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The Lax pair for the sixth Painlevé equation
arising from Drinfeld-Sokolov hierarchy

Takao Suzuki and Kenta Fuji
Department of Mathematics, Kobe University

Rokko, Kobe 657-8501, Japan

Introduction

In a recent work [FS], we showed that the sixth Painlevé equation arises

from a Drinfeld-Sokolov hierarchy of type D
(1)
4 by a similarity reduction. We

actually discuss a derivation of the symmetric representation of PVI given in
[Kaw].

On the other hand, PVI can be expressed as the Hamiltonian system; see
[IKSY, O]. Also it is known that this Hamiltonian system is equivalent to
the compatibility condition of the Lax pair associated with ŝo(8); see [NY].

In this article, we discuss the derivation of this Lax pair from the Drinfeld-
Sokolov hierarchy.

1 Lax pair for PVI associated with ŝo(8)

The sixth Painlevé equation can be expressed as the following Hamiltonian
system:

dq

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂q
, (1.1)

with the Hamiltonian

t(t − 1)H = q(q − 1)(q − t)p2 − {(α0 − 1)q(q − 1)

+ α3q(q − t) + α4(q − 1)(q − t)}p + α2(α1 + α2)q,
(1.2)

satisfying the relation

α0 + α1 + 2α2 + α3 + α4 = 1.
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Let ε1, . . . , ε4 be complex constants defined by

α0 = 1 − ε1 − ε2, α1 = ε1 − ε2, α2 = ε2 − ε3,

α3 = ε3 − ε4, α4 = ε3 + ε4.

Consider the system of linear differential equations

(z∂z + M)ψ = 0, ∂tψ = Bψ, (1.3)

for a vector of unknown functions ψ = t(ψ1, . . . , ψ8). Here we assume that
the matrix M is defined as

M =



ε1 1 0 0 0 0 0 0
0 ε2 −p −1 −1 0 0 0
0 0 ε3 q − 1 q 0 0 0
0 0 0 ε4 0 −q 1 0
0 0 0 0 −ε4 1 − q 1 0
−z 0 0 0 0 −ε3 p 0

(t − q)z 0 0 0 0 0 −ε2 −1
0 (q − t)z z 0 0 0 0 −ε1


,

and the matrix B is defined as

B =



u1 x1 y1 0 0 0 0 0
0 u2 x2 −y3 −y4 0 0 0
0 0 u3 x3 x4 0 0 0
0 0 0 u4 0 −x4 y4 0
0 0 0 0 −u4 −x3 y3 0
0 0 0 0 0 −u3 −x2 −y1

−z 0 0 0 0 0 −u2 −x1

0 z 0 0 0 0 0 −u1


.

Theorem 1.1 ([NY]). Under the compatibility condition for (1.3), the vari-
ables xi, yi and ui are determined as elements of C(α1, α2, α3, α4, q, p, t). The
compatibility condition is then equivalent to the Hamiltonian system (1.1)
with (1.2).

Here we do not describe the explicit forms of ui, xi and yi.

2 Affine Lie algebra

In the notation of [Kac], g = g(D
(1)
4 ) is the affine Lie algebra generated by

the Chevalley generators ei, fi, α∨
i (i = 0, . . . , 4) and the scaling element d
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with the generalized Cartan matrix defined as

A = (aij)
4
i,j=0 =


2 0 −1 0 0
0 2 −1 0 0
−1 −1 2 −1 −1
0 0 −1 2 0
0 0 −1 0 2

 .

We denote the Cartan subalgebra of g by h. The canonical central element
of g is given by

K = α∨
0 + α∨

1 + 2α∨
2 + α∨

3 + α∨
4 .

We consider the Z-gradation g =
⊕

k∈Z gk(s) of type s = (1, 1, 0, 1, 1) by
setting

deg h = deg e2 = deg f2 = 0, deg ei = 1, deg fi = −1 (i = 0, 1, 3, 4).

This gradation is defined by

gk(s) = {x ∈ g
∣∣ [ds, x] = kx} (k ∈ Z),

where
ds = 4d + 2α∨

1 + 3α∨
2 + 2α∨

3 + 2α∨
4 ∈ h.

Denoting by e2i = [e2, ei], we choose the graded Heisenberg subalgebra of g

s = {x ∈ g
∣∣ [x, Λ] = CK},

of type s = (1, 1, 0, 1, 1) with

Λ = e0 − e1 + e3 − e20 + e23 + e24.

The positive part of s has a graded basis {Λ2k−1,1, Λ2k−1,2}∞k=1 such that

Λ1,1 = Λ, Λ1,2 = e0 − e3 + e4 + e20 + e21 + e23,

[ds, Λ2k−1,i] = (2k − 1)Λ2k−1,i, [Λ2k−1,i, Λ2l−1,j] = 0.

Let n+ be the subalgebra of g generated by ej (j = 0, . . . , 4), and let b+

be the borel subalgebra of g defined by b+ = h⊕n+. Then the compatibility
condition for (1.3) is equivalent to the system on b+

∂t(M) = [B, ds + M ], (2.1)

with

M = h(ε) + (q − t)e0 + e1 − pe2 + (q − 1)e3 + qe4 − e20 − e23 − e24,

B = h(u) + e0 + x1e1 + x2e2 + x3e3 + x4e4 + y1e21 + y3e23 + y4e24,
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where ε = (ε1, ε2, ε3, ε4) and u = (u1, u2, u3, u4). Here we set

h(ε) = (1 − ε1 − ε2)α
∨
0 + (ε1 − ε2)α

∨
1

+ (ε2 − ε3)α
∨
2 + (ε3 − ε4)α

∨
3 + (ε3 + ε4)α

∨
4 .

We derive the system (2.1) from the Drinfeld-Sokolov hierarchy associated
with the Heisenberg subalgebra s by a similarity reduction.

3 Drinfeld-Sokolov hierarchy

In the following, we use the notation of infinite dimensional groups

G<0 = exp(ĝ<0), G≥0 = exp(ĝ≥0),

where ĝ<0 and ĝ≥0 are completions of g<0 =
⊕

k<0 gk(s) and g≥0 =
⊕

k≥0 gk(s)
respectively.

Introducing the time variables tk,i (i = 1, 2; k = 1, 3, 5, . . .), we consider
the Sato equation for a G<0-valued function W = W (t1,1, t1,2, . . .)

∂k,i(W ) = Bk,iW − WΛk,i (i = 1, 2; k = 1, 3, 5, . . .), (3.1)

where ∂k,i = ∂/∂tk,i and Bk,i stand for the g≥0-component of WΛk,iW
−1 ∈

ĝ<0 ⊕ g≥0. The Zakharov-Shabat equation

[∂k,i − Bk,i, ∂l,j − Bl,j] = 0 (i, j = 1, 2; k, l = 1, 3, 5, . . .), (3.2)

follows from the Sato equation (3.1). Let

Ψ = W exp(ξ), ξ =
∑
i=1,2

∑
k=1,3,...

tk,iΛk,i.

Then the Zakharov-Shabat equation (3.2) can be regarded as the compati-
bility condition of the Lax form

∂k,i(Ψ) = Bk,iΨ (i = 1, 2; k = 1, 3, 5, . . .). (3.3)

Assuming that tk,1 = tk,2 = 0 for k ≥ 3, we require that the following
similarity condition is satisfied:

ds(Ψ) = (t1,1B1,1 + t1,2B1,2)Ψ. (3.4)

The compatibility condition for (3.3) and (3.4) is expressed as

[ds − t1,1B1,1 − t1,2B1,2, ∂1,i − B1,i] = 0 (i = 1, 2). (3.5)
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We regard the systems (3.2) and (3.5) as a similarity reduction of the Drinfeld-

Sokolov hierarchy of type D
(1)
4 .

Let S ⊂ C2 be an open subset with coordinates t = (t1,1, t1,2). Also let

M = ds − t1,1B1,1 − t1,2B1,2 ∈ O(S; g≥0),

B = B1,1dt1,1 + B1,2dt1,2 ∈ Ω1(S; g≥0).

Then the similarity reduction is expressed as

dtM = [B,M], dtB = B ∧ B. (3.6)

4 Derivation of PVI

The operator M ∈ g≥0 is expressed as

M = (terms of degree 0) − t1,1Λ1,1 − t1,2Λ1,2.

We consider the gauge transformation for the Lax form (3.4) such that M →
M̃ ∈ O(S; b+).

We first consider a gauge transformation Ψ̂ = exp(ζ) exp(ξe2)Ψ, where
ζ =

∑
j=0,1,3,4 ζjα

∨
j . This is lifted to the transformation on g≥0:

M̂ = exp(ad(ζ)) exp(ad(ξe2))M,

dt − B̂ = exp(ad(ζ)) exp(ad(ξe2))(dt − B).

We look for gauge parameters ζ and ξ such that

M̂ = (terms of degree 0) − c0e0 − e1 − c3e3 − c4e4 − e20 − e23 − e24.

where cj ∈ C(t) (j = 0, 3, 4). Such gauge parameters are determined uniquely
as ξ = t1,2/t1,1 and

ζ0 =
1

2
log{(t21,1 + 2t1,1t1,2 − t21,2)(t

2
1,1 + t21,2)t

−2
1,1},

ζ1 = −1

2
log(−t1,1),

ζ3 =
1

2
log{(−t21,1 + 2t1,1t1,2 + t21,2)(t

2
1,1 + t21,2)t

−2
1,1},

ζ4 =
1

2
log{(t21,1 + 2t1,1t1,2 − t21,2)(−t21,1 + 2t1,1t1,2 + t21,2)t

−2
1,1}.
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Here each cj is described explicitly as

c0 = − 1

t1,1

(t1,1 + t1,2)(t
2
1,1 + 2t1,1t1,2 − t21,2)(t

2
1,1 + t21,2),

c3 = − 1

t1,1

(t1,1 − t1,2)(−t21,1 + 2t1,1t1,2 + t21,2)(t
2
1,1 + t21,2),

c4 = − 1

t1,1

t1,2(t
2
1,1 + 2t1,1t1,2 − t21,2)(−t21,1 + 2t1,1t1,2 + t21,2).

We next consider a gauge transformation Ψ̃ = exp(−λf2)Ψ̂. This is lifted
to the transformation on g≥0:

M̃ = exp(ad(−λf2))M̂, dt − B̃ = exp(ad(−λf2))(dt − B̂).

Denoting by η +ϕe2 +ψf2 and u+xe2 + yf2 the terms of degree 0 of M̂ and
B̂ respectively, we look for a gauge parameter λ such that M̃ ∈ O(S; b+)

and B̃ ∈ Ω1(S; b+), namely

ϕλ2 + (η|α∨
2 )λ − ψ = 0, dtλ = xλ2 + (u|α∨

2 )λ − y, (4.1)

where ( | ) stands for the normalized invariant form. We can verify that the
second equation of (4.1) follows from the first equation. Hence the gauge
parameter λ = λ(t) can be determined and we obtain

M̃ = κ + µe2 + (λ − c0)e0 − e1 + (λ − c3)e3 + (λ − c4)e4 − e20 − e23 − e24,

where κ ∈ h and µ = µ(t). Note that dtκ = 0. By definition, it is clear that

the operators M̃ and B̃ satisfy

dtM̃ = [B̃,M̃]. (4.2)

Finally, we consider a transformation of time variables (t1,1, t1,2) → (t1, t2)
such that

∂1(c0 − c4) = −4, ∂1(c3 − c4) = 0.

Then by setting

q =
λ − c4

c3 − c4

, p =
1

4
(c3 − c4)µ, αj =

1

4
(κ|α∨

j ), t =
c0 − c4

c3 − c4

,

we arrive at

Theorem 4.1. Under the specialization t2 = 1, the system (4.2) is equivalent
to the compatibility condition of (1.3) that gives the sixth Painlevé equation.
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