Title	The Lax Drinfeld－S A spects of Deformati	uation arising from ，A nalytic and Geometric ations and their
Author（s）	Suzuki，T	
Citation	$\begin{aligned} & \text { 数理解析 } \\ & \text { (2007), B2 } \end{aligned}$	S Kokyuroku Bessatsu
Issue Date	2007－03	
URL	http：／hdl．	
Right		
Type	Departme	
Textversion	publisher	

The Lax pair for the sixth Painlevé equation arising from Drinfeld-Sokolov hierarchy

Takao Suzuki and Kenta Fuji
Department of Mathematics, Kobe University Rokko, Kobe 657-8501, Japan

Introduction

In a recent work [FS], we showed that the sixth Painlevé equation arises from a Drinfeld-Sokolov hierarchy of type $D_{4}^{(1)}$ by a similarity reduction. We actually discuss a derivation of the symmetric representation of P_{VI} given in [Kaw].

On the other hand, P_{VI} can be expressed as the Hamiltonian system; see [IKSY, O]. Also it is known that this Hamiltonian system is equivalent to the compatibility condition of the Lax pair associated with $\widehat{\mathfrak{s o}}(8)$; see [NY].

In this article, we discuss the derivation of this Lax pair from the DrinfeldSokolov hierarchy.

1 Lax pair for P_{VI} associated with $\widehat{\mathfrak{s o}(8)}$

The sixth Painlevé equation can be expressed as the following Hamiltonian system:

$$
\begin{equation*}
\frac{d q}{d t}=\frac{\partial H}{\partial p}, \quad \frac{d p}{d t}=-\frac{\partial H}{\partial q} \tag{1.1}
\end{equation*}
$$

with the Hamiltonian

$$
\begin{align*}
t(t-1) H= & q(q-1)(q-t) p^{2}-\left\{\left(\alpha_{0}-1\right) q(q-1)\right. \\
& \left.+\alpha_{3} q(q-t)+\alpha_{4}(q-1)(q-t)\right\} p+\alpha_{2}\left(\alpha_{1}+\alpha_{2}\right) q, \tag{1.2}
\end{align*}
$$

satisfying the relation

$$
\alpha_{0}+\alpha_{1}+2 \alpha_{2}+\alpha_{3}+\alpha_{4}=1 .
$$

Let $\varepsilon_{1}, \ldots, \varepsilon_{4}$ be complex constants defined by

$$
\begin{array}{ll}
\alpha_{0}=1-\varepsilon_{1}-\varepsilon_{2}, & \alpha_{1}=\varepsilon_{1}-\varepsilon_{2}, \quad \alpha_{2}=\varepsilon_{2}-\varepsilon_{3}, \\
\alpha_{3}=\varepsilon_{3}-\varepsilon_{4}, & \alpha_{4}=\varepsilon_{3}+\varepsilon_{4} .
\end{array}
$$

Consider the system of linear differential equations

$$
\begin{equation*}
\left(z \partial_{z}+M\right) \boldsymbol{\psi}=0, \quad \partial_{t} \boldsymbol{\psi}=B \boldsymbol{\psi}, \tag{1.3}
\end{equation*}
$$

for a vector of unknown functions $\boldsymbol{\psi}={ }^{t}\left(\psi_{1}, \ldots, \psi_{8}\right)$. Here we assume that the matrix M is defined as

$$
M=\left[\begin{array}{cccccccc}
\varepsilon_{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \varepsilon_{2} & -p & -1 & -1 & 0 & 0 & 0 \\
0 & 0 & \varepsilon_{3} & q-1 & q & 0 & 0 & 0 \\
0 & 0 & 0 & \varepsilon_{4} & 0 & -q & 1 & 0 \\
0 & 0 & 0 & 0 & -\varepsilon_{4} & 1-q & 1 & 0 \\
-z & 0 & 0 & 0 & 0 & -\varepsilon_{3} & p & 0 \\
(t-q) z & 0 & 0 & 0 & 0 & 0 & -\varepsilon_{2} & -1 \\
0 & (q-t) z & z & 0 & 0 & 0 & 0 & -\varepsilon_{1}
\end{array}\right],
$$

and the matrix B is defined as

$$
B=\left[\begin{array}{cccccccc}
u_{1} & x_{1} & y_{1} & 0 & 0 & 0 & 0 & 0 \\
0 & u_{2} & x_{2} & -y_{3} & -y_{4} & 0 & 0 & 0 \\
0 & 0 & u_{3} & x_{3} & x_{4} & 0 & 0 & 0 \\
0 & 0 & 0 & u_{4} & 0 & -x_{4} & y_{4} & 0 \\
0 & 0 & 0 & 0 & -u_{4} & -x_{3} & y_{3} & 0 \\
0 & 0 & 0 & 0 & 0 & -u_{3} & -x_{2} & -y_{1} \\
-z & 0 & 0 & 0 & 0 & 0 & -u_{2} & -x_{1} \\
0 & z & 0 & 0 & 0 & 0 & 0 & -u_{1}
\end{array}\right] .
$$

Theorem 1.1 ([NY]). Under the compatibility condition for (1.3), the variables x_{i}, y_{i} and u_{i} are determined as elements of $\mathbb{C}\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, q, p, t\right)$. The compatibility condition is then equivalent to the Hamiltonian system (1.1) with (1.2).

Here we do not describe the explicit forms of u_{i}, x_{i} and y_{i}.

2 Affine Lie algebra

In the notation of [Kac], $\mathfrak{g}=\mathfrak{g}\left(D_{4}^{(1)}\right)$ is the affine Lie algebra generated by the Chevalley generators $e_{i}, f_{i}, \alpha_{i}^{\vee}(i=0, \ldots, 4)$ and the scaling element d
with the generalized Cartan matrix defined as

$$
A=\left(a_{i j}\right)_{i, j=0}^{4}=\left[\begin{array}{ccccc}
2 & 0 & -1 & 0 & 0 \\
0 & 2 & -1 & 0 & 0 \\
-1 & -1 & 2 & -1 & -1 \\
0 & 0 & -1 & 2 & 0 \\
0 & 0 & -1 & 0 & 2
\end{array}\right]
$$

We denote the Cartan subalgebra of \mathfrak{g} by \mathfrak{h}. The canonical central element of \mathfrak{g} is given by

$$
K=\alpha_{0}^{\vee}+\alpha_{1}^{\vee}+2 \alpha_{2}^{\vee}+\alpha_{3}^{\vee}+\alpha_{4}^{\vee}
$$

We consider the \mathbb{Z}-gradation $\mathfrak{g}=\bigoplus_{k \in \mathbb{Z}} \mathfrak{g}_{k}(s)$ of type $s=(1,1,0,1,1)$ by setting

$$
\operatorname{deg} \mathfrak{h}=\operatorname{deg} e_{2}=\operatorname{deg} f_{2}=0, \quad \operatorname{deg} e_{i}=1, \quad \operatorname{deg} f_{i}=-1 \quad(i=0,1,3,4) .
$$

This gradation is defined by

$$
\mathfrak{g}_{k}(s)=\left\{x \in \mathfrak{g} \mid\left[d_{s}, x\right]=k x\right\} \quad(k \in \mathbb{Z}),
$$

where

$$
d_{s}=4 d+2 \alpha_{1}^{\vee}+3 \alpha_{2}^{\vee}+2 \alpha_{3}^{\vee}+2 \alpha_{4}^{\vee} \in \mathfrak{h} .
$$

Denoting by $e_{2 i}=\left[e_{2}, e_{i}\right]$, we choose the graded Heisenberg subalgebra of \mathfrak{g}

$$
\mathfrak{s}=\{x \in \mathfrak{g} \mid[x, \Lambda]=\mathbb{C} K\},
$$

of type $s=(1,1,0,1,1)$ with

$$
\Lambda=e_{0}-e_{1}+e_{3}-e_{20}+e_{23}+e_{24} .
$$

The positive part of \mathfrak{s} has a graded basis $\left\{\Lambda_{2 k-1,1}, \Lambda_{2 k-1,2}\right\}_{k=1}^{\infty}$ such that

$$
\begin{aligned}
& \Lambda_{1,1}=\Lambda, \quad \Lambda_{1,2}=e_{0}-e_{3}+e_{4}+e_{20}+e_{21}+e_{23}, \\
& {\left[d_{s}, \Lambda_{2 k-1, i}\right]=(2 k-1) \Lambda_{2 k-1, i}, \quad\left[\Lambda_{2 k-1, i}, \Lambda_{2 l-1, j}\right]=0 .}
\end{aligned}
$$

Let \mathfrak{n}_{+}be the subalgebra of \mathfrak{g} generated by $e_{j}(j=0, \ldots, 4)$, and let \mathfrak{b}_{+} be the borel subalgebra of \mathfrak{g} defined by $\mathfrak{b}_{+}=\mathfrak{h} \oplus \mathfrak{n}_{+}$. Then the compatibility condition for (1.3) is equivalent to the system on \mathfrak{b}_{+}

$$
\begin{equation*}
\partial_{t}(M)=\left[B, d_{s}+M\right], \tag{2.1}
\end{equation*}
$$

with

$$
\begin{aligned}
M & =h(\boldsymbol{\varepsilon})+(q-t) e_{0}+e_{1}-p e_{2}+(q-1) e_{3}+q e_{4}-e_{20}-e_{23}-e_{24}, \\
B & =h(\boldsymbol{u})+e_{0}+x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}+x_{4} e_{4}+y_{1} e_{21}+y_{3} e_{23}+y_{4} e_{24},
\end{aligned}
$$

where $\boldsymbol{\varepsilon}=\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}\right)$ and $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$. Here we set

$$
\begin{aligned}
h(\varepsilon)= & \left(1-\varepsilon_{1}-\varepsilon_{2}\right) \alpha_{0}^{\vee}+\left(\varepsilon_{1}-\varepsilon_{2}\right) \alpha_{1}^{\vee} \\
& +\left(\varepsilon_{2}-\varepsilon_{3}\right) \alpha_{2}^{\vee}+\left(\varepsilon_{3}-\varepsilon_{4}\right) \alpha_{3}^{\vee}+\left(\varepsilon_{3}+\varepsilon_{4}\right) \alpha_{4}^{\vee} .
\end{aligned}
$$

We derive the system (2.1) from the Drinfeld-Sokolov hierarchy associated with the Heisenberg subalgebra \mathfrak{s} by a similarity reduction.

3 Drinfeld-Sokolov hierarchy

In the following, we use the notation of infinite dimensional groups

$$
G_{<0}=\exp \left(\widehat{\mathfrak{g}}_{<0}\right), \quad G_{\geq 0}=\exp \left(\widehat{\mathfrak{g}}_{\geq 0}\right),
$$

where $\widehat{\mathfrak{g}}_{<0}$ and $\widehat{\mathfrak{g}}_{\geq 0}$ are completions of $\mathfrak{g}_{<0}=\bigoplus_{k<0} \mathfrak{g}_{k}(s)$ and $\mathfrak{g}_{\geq 0}=\bigoplus_{k \geq 0} \mathfrak{g}_{k}(s)$ respectively.

Introducing the time variables $t_{k, i}(i=1,2 ; k=1,3,5, \ldots)$, we consider the Sato equation for a $G_{<0}$-valued function $W=W\left(t_{1,1}, t_{1,2}, \ldots\right)$

$$
\begin{equation*}
\partial_{k, i}(W)=B_{k, i} W-W \Lambda_{k, i} \quad(i=1,2 ; k=1,3,5, \ldots), \tag{3.1}
\end{equation*}
$$

where $\partial_{k, i}=\partial / \partial t_{k, i}$ and $B_{k, i}$ stand for the $\mathfrak{g}_{\geq 0}$-component of $W \Lambda_{k, i} W^{-1} \in$ $\widehat{\mathfrak{g}}_{<0} \oplus \mathfrak{g}_{\geq 0}$. The Zakharov-Shabat equation

$$
\begin{equation*}
\left[\partial_{k, i}-B_{k, i}, \partial_{l, j}-B_{l, j}\right]=0 \quad(i, j=1,2 ; k, l=1,3,5, \ldots), \tag{3.2}
\end{equation*}
$$

follows from the Sato equation (3.1). Let

$$
\Psi=W \exp (\xi), \quad \xi=\sum_{i=1,2} \sum_{k=1,3, \ldots} t_{k, i} \Lambda_{k, i} .
$$

Then the Zakharov-Shabat equation (3.2) can be regarded as the compatibility condition of the Lax form

$$
\begin{equation*}
\partial_{k, i}(\Psi)=B_{k, i} \Psi \quad(i=1,2 ; k=1,3,5, \ldots) . \tag{3.3}
\end{equation*}
$$

Assuming that $t_{k, 1}=t_{k, 2}=0$ for $k \geq 3$, we require that the following similarity condition is satisfied:

$$
\begin{equation*}
d_{s}(\Psi)=\left(t_{1,1} B_{1,1}+t_{1,2} B_{1,2}\right) \Psi . \tag{3.4}
\end{equation*}
$$

The compatibility condition for (3.3) and (3.4) is expressed as

$$
\begin{equation*}
\left[d_{s}-t_{1,1} B_{1,1}-t_{1,2} B_{1,2}, \partial_{1, i}-B_{1, i}\right]=0 \quad(i=1,2) . \tag{3.5}
\end{equation*}
$$

We regard the systems (3.2) and (3.5) as a similarity reduction of the DrinfeldSokolov hierarchy of type $D_{4}^{(1)}$.

Let $S \subset \mathbb{C}^{2}$ be an open subset with coordinates $\boldsymbol{t}=\left(t_{1,1}, t_{1,2}\right)$. Also let

$$
\begin{aligned}
\mathcal{M} & =d_{s}-t_{1,1} B_{1,1}-t_{1,2} B_{1,2} \in \mathcal{O}\left(S ; \mathfrak{g}_{\geq 0}\right), \\
\mathcal{B} & =B_{1,1} d t_{1,1}+B_{1,2} d t_{1,2} \in \Omega^{1}\left(S ; \mathfrak{g}_{\geq 0}\right) .
\end{aligned}
$$

Then the similarity reduction is expressed as

$$
\begin{equation*}
d_{t} \mathcal{M}=[\mathcal{B}, \mathcal{M}], \quad d_{\boldsymbol{t}} \mathcal{B}=\mathcal{B} \wedge \mathcal{B} . \tag{3.6}
\end{equation*}
$$

4 Derivation of P_{VI}

The operator $\mathcal{M} \in \mathfrak{g}_{\geq 0}$ is expressed as

$$
\mathcal{M}=(\text { terms of degree } 0)-t_{1,1} \Lambda_{1,1}-t_{1,2} \Lambda_{1,2}
$$

We consider the gauge transformation for the Lax form (3.4) such that $\mathcal{M} \rightarrow$ $\widetilde{\mathcal{M}} \in \mathcal{O}\left(S ; \mathfrak{b}_{+}\right)$.

We first consider a gauge transformation $\widehat{\Psi}=\exp (\zeta) \exp \left(\xi e_{2}\right) \Psi$, where $\zeta=\sum_{j=0,1,3,4} \zeta_{j} \alpha_{j}^{\vee}$. This is lifted to the transformation on $\mathfrak{g}_{\geq 0}$:

$$
\begin{aligned}
\widehat{\mathcal{M}} & =\exp (\operatorname{ad}(\zeta)) \exp \left(\operatorname{ad}\left(\xi e_{2}\right)\right) \mathcal{M} \\
d_{\boldsymbol{t}}-\widehat{\mathcal{B}} & =\exp (\operatorname{ad}(\zeta)) \exp \left(\operatorname{ad}\left(\xi e_{2}\right)\right)\left(d_{\boldsymbol{t}}-\mathcal{B}\right)
\end{aligned}
$$

We look for gauge parameters ζ and ξ such that

$$
\widehat{\mathcal{M}}=(\text { terms of degree } 0)-c_{0} e_{0}-e_{1}-c_{3} e_{3}-c_{4} e_{4}-e_{20}-e_{23}-e_{24} .
$$

where $c_{j} \in \mathbb{C}(\boldsymbol{t})(j=0,3,4)$. Such gauge parameters are determined uniquely as $\xi=t_{1,2} / t_{1,1}$ and

$$
\begin{aligned}
& \zeta_{0}=\frac{1}{2} \log \left\{\left(t_{1,1}^{2}+2 t_{1,1} t_{1,2}-t_{1,2}^{2}\right)\left(t_{1,1}^{2}+t_{1,2}^{2}\right) t_{1,1}^{-2}\right\}, \\
& \zeta_{1}=-\frac{1}{2} \log \left(-t_{1,1}\right), \\
& \zeta_{3}=\frac{1}{2} \log \left\{\left(-t_{1,1}^{2}+2 t_{1,1} t_{1,2}+t_{1,2}^{2}\right)\left(t_{1,1}^{2}+t_{1,2}^{2}\right) t_{1,1}^{-2}\right\}, \\
& \zeta_{4}=\frac{1}{2} \log \left\{\left(t_{1,1}^{2}+2 t_{1,1} t_{1,2}-t_{1,2}^{2}\right)\left(-t_{1,1}^{2}+2 t_{1,1} t_{1,2}+t_{1,2}^{2}\right) t_{1,1}^{-2}\right\} .
\end{aligned}
$$

Here each c_{j} is described explicitly as

$$
\begin{aligned}
& c_{0}=-\frac{1}{t_{1,1}}\left(t_{1,1}+t_{1,2}\right)\left(t_{1,1}^{2}+2 t_{1,1} t_{1,2}-t_{1,2}^{2}\right)\left(t_{1,1}^{2}+t_{1,2}^{2}\right), \\
& c_{3}=-\frac{1}{t_{1,1}}\left(t_{1,1}-t_{1,2}\right)\left(-t_{1,1}^{2}+2 t_{1,1} t_{1,2}+t_{1,2}^{2}\right)\left(t_{1,1}^{2}+t_{1,2}^{2}\right), \\
& c_{4}=-\frac{1}{t_{1,1}} t_{1,2}\left(t_{1,1}^{2}+2 t_{1,1} t_{1,2}-t_{1,2}^{2}\right)\left(-t_{1,1}^{2}+2 t_{1,1} t_{1,2}+t_{1,2}^{2}\right) .
\end{aligned}
$$

We next consider a gauge transformation $\widetilde{\Psi}=\exp \left(-\lambda f_{2}\right) \widehat{\Psi}$. This is lifted to the transformation on $\mathfrak{g}_{\geq 0}$:

$$
\widetilde{\mathcal{M}}=\exp \left(\operatorname{ad}\left(-\lambda f_{2}\right)\right) \widehat{\mathcal{M}}, \quad d_{\boldsymbol{t}}-\widetilde{\mathcal{B}}=\exp \left(\operatorname{ad}\left(-\lambda f_{2}\right)\right)\left(d_{\boldsymbol{t}}-\widehat{\mathcal{B}}\right) .
$$

Denoting by $\eta+\varphi e_{2}+\psi f_{2}$ and $u+x e_{2}+y f_{2}$ the terms of degree 0 of $\widehat{\mathcal{M}}$ and $\widehat{\mathcal{B}}$ respectively, we look for a gauge parameter λ such that $\widetilde{\mathcal{M}} \in \mathcal{O}\left(S ; \mathfrak{b}_{+}\right)$ and $\widetilde{\mathcal{B}} \in \Omega^{1}\left(S ; \mathfrak{b}_{+}\right)$, namely

$$
\begin{equation*}
\varphi \lambda^{2}+\left(\eta \mid \alpha_{2}^{\vee}\right) \lambda-\psi=0, \quad d_{\boldsymbol{t}} \lambda=x \lambda^{2}+\left(u \mid \alpha_{2}^{\vee}\right) \lambda-y \tag{4.1}
\end{equation*}
$$

where ($\|$) stands for the normalized invariant form. We can verify that the second equation of (4.1) follows from the first equation. Hence the gauge parameter $\lambda=\lambda(\boldsymbol{t})$ can be determined and we obtain

$$
\widetilde{\mathcal{M}}=\kappa+\mu e_{2}+\left(\lambda-c_{0}\right) e_{0}-e_{1}+\left(\lambda-c_{3}\right) e_{3}+\left(\lambda-c_{4}\right) e_{4}-e_{20}-e_{23}-e_{24},
$$

where $\kappa \in \mathfrak{h}$ and $\mu=\mu(\boldsymbol{t})$. Note that $d_{\boldsymbol{t}} \kappa=0$. By definition, it is clear that the operators $\widetilde{\mathcal{M}}$ and $\widetilde{\mathcal{B}}$ satisfy

$$
\begin{equation*}
d_{t} \widetilde{\mathcal{M}}=[\widetilde{\mathcal{B}}, \widetilde{\mathcal{M}}] \tag{4.2}
\end{equation*}
$$

Finally, we consider a transformation of time variables $\left(t_{1,1}, t_{1,2}\right) \rightarrow\left(t_{1}, t_{2}\right)$ such that

$$
\partial_{1}\left(c_{0}-c_{4}\right)=-4, \quad \partial_{1}\left(c_{3}-c_{4}\right)=0 .
$$

Then by setting

$$
q=\frac{\lambda-c_{4}}{c_{3}-c_{4}}, \quad p=\frac{1}{4}\left(c_{3}-c_{4}\right) \mu, \quad \alpha_{j}=\frac{1}{4}\left(\kappa \mid \alpha_{j}^{\vee}\right), \quad t=\frac{c_{0}-c_{4}}{c_{3}-c_{4}},
$$

we arrive at
Theorem 4.1. Under the specialization $t_{2}=1$, the system (4.2) is equivalent to the compatibility condition of (1.3) that gives the sixth Painlevé equation.

References

[FS] K. Fuji and T. Suzuki, The sixth Painlevé equation arising from $D_{4}^{(1)}$ hierarchy, J. Phys. A: Math. Gen. 39 (2006) 12073-12082.
[IKSY] K. Iwasaki, H. Kimura, S. Shimomura and M. Yoshida, From Gauss to Painlevé - A Modern Theory of Special Functions, Aspects of Mathematics E16 (Vieweg, 1991).
[Kac] V. G. Kac, Infinite dimensional Lie algebras, Cambridge University Press (1990).
[Kaw] H. Kawamuko, Symmetrization of the sixth Painlevé equation, Funkcial. Ekvac. 39 (1996), 109-122.
[NY] M. Noumi and Y. Yamada, A new Lax pair for the sixth Painlevé equation associated with $\widehat{\mathfrak{s o}}(8)$, in Microlocal Analysis and Complex Fourier Analysis, ed. T.Kawai and K.Fujita, (World Scientific, 2002) 238-252.
[O] K. Okamoto, The Hamiltonians associated with the Painlevé equations, The Painlevé property: One Century Later, ed. R. Conte, CRM Series in Mathematical Physics, (Springer, 1999).

