗)×C:
this is the “big fundamental group”; the “small fundamental group” is the product
of the exponential torus Texp,int by the topological fundamental group π1(D∗,d) (be
careful, the product decompositions are not canonical). In the general case, without any
restriction on the slopes, it is necessary to enlarge the universal algebra (replacing the
variable x by all its ramifications tm = x, m ∈ N∗). Then there is a non trivial action

of γ on the Z-module
[

m∈N∗

1
x1/m

C[
1

x1/m
] (by monodromy) and therefore on its dual

Texp, the exponential torus. Then we have in the general case semidirect products:
π⊗1, f orm = Texp o (Homgr(C∗,C∗)×C) and π1, f orm = Texp o π1(D∗,d).

The last step is the study of the category of meromorphic connections, or equivalently
the category Dan of D-modules, where D = C({z})[d/dz]. This step is very difficult
and involves a lot of delicate and deep analysis. Here we shall only describe roughly the
results (for more information one can read the original papers [10, 18, 19, 20], and for
more details [14]). Heuristically the origin 0 in C has an “analytic infinitesimal neigh-
borhood” and an “algebraic infinitesimal neighborhood”, the algebraic neighborhood
lying in the heart of the analytic neighborhood and being “very small” (cf. [6] and [8]
for a detailed and precise presentation). The algebraic neighborhood corresponds to
Ẑ(1) = lim←−n∈N∗

µn (µn is the group of complex n-th roots of the unity) considered as
a quotient of Homgr(C∗,C∗) (the unipotent component C corresponds to a “very very
small” neighborhood of 0 in the heart of the algebraic neighborhood). The fuchsian
torus T f corresponds to a “part very near of the algebraic neighborhood”. It remains
to understand what happens in the “huge” region in the analytic neighborhood located
between the algebraic neighborhood and the exterior, the “actual world” C∗: one must
imagine it as filled by “points” (that we shall label (q,d) below, d being a direction
and q a “parameter” of scale). Each point will be responsible for a “monodromy”, the
semi-simple part of this monodromy will be related to the exponential torus and its
unipotent part will have an infinitesimal generator, which is a Galois derivation: we
call it an alien derivation (and denote it ∆̇q,d). It is possible to give a rigorous meaning
to this heuristic description. There are various approaches, the more interesting for
the study of q-analogues is the tannakian one (cf. [6]): one thinks to fiber functors as
“points” and to isomorphisms between fiber functors as “paths” (automorphisms of fiber
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functors corresponding to “loops”). Here the paths are made of classical paths (analytic
continuation) and new paths corresponding to multisummability of formal (divergent)
power series (it is worth noticing that at the algorithmic level these two families of paths
are in fact very similar: [7]). Heuristically when you have “sufficiently many points and
loops”, then the loops “fill” the tannakian Galois group (topologically in Zariski sense):
this situation will correspond to the “fundamental group” (the small one).

Let us describe now the “points” of the “annulus of the infinitesimal neighborhood”
between the algebraic neighborhood and the “exterior real world” C∗. We shall first give
the description and justify it later: the points will appear naturally from the analysis
of the Stokes phenomena, that is from the construction of the paths. We remark that
the infinite dimensional lattice 1

z C[1
z ] is the topological dual of its topological dual, the

exponential torus Texp,int . Then each polynomial q∈ 1
z C[1

z ] can be interpreted as a weight
on the exponential torus: if τ ∈ Texp,int , τ(eq) = q(τ)eq, q : Texp,int → C∗ is a morphism
of pro-algebraic groups. The set of directions d issued from the origin is parametrized
by the unit circle S1 (which we can identify with the boundary of C∗, the real blow up of
the origin in C corresponding to r = 0 in polar coordinates (r,θ)). We shall call degree
of q its degree in 1/x. If a/xk (a ∈ C∗,k ∈ N∗) is the monomial of highest degree of
q, then it controls the growth or the decay of eq near the origin (except perhaps on the
family of 2k “oscillating lines”: ℜ(a/xk) = 0, classically named Stokes lines or, better...,
anti-Stokes lines), we have k open sectors of exponential decay (of order k) of eq and k
open sectors of exponential growth (of order k) of eq. To each pair (q,d) ∈ 1

z C[1
z ]× S1

such that the direction d bisects a sector of decay of eq we associate a label (q,d): the
labels will correspond to the points in the “terra incognita”, our mysterious annulus. We
introduce on 1

z C[1
z ] = Ťexp,int the filtration by the degree k (it corresponds to the slope

filtration associated to the Newton polygon in the formal category). Heuristically, if
k = degq, then the corresponding point (q,d) “belongs” to the direction d and if k is
“big” this point is far from the algebraic neighborhood and near of the exterior world C∗.
(To each k ∈ N∗ corresponds a “slice” isomorphic to C∗, an annulus. If k > k′, then the
k′-annulus is “surrounded” by the k annulus, and “very small” compared to it [17]). We
shall actually need points on the “universal covering” of our annulus. They are labelled
by the (q,d), where d is a direction above d on the Riemann surface of the logarithm.

In order to describe the “paths”, we need the notion of multisummability ([9],
[1], [14], [16]). Let f̂ ∈ C((z)); we shall say that it is holonomic if there exists
D ∈D = C({z})[d/dx] such that D f = 0. The set of holonomic power series expansions
is a sub-differential algebra K of C((z)) (containing C({z})) and there is a family
of summation operators (S±d )d∈S1 (− is for “before d” and + is for “after d” when
one turns on S1 in the positive sense): S±d : K → Od (where Od is the algebra of
germs of holomorphic functions on sectors bisected by d), these operators are injective
homomorphisms of differential algebras, their restriction to C({z}) is the classical
sum of a convergent power series and S±( f̂ ) admits f̂ as an asymptotic expansion;
moreover, for a fixed f̂ , the two summations S+

d and S−d coı̈ncide, except perhaps for
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a finite set of singular directions; when d moves between two singular directions the
sums S+

d ( f̂ ) = S−d ( f̂ ) glue together by analytic continuation. When d crosses a singular
line, there is a jump in the sum: this is the Stokes phenomenon. We consider now the
differential algebra Uan = K

{

(xα)α∈C,(eq)q∈ 1
z C[ 1

z ], log x
}

, it is the universal differential
algebra associated to the family of germs of meromorphic connections. There are
natural extensions of the operators S±d to Uan, but we have to be careful: we must
define S±d (log x) and S±d (xα). In order to do that we need to choose a branch of the
logarithm in a germ of sector bisected by d (xα = eα log x). This corresponds to the
choice of a direction d above d on the Riemann surface of the logarithm (d ∈ (R,0),
which is the universal covering of (S1,1)). In the end, we get a family of summation
operators (S±d )d∈R : Uan→Od ; they are injective homomorphisms of differential algebras.

Let ∆ : dY
dx = AY be a germ of meromorphic system at the origin (integral slopes case).

It admits a formal fundamental matrix solution F̂ : dF̂
dx = AF̂ . The entries of F̂ belongs to

the universal algebra Uan, therefore F+
d = S+

d (F̂) and F−d = S−d (F̂) are germs of actual
fundamental solutions on germs of sectors bisected by d. We have F+

d = F−d Cd , where the
constant matrix Cd ∈Gln(C) is a Stokes matrix (it is unipotent). The map Std = (S+

d )−1S+
d

induces an automorphism of the differential algebra C({z}){F̂}, therefore it defines an el-
ement of the differential Galois group of the system ∆. More generally Std = (S+

d )−1S+
d

is an automorphism of the simple differential algebra Uan and defines an element of the
differential Galois group of this algebra. This element is pro-unipotent and we can define
a Galois derivation ∆̇d of Uan by Std = e∆̇d ; by definition, ∆̇d is the alien derivation in
the direction d. Now there is a quite subtle point in our analysis: from the germ of mero-
morphic system ∆ : dY/dx = AY we get a representation ρ∆, f orm : π1, f orm→ Gl(V ) and
a family of Stokes automorphisms (Std(∆) ∈ Gl(V ))d∈R. This last datum is equivalent
to the knowledge of the corresponding family of alien derivations (∆̇d(∆) ∈ End(V ))d∈R.
There is a natural action of the topological fundamental group on the family of alien
derivations: γ∆̇dγ−1 = ∆̇γ(d) (γ(d) is a translation of −2π of d), therefore it is natural
to introduce the semi-direct product exp(∗d∈RC∆̇d) o (γ) (where ∗d∈RC∆̇d) is the free
Lie-algebra generated by the symbols ∆̇d and exp(∗d∈RC∆̇d) its exponential group in a
“good sense”) and to observe that the connection defined by ∆ “is” the representation of
this group. We could stop here and be happy: why not decide that exp(∗d∈RC∆̇d) o (γ)
is the fundamental group for the meromorphic category? This does not work. Of course
we have all the knowledge but in a bad form: to a connection we can associate a repre-
sentation of our group, but conversely there are representations which do not come from
a connection, the admissible representations are conditionned. The geometric meaning
of the problem is clear: Std corresponds to a loop around a whole bunch of points: all
the (q,d) corresponding to all the q ∈ 1

z C[1
z ] admitting d as a line of maximal decay for

eq (we shall say in that case that q is supported by d and note (q,d) ∈ d), but a “good”
fundamental group must allow loops around each individual point (q,d). It is not difficult
to solve the problem; we know a priori that our representation must contain in some sense
the answer, it remains “only” to extract it. The idea is quite natural: using the exponen-
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tial torus we shall “vibrate” the alien derivation ∆̇d and extracts the “Fourier coefficients”
∆̇q,d (for q supported by d). We introduce, in the Lie algebra of the differential Galois
group Gan of Uan, the family (τ∆̇dτ−1)τ∈Texp,int (it is a family of Galois derivations), then
we consider the “Fourier expansion” τ∆̇dτ−1 = ∑

(q,d)∈d
q(τ)∆̇q,d (it makes sense because

for each connection the sum is finite). The coefficients are also in the Lie algebra of the
Gan, they are Galois derivations. Now we have won: we consider the free Lie algebra
Lie R = ∗d∈R,(q,d)∈dC∆̇(q,d) (it is, by definition, the resurgence algebra), and the cor-
responding exponential group R (it makes sense [9], it is by definition the resurgence
group). We have an action of the formal fundamental group on the resurgence Lie alge-
bra: γ∆̇(q,d)γ−1 = ∆̇(q,γ(d)), τ∆̇(q,d)τ−1 = q(τ)∆̇(q,d) (τ ∈ Texp,int) and we get a semi-direct
product R o π1, f orm,int = exp(∗d∈R,(q,d)∈dC∆̇(q,d))o (Texp,int × (γ)). The knowledge of
a representation is equivalent to the knowledge of its restriction to the formal part and
its “infinitesimal restriction” to the free Lie algebra. Now the objects of our category
(the meromorphic connections) correspond to unconditioned representations (by repre-
sentation we mean, of course, finite dimensional representation whose restriction to the
exponential torus is a morphism). We have now a fundamental group (the small one), it is
the wild fundamental group (this is in the integral slope case, but with small adaptations
it is easy to build the wild fundamental group in the general case). What about the big
fundamental group (that is the tannakian Galois group)? We can easily derive its descrip-
tion from the knowledge of the wild fundamental group. The first step is to build some
sort of pro-algebraic completion of the resurgent Lie algebra Lie R (cf. [14]): if ρ is a
representation of our wild fundamental group, we can suppose that V = Cn and that the
image of the exponential torus is diagonal, it follows that the corresponding “infinitesimal
restriction” ψ = Lρ to the resurgent Lie algebra satisfies automatically the two conditions:

1. ψ(∆̇(q,d)) is nilpotent for every ∆̇(q,d).

2. There are only finitely many ∆̇(q,d) such that ψ(∆̇(q,d)) 6= 0.

By definition, the pro-algebraic completion (Lie R )alg of the free Lie algebra Lie R is
a projective limit of algebraic Lie algebras: (Lie R )alg = lim←−

ψ
Lie R /Ker ψ, where the

projective limit is taken over all homomorphisms of C-algebras ψ : Lie R → End(V )
(where V is an arbitrary finite dimensional complex space) satisfying conditions (1)
and (2). Each algebraic Lie algebra Lie R /Ker ψ is the Lie algebra of a connected
algebraic subgroup of Gl(V ). We can consider the projective limit of these subgroups,
it is a pro-algebraic group (a kind of pro-algebraic completion of the resurgent group
R ). We shall call it the resurgent pro-algebraic group and denote it R alg, its Lie
algebra is (Lie R )alg: Lie R alg = (Lie R )alg. The action of (γ) on Lie R gives
an action on Lie R alg, this action can be extended “by continuity” to an action of
π⊗1, f = Homgr(C∗,C∗)×C, and, using the exponential, we get an action of π1, f on R alg;
there is also clearly an action of the exponential torus Texp,int on R alg. Finally, we get a
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semi-direct product R alg
oπ⊗1, f orm,int , which is isomorphic to the tannakian group π⊗1,an,int .

Let us end this section with a short comparison of the three parallel steps in the
differential and in the q-difference cases.

The first step is a little bit more complicated in the q-difference case than in the differ-
ential case. The second step is a lot simpler (the exponential torus is replaced by a theta
torus and, in the integral slope case, this theta torus is isomorphic to C∗, therefore radi-
cally simpler than the exponential torus). For the last step, the proofs, that we will expose
below, are less intuitive in the q-difference case, than in the differential case; but, in the
end, the results are in some sense simpler: one of the essential simplifications is due to
the fact that the q-resurgent group is unipotent (the differential resurgent group contains,
on the contrary, a lot of Sl2 pairs, because one can play with q and −q, which exchange
the sectors of growth and decay of eq,e−q).

3 Prerequisites (mostly from [27], [28], [22] and [29])

3.1 General facts
Notations, general conventions. We fix q ∈ C such that |q| > 1. We then define the
automorphism σq on various rings, fields or spaces of functions by putting σq f (z) =
f (qz). This holds in particular for the ring C{z} of convergent power series and its field
of fractions C({z}), the ring C[[z]] of formal power series and its field of fractions C((z)),
the ring O(C∗,0) of holomorphic germs and the field M (C∗,0) of meromorphic germs
in the punctured neighborhood of 0, the ring O(C∗) of holomorphic functions and the
field M (C∗) of meromorphic functions on C∗; this also holds for all modules or spaces
of vectors or matrices over these rings and fields. For any such ring (resp. field) R,
the σq-invariants elements make up the subring (resp. subfield) Rσq of constants. The
field of constants of M (C∗,0) and that of M (C∗) can be identified with a field of elliptic
functions, the field M (Eq) of meromorphic functions over the complex torus Eq = C∗/qZ.
We shall write a = π(a)∈Eq for the image of a∈C∗ by the natural projection π : C∗→Eq,
and [a;q] = aqZ = π−1(a) ⊂ C∗ for the preimage of a in C∗, a discrete q-spiral. These
notations extend to subsets A⊂ C∗: A = π(A)⊂ Eq and [A;q] = AqZ = π−1(A)⊂ C∗.

Categories. Let K denote any one of the forementioned fields of functions. Then, we
write Dq,K = K

〈

σ,σ−1〉 for the Öre algebra of non commutative Laurent polynomials
characterized by the relation σ. f = σq( f ).σ. We now define the category of q-difference
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modules in three clearly equivalent ways:

Di f f Mod(K,σq)

= {(E,Φ) / E a K-vector space of finite rank ,Φ : E→ E a σq-linear map}

= {(Kn,ΦA) / A ∈ GLn(K),ΦA(X) = A−1σqX}
= { finite length left Dq,K-modules}.

For instance, a morphism from MA = (Kn,ΦA) to MB = (Kn,ΦB), where A ∈ GLn(K)
and B ∈ GLp(K), is a F ∈Mp,n(K) such that (σq)FA = BF . Then, Di f f Mod(K,σq) is a
C-linear abelian rigid tensor category, hence a tannakian category. Moreover, all objects
in Di f f Mod(K,σq) have the form Dq,K/Dq,KP. In the case of K = C({z}), the category
Di f f Mod(K,σq) will be written E (0) (for “equations near 0”).

Vector bundles and fiber functors. To any module MA in E (0), one can associate a
holomorphic vector bundle FA over Eq:

FA =
(C∗,0)×Cn

(z,X)∼ (qz,A(z)X)
→

(C∗,0)

z∼ qz
= Eq.

This is the usual construction from equivariant bundles except that the germ (C∗,0) is
only endowed with the action of the semigroup q−N instead of a group; correspondingly,
the projection map is not a covering. The pullback F̃A = π∗(FA) over the open Riemann
surface C∗ is the trivial bundle C∗×Cn, but with an equivariant action by qZ. The OEq-
module of sections of FA (also written FA) is the sheaf over Eq defined by: FA(V ) =
{solutions of σqX = AX holomorphic over π−1(V )}. From these two descriptions, the
following is immediate:

Proposition 3.1 This gives an exact faithful ⊗-functor MA FA from E (0) to the cate-
gory Fib(Eq) of holomorphic vector bundles. Taking the fiber of F̃A at a ∈ C∗ yields a
fiber functor ω(0)

a on E (0) over C.

Newton polygon. Any q-difference module M over C({z}) or C((z)), can be given a
Newton polygon N(M) at 0, or, equivalently, a Newton function rM sending the slope 2

µ ∈ S(M)⊂Q to its multiplicity rM(µ) ∈ N∗ (and the µ out of the support S(M) to 0).
For instance, the q-difference operator L = qzσ2− (1 + z)σ + 1 ∈ Dq,K gives rise to the
q-difference equation qzσ2

q f − (1 + z)σq f + f = 0, of which the so-called Tschakaloff
series ∑n≥0 qn(n−1)/2zn is a solution (it is a natural q-analogue of the Euler series). By

vectorisation, this equation gives rise to the system σqX = AX , where A =

(

z−1 z−1

0 1

)

,

and to the module M = MA. The latter is isomorphic to Dq,K/Dq,KL̂, where L̂ = σ2− (z+
1)σ+z = (σ−z)(σ−1) is the dual operator of L. We respectively attach to σ−z and σ−1
the slopes −1 and 0 and take S(M) = {−1,0}, with multiplicities rM(−1) = rM(0) = 1.

2It should be noted that the slopes defined and used in the present paper are the opposites of the slopes
defined in previous papers.
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3.2 Filtration by the slopes
The filtration and the associated graded module. The module M is said to be pure
isoclinic of slope µ if S(M) = {µ} and fuchsian if moreover µ = 0. Direct sums of pure
isoclinic modules are called pure modules 3: they are irregular objects without wild mon-
odromy, as follows from [22] and [29]. The tannakian subcategory of E (0) made up of
pure modules is called E (0)

p . Modules with integral slopes also form tannakian subcate-
gories, which we write E (0)

1 and E (0)
p,1 .

It was proved in [27] that the category E (0)
f of fuchsian modules is equivalent to the cate-

gory of flat holomorphic vector bundles over Eq and that its Galois group G(0)
f is isomor-

phic to Homgr(C∗/qZ,C∗)×C (here, as in the introduction, Homgr means “morphisms
of abstract groups”). Since objects of E (0)

p,1 are essentially Z-graded objects with fuchsian

components, the Galois group of E (0)
p,1 is G(0)

p,1 = C∗×G(0)
f .

Theorem 3.2 [28] Let the letter K stand for the field C({z}) (convergent case) or the
field C((z)) (formal case). In any case, any object M of Di f f Mod(K,σq) admits a unique

filtration (F≤µ(M))µ∈Q by subobjects such that each F(µ)(M) =
F≤µ(M)
F<µ(M) is pure of slope µ

(thus of rank rM(µ)). The F(µ) are endofunctors of Di f f Mod(K,σq) and gr =
L

F(µ) is

a faithful exact C-linear ⊗-compatible functor and a retraction of the inclusion of E (0)
p

into E (0). In particular, the functor gr retracts E (0)
1 to E (0)

p,1 .In the formal case, gr is
isomorphic to the identity functor.

Corollary 3.3 For each a ∈ C∗, the functor ω̂(0)
a = ω(0)

a ◦gr is a fiber functor.

We shall consistently select an arbitrary basepoint a ∈ C∗ and identify the Galois group
G(0) as Aut⊗

(

ω̂(0)
a

)

.

Corollary 3.4 The Galois group G(0) of E (0) is the semi-direct product Sto G(0)
p of the

Galois group G(0)
p of E (0)

p by a prounipotent group, the Stokes group St.

From now on, we only consider modules with integral slopes.
Further studies would have to be based on the work [12] by van der Put and Reversat.

Description in matrix terms. We now introduce notational conventions which will be
used all along this paper for a module M in E (0)

1 and its associated graded module M0 =

gr(M), an object of E (0)
p,1 . The module M may be given the shape M = (C({z})n,ΦA),

3It should be noted that we call in the present paper a pure isoclinic (resp. pure) module what was called
a pure (resp. tamely irregular) module in previous papers.
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with:

(1) A = AU =
de f













zµ1A1 . . . . . . . . . . . .
. . . . . . . . . Ui, j . . .
0 . . . . . . . . . . . .
. . . 0 . . . . . . . . .
0 . . . 0 . . . zµkAk













,

where the slopes µ1 < · · ·< µk are integers, ri ∈ N∗, Ai ∈ GLri(C) (i = 1, . . . ,k) and

U = (Ui, j)1≤i< j≤k ∈ ∏
1≤i< j≤k

Matri,r j(C({z})).

The associated graded module is then a direct sum M0 = P1⊕ ·· ·⊕Pk, where, for 1 ≤
i < j ≤ k, the module Pi is pure of rank ri and slope µi and can be put into the form
Pi = (C({z})ri,ΦzµiAi ). Therefore, one has M0 = (C({z})n,ΦA0), where the matrix A0 is
block-diagonal (it is the same as AU , with all Ui, j = 0).
We write G ⊂ GLn for the algebraic subgroup and g for its Lie algebra, made up of
matrices of the form:

(2) F =













Ir1 . . . . . . . . . . . .
. . . . . . . . . Fi, j . . .
0 . . . . . . . . . . . .
. . . 0 . . . . . . . . .
0 . . . 0 . . . Irk













and f =













0r1 . . . . . . . . . . . .
. . . . . . . . . Fi, j . . .
0 . . . . . . . . . . . .
. . . 0 . . . . . . . . .
0 . . . 0 . . . 0rk













.

For F in G, we shall write F [A] =
(

σqF
)

AF−1 the result of the gauge transformation F
on the matrix A. Theorem 3.2 entails:

∀(Ui, j)1≤i< j≤k ∈ ∏
1≤i< j≤k

Matri,r j(C({z})) , ∃!F̂ ∈G(C((z))) : F̂[A0] = AU .

This F̂ will be written F̂A (where A = AU ). The blocks F̂i, j are recursively computed as
follows. For j < i, F̂i, j = 0. For j = i, F̂i, j = Iri . Then, for j > i, one must solve the non
homogeneous first order equation:

(3) σqF̂i, jzµ j A j− zµiAiF̂i, j = ∑
i<k< j

Ui,kF̂k, j +Ui, j.

Description of the Stokes group. To go further, we choose to fix an arbitrary basepoint
a ∈ C∗ (see the corollary to theorem 3.2) and we identify the Galois groups accordingly:

G(0)
1 =

de f
Gal(E (0)

1 ) = Aut⊗(ω̂(0)
a ).

Recall from the quoted papers the action of the pure component G(0)
p,1 = C∗ ×

Homgr(C∗/qZ,C∗)×C. We keep the notations above. For any A with graded part A0,
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an element (α,γ,λ) ∈G(0)
p,1 yields the automorphism of ω̂(0)

a (A) = ω(0)
a (A0) = Cn given by

the matrix:












αµ1γ(As,1)Aλ
u,1 . . . . . . . . . . . .

. . . . . . . . . 0 . . .
0 . . . . . . . . . . . .
. . . 0 . . . . . . . . .

0 . . . 0 . . . αµk γ(As,k)Aλ
u,k













,

where we have written Ai = As,iAu,i the multiplicative Dunford decomposition (into a
semi-simple and a unipotent factor that commute) and γ acts on a semi-simple matrix
through its eigenvalues. These matrices generate the group G(0)

p,1(A)⊂ GLn(C).

We then have a semi-direct decomposition: G(0)
1 = StoG(0)

p,1, where the Stokes group St

is the kernel of the morphism G(0)
1 → G(0)

p,1. The group St(A) is an algebraic subgroup

of G(C). The above matrix of G(0)
p,1(A) acts by conjugation on the matrix described by

(2): the Fi, j block is sent to αµi−µ j γ(As,i)Aλ
u,iFi, j

(

γ(As, j)Aλ
u, j

)−1. In particular, the group
C∗ acts on the “level δ” upper diagonal µ j− µi = δ (where δ ∈ N) by multiplication by
α−d . The group St(A) is filtered by the normal subgroups Stδ(A) defined by: µ j−µi ≥ δ
(meaning that all blocks such that 0 < µ j−µi < δ vanish).
Likewise, the Lie algebra st(A) = Lie

(

St(A)
)

, which is a subalgebra of g(C), admits an
adjoint action described by the same formulas (this is because logPFP−1 = P logFP−1).
The algebra st(A) is graded by its “level δ” upper diagonals stδ(A), defined by µ j−µi = δ.
As noted in [29], the algebra stδ(A) can be identified with the (group) kernel of the central
extension St(A)/Stδ+1(A)→St(A)/Stδ(A).

3.3 Stokes operators
Algebraic summation. The following computations are extracted from [29]. We need
the following theta function of Jacobi: θq(z) = ∑n∈Z q−n(n+1)/2zn. It is holomorphic in C∗
with simple zeroes, all located on the discrete q-spiral [−1;q]. It satisfies the functional
equation: σqθq = zθq. We then define θq,c(z) = θq(z/c) (for c ∈ C∗); it is holomorphic in
C∗ with simple zeroes, all located on the discrete q-spiral [−c;q] and satisfies the func-
tional equation: σqθq,c = z

cθq,c.
For a given formal class described by A0, µ1, . . . ,µk and r1, . . . ,rk as above, and for any
c ∈ C∗, we introduce the matrix Tc,A0 ∈ Matn(M (C∗)) which is block-diagonal with
blocks θ−µi

c Iri . Moreover, we shall assume the following normalisation due to Birkhoff
and Guenther (see [22], [29]):

∀i < j , all coefficients of Ui, j belong to ∑
µi≤d<µ j

Czd.
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Then, putting A′i = cµiAi ∈ GLri(C) and U ′i, j = (z/c)−µiθµ j−µi
c Ui, j ∈Matri,r j(O(C∗)), we

have:

A′U ′ =
de f

Tc,A0[AU ] =













A′1 . . . . . . . . . . . .
. . . . . . . . . U ′i, j . . .

0 . . . . . . . . . . . .
. . . 0 . . . . . . . . .
0 . . . 0 . . . A′k













.

Now, if the images in Eq of the spectra Sp(A′i) are pairwise disjoint, there is a unique
F ′ ∈ G(O(C∗)) such that F ′[A′0] = A′U ′ . Its coefficients are recursively defined by the
equations:

σqF ′i, jA
′
j−A′iF

′
i, j = ∑

i<k< j
U ′i,kF ′k, j +U ′i, j.

The unique solution of this equation in O(C∗) is obtained by taking the Laurent series:

F ′i, j = ∑
p∈Z

Φ−1
qpA′j,A

′
i
(Vp)zp,

(

∑
p∈Z

Vp zp = ∑
i<k< j

U ′i,kF ′k, j +U ′i, j
)

,

where one writes ΦB,C(M) = MB−CM (that map is one to one if and only if Sp(B)∩
Sp(C) = /0). Note for further use that the condition we have to impose on the spectra is
the following:

(4) ∀i < j , qZcµiSp(Ai)∩qZcµ j Sp(A j) = /0.

This is equivalent to requiring that c 6∈ ΣA0 , where ΣA0 is some explicit finite subset of Eq.
From the equalities A′U ′ = Tc,A0[AU ], A′0 = Tc,A0[A0] and F ′[A′0] = A′U ′ , we get at last
F[A0] = AU , where F = T−1

c,A0
F ′Tc,A0 can be easily computed: it belongs to G(M (C∗))

and Fi, j = θµi−µ j
c F ′i, j. The condition that the F ′i, j are holomorphic over C∗ is equivalent to

the following condition:

(5) ∀i < j , Fi, j has poles only on [−c;q], and with multiplicities ≤ µ j−µi.

Then, we get the following conclusion: there is a unique F ∈ G(M (C∗)) such that con-
dition (5) holds and F[A0] = AU . Note that the condition depends on c ∈ Eq rather than c.
To summarize the discussion:

Proposition 3.5 For every c ∈C∗ satisfying condition (4) (i.e., c 6∈ ΣA0), there is a unique
F ∈G(M (C∗)) satisfying condition (5) and such that F[A0] = AU . We consider this F as
obtained by summation of F̂A in the direction c ∈ Eq and, accordingly, write it ScF̂A.

If we now choose two q-directions of summation c,d ∈ Eq, the ambiguity of summation
is expressed by:

(6) Sc,dF̂A =
de f

(ScF̂A)−1SdF̂A.

This is a meromorphic automorphism of A0. As explained in [22] and [29], it is a Stokes
operator.
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Case of one level. For further use, we now specialize some of the previous results to the
case of two (integral) slopes µ < ν, and only one “level” δ = ν− µ ∈ N∗. For simplicity,
we write our matrices:

(7) M0 =

(

zµA 0
0 zνB

)

and M =

(

zµA zµUB
0 zνB

)

,

where A ∈GLr(C), B ∈GLs(C) and U ∈Matr,s(Cδ−1[z]) (polynomials with degree < δ).
It is clear that the upper right block can indeed be written in such a way. Then the unique

element of G(C((z))) which sends M0 to M is the matrix
(

Ir F
0 Is

)

, where F is the unique

element of Matr,s(C((z))) such that:

(8) zδσqF−Λ(F) = U,

Here, we have written Λ(F) = AFB−1 (thus, an endomorphism of Matr,s(C) and similar
spaces). The formal solution F can be computed by identification of coefficients, i.e. by
solving:

(9) ∀n ∈ Z , qn−δFn−δ−AFnB−1 = Un.

Similarly, the unique element of G(M (C∗)) such that condition (5) holds which sends

M0 to M is the matrix
(

Ir F
0 Is

)

, where F is the unique of Matr,s(M (C∗)) with poles only

on [−c;q] and with multiplicities ≤ d which is solution of equation (8). This is solved by
putting F = θ−δ

c G, so that G is a solution holomorphic on C∗ of the following equation:

(10) cδσqG−Λ(G) = V, where G = θδ
cF and V = θδ

cU.

This can be solved by identification of coefficients of the corresponding Laurent series,
i.e. by solving:

(11) ∀n ∈ Z , cδqnGn−AGnB−1 = Vn.

This is possible if cδqZ∩ Sp(A)/Sp(B) = /0, which is precisely condition (4) specialized
to the present setting. Then we can take Gn = (cδqnId−Λ)−1Vn.

4 Stokes operators and alien derivations

4.1 Stokes operators are galois
We take on the notations of section 3.2 and consider moreover another object B, to which
we apply similar notations: graded B0, diagonal blocks B j corresponding to slopes ν j
with multiplicities s j, etc.
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Lemma 4.1 (i) Assume the following condition:

(12) ∀i < i′, j < j′ , qZcµi+ν j Sp(Ai)Sp(B j)∩qZcµi′+ν j′Sp(Ai′)Sp(B j′) = /0.

Then:

(13) ScF̂A⊗B = (ScF̂A)⊗ (ScF̂B).

(ii) Assume the following condition:

(14) ∀i, j such that µi < ν j , qZcµiSp(Ai)∩qZcν jSp(B j) = /0.

Then, for any morphism F : A→ B, writing F0 = grF, we have:

(15) F ScF̂A = ScF̂B F0.

Proof. - (i) From elementary properties of the tensor product, we draw that the diagonal
blocks of A⊗B are the zµi+ν jAi⊗B j and that Sp(Ai⊗B j) = Sp(Ai)Sp(B j); thus the right
hand side of the equality is a morphism from gr(A⊗B) = A0⊗B0 to A⊗B satisfying
condition (5) on poles: it has to be ScF̂A⊗B.
(ii) From the functoriality of the filtration, we know that F only has rectangular blocks
relating slopes µi ≤ ν j, and that F0 is made up of those such that µi = ν j. It is sen-
sible to call the latter “diagonal blocks”. Then, the compositum (ScF̂B)−1F ScF̂A is a
(meromorphic) morphism from A0 to B0, with diagonal F0 (since ScF̂A and ScF̂B are in
G) and with 0 under the diagonal. Any block Fi, j such that µi < ν j has all its poles on
[−c;q], and with multiplicities≤ ν j−µi; thus, Fi, j = θµi−ν j

c F ′i, j, where F ′i, j is holomorphic
on C∗ and satisfies: σqF ′i, jc

µ j A j = cµiAiF ′i, j The same computation (with the Laurent
series) as in section 3.3 shows that, under condition (14), this implies F ′i, j = 0. Therefore
(ScF̂B)−1F ScF̂A = F0 and (15) holds. �

In terms of the fiber functors introduced after theorem 3.2, the meaning of the above
lemma is that, under proper restrictions to ensure that ScF̂A is well defined at a,and that
the nonresonancy conditions (12) and (14) hold for any pair of objects, A ScF̂A(a) is an
⊗-isomorphism from ω̂(0)

a to ω(0)
a . For any pure A0, taking up the previous notations, we

therefore define, first its “weighted spectrum” and singular locus:

WSp(A0) = the subgroup of Eq×Z generated by
[

i

(

Sp(Ai)×{µi}
)

,

Σ̃(A0) =
[

µ6=0

{c ∈ Eq / (µc,µ) ∈WSp(A0)}.

Proposition 4.2 Let < A > be the tannakian subcategory of E (0)
1 generated by A. Fix

c 6∈ Σ̃(A0) and a 6∈ [−c;q]. Then B ScF̂B(a) is an ⊗-isomorphism from ω̂(0)
a to ω(0)

a ,
both being restricted to < A >.
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Proof. - Apply the lemma and the formulas giving the slopes of linear constructions in
[28]. �

Now we recall, from [29] that, for a pure object A = A0, all the ScF̂A are equal (they
are indeed equal to the formal Stokes operator F̂A which is actually analytic).

Theorem 4.3 With the same restrictions, fix an arbitrary c0 6∈ Σ̃(A0)∪{−a}. Then, for
all c 6∈ Σ̃(A0)∪{−a}, we have, using notation (6):

Sc0,cF̂A(a) ∈St(A).

Proof. - By the above proposition, it is in the Galois group; by the remark above, it is
killed by the functor gr. �

Corollary 4.4 We get a family of elements of Lie-like automorphisms: LSc,a(A) =
de f

log(Sc0,cF̂A(a)) ∈ st(A).

Now, although the functoriality and⊗-compatibility were proved only for c 6∈ Σ̃(A0)∪
{−a}, the above formula is actually well defined for all c 6∈ ΣA0 ∪{−a}. Moreover, from
the explicit computation in section 3.3 (multiplications by powers of θc and resolution
of recursive equations by inversion of ΦqpA′j,A

′
i
), we see that the mapping c 7→ LSc,a(A)

is meromorphic on Eq, with poles on ΣA0 . Moreover, it takes values in the vector space
st(A) for all c except for a denumerable subset: therefore, it takes all its values in st(A).
Last, taking residues at a pole is an integration process and gives values in the same vector
space.

Theorem 4.5 Define the q-alien derivations by the formula:

∆̇c(A) = Resd=cLSd,a(A).

Then, ∆̇c(A) ∈ st(A). (In order to alleviate the notation, we do not mention the arbitrary
basepoint a ∈ C∗.)

Of course, for c 6∈ΣA0 , we have ∆̇c(A) = 0. According to the graduation of st described
at the end of section 3.2, each alien derivation admits a canonical decomposition:

(16) ∆̇ =
M

δ≥1

∆̇(δ)
c ,

where ∆̇(δ)
c (A) ∈ stδ(A) has only non null blocks for µ j−µi = δ.

Theorem 4.6 The alien derivations are Lie-like ⊗-endomorphisms of ω̂(0)
a over E (0)

1 .
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Proof. - This means first that they are functorial; for all morphisms F : A→ B, one has:

∆̇c(B)◦ ω̂(0)
a (F) = ω̂(0)

a (F)◦ ∆̇c(A).

Note that ω̂(0)
a (F) = F0(a). First assume the previous restrictions on c. Then, from the

lemma 4.1, we get that Sc0,cF̂B(a) ◦F0(a) = F0(a) ◦ Sc0,cF̂A(a). Now, the logarithm of a
unipotent matrix P being a polynomial of P, we have R◦Q = Q◦P⇒ logR◦Q = Q◦ logP,
so that we have LSc,a(B)◦F0(a) = F0(a)◦LSc,a(A) and we take the residues on both sides.
Now that the equality is established outside a denumerable set of values of c, we can
extend it to all values by holomorphy.
The assertion means, second, Lie-like ⊗-compatibility:

∆̇c(A⊗B) = 1⊗ ∆̇c(B)+ ∆̇c(A)⊗1,

where the left and right 1 respectively denote the identities of ω̂(0)
a (A) and ω̂(0)

a (B). This
equality makes sense because ω̂(0)

a is itself ⊗-compatible. From the lemma 4.1 we get
first that LSc,a(A⊗B) = LSc,a(A)⊗LSc,a(A). Then, we note that, for any two unipotent
matrices P and Q, the commuting product P⊗Q = (P⊗ 1)(1⊗Q) = (1⊗Q)(P⊗ 1)
entails log(P⊗Q) = (logP)⊗1+1⊗ (logQ). The proof is then finished as above. �

4.2 Alien derivations and q-Borel transform
Let δ ∈ N∗ and assume that the matrix A of (1) has only null blocks Ui, j for µ j− µi < δ.
Then, in the computation (3), we find the following equation for µ j−µi < δ: σqF̂i, jzµ j A j−
zµiAiF̂i, j = 0. Likewise, the upper diagonal blocks of any ScF̂A satisfy exactly the same
equations. These have no non trivial formal solution, neither non trivial meromorphic wih
less than (µ j− µi) poles modulo qZ (this follows from 3.3). Hence, as well F̂A as all the
summations ScF̂A have null blocks Fi, j for 0 < µ j−µi < δ.
On level µ j−µi = δ, the equations to be solved are:

σqFi, jzµ j A j− zµiAiFi, j = Ui, j,

which is of the same type as those of 3.3. The properties of this first non trivial level
of F̂A and ScF̂A will play a crucial role in [21]. Indeed, the logarithm logF has, as first
non trivial level the same level δ, and the corresponding diagonal is equal to that of F .
Therefore, after taking residues, on gets straightaway the ∆̇(δ)

c . To study it in some detail,
we therefore take again the light notations of 3.3.

Solving (8) with q-Borel transforms. We consider δ ∈ N∗ as fixed, to alleviate nota-
tions. Let the Laurent series expansion:

θδ = ∑
n∈Z

tnzn.
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Then, from the functional equation σqθδ = zδθδ, we draw the recurrence relations:

∀n ∈ Z , tn−δ = qntn.

From this, we get the useful estimation:

tn ≈ |q|−n2/2δ.

The notation un ≈ vn for positive sequences here means “same order of magnitude up to
a polynomial factor”, more precisely:

un ≈ vn⇐⇒∃ R > 0 : un = O(Rnvn) and vn = O(Rnun).

Now, for any Laurent series F(z) = ∑Fnzn ∈ E⊗C[[z,z−1]] with coefficients Fn in some
finite dimensional C-vector space E, we define its q-Borel transform at level δ by the
formula:

B(δ)
q F(ξ) = ∑ t−nFnξn ∈ E⊗C[[ξ,ξ−1]].

This transformation strongly increases the convergence properties; for instance, if F ∈
E⊗C{z}, then B (δ)

q F ∈ E⊗O(C), etc. Since we are interested in analyticity of B (δ)
q F ,

we introduce conditions on the order of growth of coefficients, adapted from [15]. Let
G ∈ E⊗C((ξ)) = E⊗C[[ξ]][ξ−1]. We say that G := ∑Gnξn ∈ E⊗C({ξ})q,δ if ‖ Gn ‖=

O(Rnq−n2/2d) for some R > 0. We say that G ∈ E⊗C({ξ})q,(δ) if ‖Gn ‖= O(Rnq−n2/2d)
for all R > 0. In the case that, moreover, G has no pole at 0 (G ∈ C[[ξ]]), we respec-
tively say that G ∈ E ⊗C{ξ}q,δ, resp. G ∈ E ⊗C{ξ}q,(δ). Thus, we have the obvious
equivalences:

F ∈ E⊗C{z} ⇐⇒ B(δ)
q F ∈ E⊗C{ξ}q,δ,

F ∈ E⊗C({z}) ⇐⇒ B (δ)
q F ∈ E⊗C({ξ})q,δ,

F ∈ E⊗O(C) ⇐⇒ B(δ)
q F ∈ E⊗C{ξ}q,(δ),

F ∈ E⊗O(C)[z−1] ⇐⇒ B(δ)
q F ∈ E⊗C({ξ})q,(δ).

With the notations of equation (8), write G = B (δ)
q F = ∑Gnξn and V = B(δ)

q U =

∑Gnξn (so that Gn = t−nFn and Vn = t−nUn). Then, multiplying relation (9) by t−n and
noting that qn−δt−n = t−(n−δ), we get:

∀n ∈ Z , Gn−δ−Λ(Gn) = Vn.

Multiplying by ξn and summing for n ∈ Z yields:

(ξδId−Λ)B(δ)
q F(ξ) = B(δ)

q U(ξ).

Since U has a positive radius of convergence, B (δ)
q U(ξ) is an entire function. For F to

be a convergent solution, it is necessary that B (δ)
q F be an entire function. We shall now
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appeal to linear algebra. We first write A = AsAu and B = BsBu the multiplicative Dunford
decompositions. Then A1/δ

u and B1/δ
u are well defined. In order to define A1/δ

s and B1/δ
s ,

it is enough to choose a mapping x 7→ x1/δ on C∗ and to apply it to the eigenvalues. We
then put A1/δ = A1/δ

s A1/δ
u , B1/δ = B1/δ

s B1/δ
u and get a linear map L : F 7→ A1/δF(B1/δ)−1,

which is a δth root of Λ. Call µδ the set of δth roots of 1 in C.

Lemma 4.7 Let E be a finite dimensional C-vector space, A an endomorphism of E and
R be any of the following algebras of functions: O(C); O(C)[ξ−1]; C{ξ}q,δ; C({ξ})q,δ;
C{ξ}q,(δ); C({ξ})q,(δ). Then the linear operator (ξδ−Aδ) maps injectively E ⊗R into
itself, its image has a finite codimension δdimE and there is an explicit projection formula
on the supplementary space E⊕·· ·⊕Eξδ−1 of the image:

V 7→ ∑
j∈µδ

d( jA)δ−1Pj(A,ξ)V ( jA),

where Pj(A,ξ) and V ( jA) respectively are the following linear operator and vector:

Pj(A,ξ) =
δ−1

∑
i=0

( jA)i ξδ−1−i, V ( jA) = ∑( jA)nVn ∈ E, (where V = ∑Vnξn is entire).

Proof. - The algebraic part of the proof rests on the following computation:

1 = ∑
j∈µδ

δ( ja)δ−1Pj(a,X), where Pj(a,X) =
Xδ−aδ

X−a
=

δ−1

∑
i=0

( ja)i Xδ−1−i.

From this, we draw:

V (ξ) = ∑
j∈µδ

δ( jA)δ−1Pj(A,ξ)V(ξ)

= ∑
j∈µδ

δ( jA)δ−1Pj(A,ξ)
(

V (ξ)−V ( jA)
)

+ ∑
j∈µδ

δ( jA)δ−1Pj(A,ξ)V( jA);

then we note that, since Pj(A,ξ)(ξ− jA) = ξδ−Aδ, the first term of the last right hand
side is in the image of the linear operator (ξδ−Aδ). The second term plainly belongs to
the supplementary space E⊕·· ·⊕Eξδ−1.
Then, there are growth conditions on the coefficients to be checked. In the case of
O(C); O(C)[ξ−1], they are standard. In the case of C{ξ}q,δ, C({ξ})q,δ, C{ξ}q,(δ) and
C({ξ})q,(δ), they follow from the estimations given in the proof of lemma 2.9 of [29]. �

Theorem 4.8 With the notations of section 3.3, equation (8) has a convergent solution if,
and only if, B(δ)

q U( jL) = 0 for all j ∈ µδ. More precisely, the family
(

B(δ)
q U( jL)

)

j∈µδ
∈

Matr,s(C)µδ 'Matr,s(C)δ is a complete set of invariants for analytic classification within
the formal class M0.
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Solving (8) with θ functions and residue invariants. From the computations in the
one level case of 3.3, we see that the only solution of (8) such that condition (5) holds is
given by the explicit formula:

Fc(z) =
1
θδ

c
∑
n∈Z

(cδqnId−Λ)−1 Vn zn, where V = θδ
cU.

A short computation shows that V = ∑ tpc−pUnzn+p, so that, V0 = ∑ t−ncnUn = B(δ)
q U(c).

In order to compute explicitly the alien derivation in the one level case, it is convenient
to normalize the setting, by requiring that all eigenvalues of A and B lie in the funda-
mental annulus 1≤ |z|< |q| (up to shearing transformation, this is always possible). We
may further decompose the pure blocks zµA and zνB into their corresponding character-
istic subspaces. In other words, we may (and shall) assume here that A and B are block
diagonal, each block Aα (resp. Bβ) have the unique eigenvalue α (resp. β), this lying
in the fundamental annulus. We write Λα,β, Lα,β, Uα,β, and compute the corresponding

component ∆̇(δ,α,β)

ξ
(M) of ∆̇(δ)

ξ
(M). Let ξ ∈ C∗ be a prohibited (polar) value of c. This

means that one of the matrices (ξδqnId−Λα,β) is singular, so that ξδqn = α/β. From the
normalisation condition, we see that this can occur only for one value of n. Since residues
are actually defined on Eq, one can choose ξ such that the bad value of n is n = 0. Then,
we are to compute:

∆̇(δ,α,β)

ξ
(M) = Resc=ξ

1
θδ

c(a)
(cδId−Λα,β)

−1B(δ)
q Uα,β(c).

Note that the arbitrary basepoint a ∈ C∗ (which provides us with the fiber functor ω̂(0)
a )

appears only in the theta factor. As in the previous section, we introduce Lα,β such that
Lδ

α,β = Λα,β and get, from the same formulas as before:

∆̇(δ,α,β)

ξ
(M) = Resc=ξ

1
θδ

c(a)
∑
j∈µδ

δ( jα,βL)δ−1(c− jLα,β)
−1B(δ)

q Uα,β(c).

Now, ξ is an eigenvalue of one and only one of the jLα,β, call it Lξα,β. From classical
“holomorphic functional calculus” (see e.g. [26]), we get:

∆̇(δ,α,β)

ξ
(M) = θ−δ(L−1

ξα,β)δLδ−1
ξα,β B(δ)

q Uα,β(Lξα,β).

Recall that, as in loc. cit., the theta factor is the application of a holomorphic function to
a linear operator.

Theorem 4.9 Call Φa the automorphism of Matr,s(C)µδ, which, on the (α,β) component,
is left multiplication by θ−δ(L−1

ξα,β). Then Φa sends the q-Borel invariant
(

B(δ)
q U( jL)

)

j∈µδ

to the ∆̇ invariant:
L

ξ
∆̇(δ)

ξ
(M).
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Here is an example similar to that at the end of section 3.1. We take M =

(

α u
0 βz

)

,

where α,β∈C∗ and u ∈C{z}. The slopes are µ = 0 and ν = 1 and the only level is δ = 1.
The associated non homogeneous equation is βzσq f −α f = u, which, in the Borel plane,
becomes (βξ−α)B (1)

q f = B(1)
q u, and the obstruction to finding an analytical solution is

the complex number B (1)
q u(α/β). This is also the invariant associated to the analytical

class of M within its formal class.
On the side of resolution with θ and residues, we first get: fc(z) =

1
θc

∑n∈Z(cqn −

αβ−1)−1 vn zn, where v = θcu, then the only non trivial alien derivation, given for ξ = α/β:

∆̇(δ)

ξ
= Resc=ξ fc(a) = Resc=ξ

1
θc(a)

(c−ξ)−1B(1)
q u(c) =

1
θ(a/ξ)

B(1)
q u(ξ).

5 Conclusion
The construction of the alien derivations in the differential and q-difference case are
apparently quite different. In fact, it is possible to reformulate things in the differential
case to exhibit some analogy; one can mimick the constructions of the q-difference case:
in place of a meromorphic function of a q-direction of summation in Eq, one gets in the
differential case a locally constant function of a direction of summation in S1 minus a
finite singular set, the poles being replaced by “jump points”. The jumps are evaluated
by a non-abelian boundary value: one gets the Stokes operators. The alien derivation are
the logarithms of these operators. There is a slight difference with the q-difference case:
in this last case, we took the logarithm before evaluating the singularity by a residue.
We remark that to consider locally constant functions on S1 with a finite set of jumps as
the differential analog of meromorphic functions in the q-difference case is in perfect
accordance with the study of the confluence process by the second author in [30].

Our constructions suggest some interesting problems.
1. If we consider the computation of the q-alien derivations ∆̇ξ in simple cases, there
appears theta factors and factors coming from a q-Borel transform. In the simplest cases
we can define (pointed) alien derivations ∆̇ξ as operators acting on some q-holonomic
power series, and, eliminating the theta factors, we can observe that this modified q-
derivative of a power series is itself a power series: we get a new operator, an unpointed
alien derivation ∆ξ. This suggests the possibility to copy the Ecalle’s definition of alien
derivations (cf. [4]) in the q-difference case: a resurgence lattice in the Borel plane is
replaced by the set of singularities in the different q-Borel planes corresponding to the
different q-levels δ ∈ N∗ (the q-direction of summation being fixed), the Ecalle’s analytic
continuation paths by summation paths “between the levels” and the boundary values
by residues. In this program it is important to remark that the “algebraic” definition of
summability used in this paper is equivalent to “analytic” definitions in Borel-Laplace
style [11, 25, 32]
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2. The global classification: we must put together the work of [27] and the results of
the present article (at zero and infinity). It is not difficult to guess what will happen and
to describe a “fundamental group” which is Zariski dense in the tannakian Galois group,
but some great problems remain: even in the regular singular case, we know neither the
structure of the global tannakian Galois group (except in the abelian case), nor if there
exists a reasonable “localisation theory” for the singularities on C∗ (between 0 and ∞).
3. The confluence problem. Some simple examples suggest an extension of the results of
the second author (cf. [30]) to the irregular case: confluence of q-Stokes phenomena at
0 to Stokes phenomena. It is natural to study what will happen with the alien derivations
(there is no hope with the pointed q-alien derivations, due to the bad properties of theta
functions in the confluence processes, but it could work nicely with the unpointed q-alien
derivations).
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