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Toward the exact WKB analysis for instanton-type
solutions of Painlevé hierarchies

Yoshitsugu Takei∗

Research Institute for Mathematical Sciences

Kyoto University, Kyoto 606-8502, Japan
E-mail: takei@kurims.kyoto-u.ac.jp

1 Introduction

Together with T. Aoki, T. Kawai, T. Koike and partly with Y. Nishikawa, as a
generalization of the exact WKB analysis for traditional (i.e., second order) Painlevé
equations, we have now been trying to develop a program to analyze (PJ) (J =
I, II or IV) hierarchies of higher order Painlevé equations. After the venue of the
conference held at Toulouse in 2003, where Kawai first proposed the program, we
named this program “the Toulouse Project”. The purpose of this paper is to discuss
to what extent the Toulouse Project is carried out and what kind of open problems
there are in conjunction with this Project.

Recently the so-called instanton-type formal solutions of higher order Painlevé
equations are constructed first for the (PI) hierarchy ([T5]) and later for the (PII) and
(PIV) hierarchies as well (cf. [Ko]). The construction of instanton-type solutions is
one of the most important steps in the Toulouse Project; the instanton-type solutions
are expected to be suitable formal solutions for the description of Stokes phenomena
for the (PJ) hierarchies, as is suggested by the explicit connection formula for the
traditional (PI) equation given in [T1]. The final goal of the Toulouse Project is to
give the connection formula for the (PJ) hierarchies explicitly in terms of instanton-
type solutions.

Roughly speaking, instanton-type solutions of higher order Painlevé equations
play the role of WKB solutions of linear ordinary differential equations with a large
parameter. Our exact WKB analysis for instanton-type solutions of Painlevé hierar-
chies is, however, NOT a straightforward generalization of the exact WKB analysis
for linear differential equations. Rather the exact WKB analysis for Painlevé hier-
archies is a generalization of the asymptotic analysis for integral representations of
solutions of linear equations; we make full use of the underlying Lax pair (i.e., the

∗This work is supported in part by JSPS Grants-in-Aid No. 17340042 and No. 18540174.

1



associated isomonodromic deformation) as a substitute of integral representations.
Note that the existence of the Lax pair is an expression of the “integrability” of
(higher order) Painlevé equations. In this paper we discuss the exact WKB analysis
for instanton-type solutions of the (PJ) hierarchies from this viewpoint.

The concrete plan of the paper is as follows: In Section 2 we first recall the
definition of the (PI) hierarchy and review the construction of its instanton-type so-
lutions. (In this paper we mainly discuss the (PI) hierarchy for the sake of simplicity
and definiteness.) Then, after making a very brief review of the exact WKB analysis
for linear differential equations in Section 3, we explain the relevance of the under-
lying Lax pair (i.e., the associated isomonodromic deformation) in the definition of
the Stokes geometry of higher order Painlevé equations and the mechanism how the
Stokes phenomena for instanton-type solutions occur in Section 4. Finally in Section
5 we discuss conjectures, results obtained so far, and some important open problems
toward the determination of the connection formula for instanton-type solutions.

2 (PI) hierarchy and its instanton-type solutions

The main object of the discussion in this paper is the (PI) hierarchy studied by
Kudryashov ([Ku, KuSo]), Gordoa and Pickering ([GP]), Shimomura ([S1, S2]) and
so on. In what follows we use the following expression (PI)m (m = 1, 2, . . .) of the
hierarchy, which is obtained through a slight modification of that of Shimomura
([S2]) and appropriate introduction of a large parameter η (> 0).

(PI)m





duj
dt

= 2ηvj

dvj
dt

= 2η(uj+1 + u1uj + wj)

(j = 1, . . . , m).

Here uj and vj are unknown functions (we conventionally assume um+1 ≡ 0) and wj
denotes a polynomial of {uk, vl}1≤k,l≤j recursively defined by the following relations:

(1) wj =
1

2

∑

k+l=j+1

ukul +
∑

k+l=j

ukwl −
1

2

∑

k+l=j

vkvl + cj + δjmt,

where cj is a constant and δjm stands for Kronecker’s delta. For example, the first
member of the hierarchy

(2)





du1

dt
= 2ηv1,

dv1

dt
= η(3u2

1 + 2c1 + 2t),

that is,

(3)
d2u1

dt2
= η2(6u2

1 + 4c1 + 4t),
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is equivalent to the traditional first Painlevé equation (PI) by appropriate scaling and
translation of the independent variable t. (This is the reason why we call (PI)m “the
(PI) hierarchy”.) Similarly, the second member (PI)2 is equivalent to the following
fourth order nonlinear equation for u = u1:

(4)
d4u

dt4
= η2

(
20u

d2u

dt2
+ 10

(
du

dt

)2
)

− η4
(
40u3 + 16cu− 16t

)
.

As (PI)m contains a large parameter η in a singular-perturbative manner, we can
easily construct a formal power series (in η−1) solution of (PI)m of the form

(5) ûj(t, η) = uj,0(t) + η−1uj,1(t) + · · · , v̂j(t, η) = vj,0(t) + η−1vj,1(t) + · · · .

Note that the top order part (uj,0(t), vj,0(t)) of (5) satisfies a system of algebraic
equations and the higher order part (uj,l(t), vj,l(t)) (l ≥ 1) is uniquely determined
in a recursive manner once (uj,0(t), vj,0(t)) is fixed (cf. [KKoNT]). The solution
(5) is called “a 0-parameter solution” of (PI)m. The 0-parameter solutions are,
however, not sufficient to discuss the Stokes phenomena for (PI)m since they contain
no free parameters. A wider class of formal solutions of (PI)m recently constructed
in [T5] are expected to play the fundamental role in the description of the Stokes
phenomena: They contain 2m free parameters and have the following form:

(6)





uj(t, η;α) = uj,0(t) + η−1/2
∑

1≤k≤2m

αk exp

(
η

∫ t

νkdt

)
ujk,1/2(t) + · · ·,

vj(t, η;α) = vj,0(t) + η−1/2
∑

1≤k≤2m

αk exp

(
η

∫ t

νkdt

)
vjk,1/2(t) + · · ·,

where αk ∈ C (k = 1, . . . , 2m) are free parameters and νk = νk(t) denote the eigen-
values of the leading coefficient C0(t) of the following linearized equation (∆PI)m of
(PI)m at a 0-parameter solution (ûj, v̂j):

(∆PI)m
d

dt




∆u1
...

∆vm


 = η

(
C0(t) + η−1C1(t) + · · ·

)



∆u1
...

∆vm


 .

(Note that the eigenvalues {νk}1≤k≤2m can be numbered so that νl + νl+m = 0 holds
for l = 1, . . . , m.) The solution (6) is called “an instanton-type solution” of (PI)m.

Outline of the construction of instanton-type solutions

In [T5] instanton-type solutions of (PI)m are constructed by using reduction to
Birkhoff normal form. To be more specific, we first express (PI)m in the form of
a Hamiltonian system with an appropriately chosen canonical variable (qj, pj) and
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next consider the “localization” at a 0-parameter solution (q̂j, p̂j) corresponding to
(ûj, v̂j):

(7) qj = q̂j + η−1/2ψj, pj = p̂j + η−1/2ϕj.

It is readily confirmed that (ψj, ϕj) also satisfies a Hamiltonian system of the form

(8)
dψj
dt

= η
∂K

∂ϕj
,

dϕj
dt

= −η ∂K
∂ψj

.

We then consider the reduction of (8) to its Birkhoff normal form, that is, we
construct a (formal) canonical transform

(9) ψj =

∞∑

k=0

η−k/2ψ
(k)
j (t, ψ̃, ϕ̃, η−1/2), ϕj =

∞∑

k=0

η−k/2ϕ
(k)
j (t, ψ̃, ϕ̃, η−1/2)

in such a way that (8) is transformed into

(10)
dψ̃j
dt

= η
∂K̃

∂ϕ̃j
,
dϕ̃j
dt

= −η ∂K̃
∂ψ̃j

with K̃ = K̃(t, ρ1, . . . , ρm, η
−1/2)

∣∣∣∣
ρj=ψ̃j ϕ̃j

.

Since the Birkhoff normal form (10) can be easily solved, by substituting its solution
into (9) we obtain a formal solution of (8) and hence that of (PI)m. This is an outline
of the construction of instanton-type solutions.

For example, an instanton-type solution of (4) (i.e., the second member (PI)2 of
the hierarchy) is given as follows:

u(t, η;α, β) = u0(t) +

η−1/2

[
α1

(ν2
1∆)1/4

θ α1β1

11 θ α2β2

12 eη
∫ t
ν1dt +

α2

(ν2
2∆)1/4

θ α1β1

21 θ α2β2

22 eη
∫ t
ν2dt +(11)

β1

(ν2
1∆)1/4

θ−α1β1

11 θ−α2β2

12 e−η
∫ t
ν1dt +

β2

(ν2
2∆)1/4

θ−α1β1

21 θ−α2β2

22 e−η
∫ t
ν2dt

]
+ · · · ,

where u0 is the top order part of the 0-parameter solution satisfying 40u3
0 +16cu0 −

16t = 0, ±ν1 and ±ν2 denote the eigenvalues of the coefficient C0(t) of (∆PI)2 which
are explicitly given by

(12) ν2
1 = 10u0 + 2

√
∆, ν2

2 = 10u0 − 2
√

∆ with ∆ = −(5u2
0 + 4c),

and θjk(t) are functions of t defined by the following formulas:

(13)





θ11 = exp

(∫ t 8ν4
1 − 27ν2

1ν
2
2 + 15ν4

2

ν4
1ν

2
2∆

dt

)
,

θ12 = exp

(
−
∫ t 12ν4

1 − 16ν2
1ν

2
2 + 12ν4

2

ν3
1ν

3
2∆

dt

)
= θ−1

21 ,

θ22 = exp

(
−
∫ t 15ν4

1 − 27ν2
1ν

2
2 + 8ν4

2

ν2
1ν

4
2∆

dt

)
.
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Generally speaking, some exponentially small terms should be added to an
original asymptotic solution in the Stokes phenomenon. In the expression (6) of
instanton-type solutions exponential terms appearing in the coefficients of η−1/2 are
expected to correspond to (the principal part of) such exponentially small terms. In
view of the concrete form of (6) we are thus led to the following definition of turning
points and Stokes curves of (PI)m.

Definition 1. (i) A turning point of (PI)m is, by definition, a point where νj and
νj′ merge for some j 6= j ′. In particular, a point where νj and νj+m vanish for some
1 ≤ j ≤ m is called a turning point of the first kind and a point where νj = νj′ or
νj = νj′+m holds for some 1 ≤ j, j ′ ≤ m is called a turning point of the second kind.

(ii) A Stokes curve of (PI)m is a curve defined by the following relation:

(14) Im

∫ t

τ

(νj − νj′)dt = 0.

Note that this definition of the Stokes geometry of (PI)m coincide with that given
in [KKoNT] thanks to the fact that νj are nothing but the eigenvalues of C0(t) of
(∆PI)m.

The goal of our Project is to analyze the Stokes phenomenon observed on a
Stokes curve defined by (14) and to give the connection formula which describes the
Stokes phenomenon explicitly.

3 Brief review of the exact WKB analysis for lin-

ear ordinary differential equations

Before discussing the Stokes phenomenon for the hierarchy (PI)m of higher order
Painlevé equations, let us briefly review, as its prototype, the exact WKB analysis
for a linear ordinary differential equation with a large parameter η of the form

(15)

(
dm

dxm
+ a1(x)η

dm−1

dxm−1
+ · · ·+ am(x)ηm

)
ψ = 0.

For Eq. (15) there exists a WKB solution

(16) ψj = exp

(
η

∫ x

λj(x)dx

) ∞∑

l=0

ψj,l(x)η
−(l+1/2) (j = 1, . . . , m),

where λj(x) is a root of the characteristic equation

(17) λm + a1(x)λ
m−1 + · · · + am(x) = 0

of (15). In the exact WKB analysis a WKB solution (16), although being divergent,
is given an analytic meaning through the Borel resummation technique, that is,
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instead of (16) we consider its Borel sum

(18) Ψj =

∫ ∞

−yj(x)

e−ηyψj,B(x, y)dy (where yj(x) =

∫ x

λj(x)dx).

Here ψj,B(x, y) denotes the Borel transform

(19) ψj,B(x, y) =

∞∑

l=0

ψj,l(x)

Γ(l + 1/2)
(y + yj(x))

l−1/2

of ψj and the path of integration of (18) is conventionally taken to be parallel to
the positive real axis (cf. Fig. 1).

In the case of a linear equation (15) a Stokes curve is defined by a relation
Im(yj(x)−yj′(x)) = 0, whose true meaning is as follows: For example, let us consider
a simple turning point x = x0 where two characteristic roots λj(x) and λj′(x) merge.
Then in a neighborhood of x0 the Borel transform ψj,B(x, y) has singularity both
at y = −yj(x) and at y = −yj′(x) (cf. Fig. 1). (In general ψj,B(x, y) is expected
to have singularity at y = −yk(x), k = 1, . . . , m.) Hence at each point of a Stokes

y

r

−yj(x)
r

−yj′(x)

∞>

Figure 1 : The path of integration for Ψj and singular points of ψj,B(x, y).

curve the singular point y = −yj′(x) crosses the path of integration of (18) and
consequently the Borel sum Ψj picks up the contour integral around the singular
point y = −yj′(x). This is the Stokes phenomenon for (the Borel sum of) a WKB
solution of (15) and such a phenomenon occurs on a Stokes curve. (For the details
see, e.g., [T3] and references cited therein.)

Our approach to the analysis of the Stokes phenomenon for a (higher order)
Painlevé equation is, however, quite different from that for a general linear equation
(15); rather our approach for a Painlevé equation resembles more to the exact WKB
analysis for a linear equation whose solutions admit an integral representation of
the form

(20) ψ =

∫

Γ

eηf(x,ζ)g(x, ζ)dζ.

When such an integral representation exists, a WKB solution ψj “lives” at a saddle
point of (20), i.e., a point ζj = ζj(x) satisfying (∂f/∂ζ)(x, ζj) = 0. To be more
precise, the Borel sum Ψj of a WKB solution corresponds to a solution given by
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ζ

s

ζj(x)

s

s

s

s

ζj′(x)

Figure 2 : Steepest descent path of Ref(x, ζ) through a saddle point ζj.

(20) with Γ being a steepest descent path of Ref(x, ζ) passing through a saddle
point ζj. Thus, in this case, a Stokes curve is characterized in the following way:

(21)
A point x lies in a Stokes curve if and only if two saddle points ζj(x) and
ζj′(x) are connected by a steepest descent path of Ref(x, ζ).

In view of (21) and the fact that each WKB solution ψj lives at a saddle point
(in the above sense), we can readily find that the Stokes phenomenon occurs on a
Stokes curve as a consequence of the topological change of configuration of steepest
descent paths. See [T2] for more detailed discussions.

4 Underlying Lax pair of (PI)m and Stokes phe-

nomena for instanton-type solutions

As is mentioned in the preceding section, the exact WKB analysis for a linear
equation whose solutions admit an integral representation can be regarded as a
prototype of our WKB analysis for a (higher order) Painlevé equation. Then, what
is the integral representation for a (higher order) Painlevé equation? The answer
is the isomonodromic deformations (or the so-called “Lax pair”) of linear equations
that underlie a Painlevé equation in question.

It is well-known that each member (PI)m of the (PI) hierarchy describes the
compatibility condition of the following system of first order 2× 2 linear differential
equations

(LI)m
∂

∂x
~ϕ = ηA~ϕ,

∂

∂t
~ϕ = ηB~ϕ,

where

A =

(
V (x)/2 U(x)

(2xm+1 − xU(x) + 2W (x))/4 −V (x)/2

)
,(22)

B =

(
0 2

u1 + x/2 0

)
,(23)
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or, equivalently, the compatibility condition of the following two differential equa-
tions with one unknown function

(SLI)m

(
∂2

∂x2
− η2Q(I,m)

)
ψ = 0,

(DI)m
∂ψ

∂t
= A(I,m)

∂ψ

∂x
− 1

2

∂A(I,m)

∂x
ψ,

where

Q(I,m) =
1

4
(2xm+1 − xU + 2W )U +

1

4
V 2(24)

−η−1UxV

2U
+ η−1Vx

2
+ η−2 3U2

x

4U2
− η−2Uxx

2U
,

A(I,m) =
2

U
.(25)

Here U = U(x), V = V (x) and W = W (x) respectively denote the following
polynomials in x and Ux etc. designate their derivatives with respect to x:

U(x) = xm − u1x
m−1 − · · · − um,(26)

V (x) = v1x
m−1 + · · · + vm,(27)

W (x) = w1x
m−1 + · · ·+ wm.(28)

In our WKB analysis of (PI)m the underlying Lax pair (LI)m (or (SLI)m and (DI)m;
in what follows we mainly use (SLI)m and (DI)m for the sake of convenience of
explanation) plays the same role as an integral representation of solutions in the
following sense.

We first substitute an instanton-type solution (uj(t, η;α), vj(t, η;α)) into the
coefficients of (LI)m (or (SLI)m and (DI)m). Then we can verify

Proposition 1. (i) Let Q(I,m),0 denote the top order part of the potential Q(I,m) of
(SLI)m (i.e., the top order part of the discriminant of the characteristic equation of
A, the coefficient of the first equation of (LI)m). Then it is factorized as

(29) Q(I,m),0 =
1

4
(x+ 2u1,0)U0(x)

2,

where u1,0 and U0(x) denote the top order part of u1(t, η;α) and U(x), respectively.
Hence (SLI)m (or the first equation of (LI)m) has one simple turning point at x =
−2u1,0, which will be denoted by a(t) in what follows, and m double turning points
at zeros of U0(x), which will be denoted by bj(t) (j = 1, . . . , m) as well.

(ii) At each point in a Stokes curve of (PI)m two turning points of (SLI)m are
connected by a Stokes curve of (SLI)m (cf. Fig. 3). More specifically, a simple
turning point a(t) and a double turning point bj(t) (resp., two double turning points
bj(t) and bj′(t)) are connected by a Stokes curve of (SLI)m at a point in a Stokes
curve of (PI)m emanating from a turning point of the first kind (resp., the second
kind).
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t
r
τ : turning point

Stokes curve

Ω1 Ω2

x

bj

a

Figure 3 : Degenerate configuration of the Stokes geometry of (SLI)m
observed on a Stokes curve of (PI)m.

For the proof see [KKoNT, Section 2]. Note that the claim (ii) of Prop. 1 is a
counterpart of (21).

In the case of a linear equation with an integral representation of solutions the
Stokes phenomenon on a Stokes curve is a consequence of (21), that is, it is caused by
the topological change of configuration of steepest descent paths of (20). For (PI)m
such a straightforward understanding of the Stokes phenomenon is not possible.
However, combining the claim (ii) of Prop. 1 with the isomonodromic property of
(SLI)m, we can explain the mechanism how the Stokes phenomenon occurs on a
Stokes curve also for (PI)m as follows.

Mechanism how the Stokes phenomenon for (PI)m occurs

As is schematically shown in Fig. 3, two Stokes regions Ω1 and Ω2 in t-plane are
sharing a Stokes curve of (PI)m in question as a common boundary. Let (uj(t, η;α),
vj(t, η;α)) be an instanton-type solution in Ω1 and let us denote its analytic con-
tinuation in Ω2 across the Stokes curve by (uj(t, η; α̃), vj(t, η; α̃)). It is expected
that a Stokes phenomenon occurs on the Stokes curve and some exponentially small
terms are added to (uj(t, η;α), vj(t, η;α)); consequently the free parameter α̃ of the
corresponding solution in Ω2 may become different from the original parameter α.
We want to explain why such a change of free parameters occurs on a Stokes curve
and how an explicit formula describing it can be obtained.

Prop. 1, (ii) claims that on a Stokes curve of (PI)m (i.e., curve in t-plane) two
turning points are connected by a Stokes curve of (SLI)m (i.e., curve in x-plane).
Hence the configuration of Stokes curves of (SLI)m when t belongs to Ω1 is different
from the configuration when t belongs to Ω2 (cf. Fig. 4). Now, applying the exact
WKB analysis for linear ordinary differential equations (cf. [KT1] and references
cited therein), we compute the monodromy data of (SLI)m when t ∈ Ω1 and t ∈ Ω2,
respectively. Since the computation of monodromy data through the exact WKB
analysis heavily depends on the configuration of Stokes curves, the concrete expres-
sions of monodromy data thus obtained, which become functions of the parameters
α and α̃, should be different (as functions of the parameters) according as t belongs

9



(i)

x

bj

a

(ii)

x

bj

a

(iii)

x

bj

a

Figure 4 : Configuration of Stokes curves of (SLI)m when (i) t belongs to Ω1,
(ii) t lies in a Stokes curve and (iii) t belongs to Ω2.

to Ω1 or Ω2.

(30)
If t ∈ Ω1 ⇒ monodromy data of (SLI)m : Mk(α).

If t ∈ Ω2 ⇒ monodromy data of (SLI)m : M̃k(α̃).

Although the expressions Mk(α) and M̃k(α̃) are different, their values, i.e., the mon-
odromy data themselves should be unchanged thanks to the isomonodromic property
if (uj(t, η; α̃), vj(t, η; α̃)) is the analytic continuation of (uj(t, η;α), vj(t, η;α)). We
thus obtain

(31) Mk(α) = M̃k(α̃).

The relation (31) immediately implies α and α̃ are different in general. Moreover
(31) describes an explicit formula (“general connection formula” for instanton-type
solutions) which relates α̃ to α. The relation (31) thus explains the mechanism
how the Stokes phenomenon for instanton-type solutions occurs on a Stokes curve
of (PI)m.

In conclusion, Prop. 1, (ii) together with the explicit computation of monodromy
data of (SLI)m enables us to explicitly analyze the Stokes phenomena for (PI)m.
However it is a quite complicated and troublesome task to compute the monodromy
data of (SLI)m in general. In the subsequent section, to write down the connection
formula in a neat way, we will discuss the generalization of “the normal form theory
at a turning point” established for traditional (i.e., second order) Painlevé equations
in [KT2] to hierarchies of higher order Painlevé equations.

5 Toward the connection formula for instanton-

type solutions — Discussion and open problems

In [KT2] we showed that every 2-parameter instanton-type solution of a traditional
Painlevé equation (PJ) (J = I, . . . ,VI) can be transformed (in the formal sense)
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to that of the first Painlevé equation (PI) near a simple turning point. (Note that
all turning points of (PJ) are of the first kind in the sense of Def. 1.) Otherwise
stated, (PI) is the normal form (or, canonical equation) at a simple turning point
for (PJ). This reduction (more precisely, local equivalence) theorem would imply
that the connection formula for instanton-type solutions of (PJ) should be the same
as that of (PI). In this section we discuss its generalization to the hierarchy (PI)m
of higher order first Painlevé equations.

Let us here recall the fact that in the case of a linear equation with an integral
representation of solutions each WKB solution lives at a saddle point of the integral
representation. Toward the verification of the reduction (local equivalence) theorem
near a turning point for (PI)m, we first consider a counterpart of this fact, that is,
taking the claim (ii) of Prop. 1 into account, we ask the following question: Does
an instanton-type solution of (PI)m “live” at a double turning point x = bj(t) of the
underlying linear equation (SLI)m? The precise formulation of our expectation is
the following

Conjecture 1. Assume that an instanton-type solution (uj(t, η;α), vj(t, η;α)) is
substituted into the coefficients of (SLI)m and (DI)m. Then at a double turning
point x = bj(t) of (SLI)m the simultaneous equations (SLI)m and (DI)m can be
transformed into

(Can)

(
∂2

∂z2
− η2Qcan(z, s, η)

)
ϕ = 0,

(Dcan)
∂ϕ

∂s
= Acan

∂ϕ

∂z
− 1

2

∂Acan

∂z
ϕ,

where

Qcan = 4z2 + η−1(ρ2 − 4σ2) +
η−3/2ρ

z − η−1/2σ
+

3η−2

4(z − η−1/2σ)2
,(32)

Acan =
1

2(z − η−1/2σ)
.(33)

(Here ρ and σ are considered to be functions of t.)

We can readily verify that (Can) and (Dcan) are compatible if ρ and σ satisfy
the following Hamiltonian system:

(34)





dρ

dt
= −4ησ,

dσ

dt
= −ηρ.

As the compatibility condition of (Can) and (Dcan) is described by a second order
equation (34), Conjecture 1 implies that a 2-parameter family of (instanton-type)
solutions of (PI)m lives at a double turning point x = bj(t) of (SLI)m.
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As a matter of fact, there are some supporting evidences of Conjecture 1. For
example, let us consider the second member (PI)2 (see (4) for the concrete expres-
sion) of the hierarchy and its underlying linear equations (SLI)2 and (DI)2 with an
instanton-type solution (uj(t, η;α, β), vj(t, η;α, β)) (cf. (11)) of (PI)2 being substi-
tuted into their coefficients. There exist two double turning points x = b1(t) and
x = b2(t) of (SLI)2. We can then verify that at x = bj(t) (j = 1, 2), if we temporar-
ily ignore the deformation equation (DI)2, (SLI)2 is transformed into (Can). To be
more specific, we can find

(35) σ(j)(t, η) =
∑

l

η−l/2σ
(j)
l/2, ρ(j)(t, η) =

∑

l

η−l/2ρ
(j)
l/2,

so that (SLI)2 can be transformed into the following equation:

(36)

(
∂2

∂z2
− η2Q(j)

can

)
ϕ = 0,

with

(37) Q(j)
can = 4z2 + η−1((ρ(j))2 − 4(σ(j))2) +

η−3/2ρ(j)

z − η−1/2σ(j)
+

3η−2

4(z − η−1/2σ(j))2
.

Furthermore the top order part of σ(j) and that of ρ(j) are explicitly given by

σ
(j)
0 =

1

2
√

2

[
αjθ

α1β1

j1 θ α2β2

j2 eη
∫ t
νjdt + βjθ

−α1β1

j1 θ−α2β2

j2 e−η
∫ t
νjdt

]
,(38)

ρ
(j)
0 =

1√
2

[
−αjθ α1β1

j1 θ α2β2

j2 eη
∫ t
νjdt + βjθ

−α1β1

j1 θ−α2β2

j2 e−η
∫ t
νjdt

]
.(39)

One important point of the formulas (38) and (39) is the following: σ(1) and ρ(1)

(resp., σ(2) and ρ(2)) contain the free parameters α1 and β1 (resp., α2 and β2) only,
that is, “separation of free parameters” is occurring with the top order part of σ(j)

and ρ(j).
More generally, for (PI)m and its underlying linear equation (SLI)m we can con-

firm the following:

Proposition 2. (i) If we substitute an instanton-type solution (uj(t, η;α), vj(t, η;α))
of (PI)m into the coefficients of (SLI)m, we can find σ(j)(t, η) and ρ(j)(t, η) of the
form (35) so that (SLI)m is transformed into (36) with (37) at a double turning
point x = bj(t) (j = 1, . . . , m).

(ii) Furthermore “separation of free parameters” (in the above sense) is observed
with the top order part of σ(j) and ρ(j).

In view of the discussion employed in [AKT] and [KT2], we believe Prop. 2
should be the first step toward the verification of Conjecture 1 and the reduction
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(local equivalence) to (PI) near a turning point of the first kind. In particular, Prop.
2, (ii), i.e., “separation of free parameters”, which is a phenomenon peculiar to higher
order equations, would play an important role in the construction of a transformation
of the simultaneous equations (SLI)m and (DI)m to (Can) and (Dcan). Once such a
transformation is constructed (i.e., Conjecture 1 is verified), it is expected that the
reduction (local equivalence) to (PI) may be proved in a similar manner to the case
of traditional Painlevé equations. We hope we can prove Conjecture 1 and discuss
the reduction (local equivalence) to (PI) somewhere in the near future.

Finally, in ending this report, we list up some relevant open problems in the
exact WKB analysis for instanton-type solutions of (PI)m.

Some open problems in the exact WKB analysis of (PI)m

(A) To prove Conjecture 1.

(B) To establish the reduction (local equivalence) of (PI)m to (PI) near a turning
point of the first kind. Note that the local equivalence theorem for 0-parameter
solutions has already been proved in [KT4]. (See [KT3] for its announcement; cf.
[T4] also.)

(C) To establish the reduction (local equivalence) theorem near a turning point of
the second kind. In particular, which equation is the normal form at a turning point
of the second kind?

(D) To study the Stokes phenomenon on a “new Stokes curve” of (PI)m discovered
by Nishikawa (cf. [N], [KKoNT]).
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