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The Stokes Resolvent Problem
in General Unbounded Domains

Reinhard Farwig∗ Hideo Kozono† Hermann Sohr‡

Abstract

It is well-known that the Helmholtz decomposition of Lq-spaces fails to
exist for certain unbounded smooth domains unless q = 2. Hence also
the Stokes operator is not well-defined for these domains when q 6= 2. In
this paper, we generalize a new approach to the Stokes problem in general
unbounded smooth domains from the three-dimensional case, see [5], to
the n-dimensional one, n ≥ 2, replacing the space Lq, 1 < q < ∞, by
L̃q where L̃q = Lq ∩ L2 for q ≥ 2 and L̃q = Lq + L2 for 1 < q < 2. In
particular, we show that the Stokes operator is well-defined in L̃q for every
unbounded domain of uniform C1,1-type in Rn, n ≥ 2, and generates an
analytic semigroup.

2000 Mathematics Subject Classification: Primary 76D05, Secondary 35Q30

Keywords: General unbounded domains; domains of uniform C1,1-type; Stokes oper-
ator, Stokes resolvent; Stokes semigroup

1 Introduction

Throughout this paper, Ω ⊆ Rn, n ≥ 2, means a general unbounded domain with
uniform C1,1-boundary ∂Ω 6= ∅, see Definition 1.1 below. As is well-known, the
standard approach to the Stokes equations in Lq-spaces, 1 < q < ∞, cannot be
extended to general unbounded domains unless q = 2. One reason is the fact that
the Helmholtz decomposition fails to exist for certain unbounded smooth domains
on Lq, q 6= 2, see [3], [10]. On the other hand, in L2 the Helmholtz projection
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and the Stokes operator are well-defined for every domain, the Stokes operator is
self-adjoint and generates a bounded analytic semigroup. This observation was
used in [5] to consider in the three-dimensional case the Helmholtz decomposition
in the space

L̃q(Ω) =

{
Lq(Ω) ∩ L2(Ω), 2 ≤ q < ∞
Lq(Ω) + L2(Ω), 1 < q < 2

,

and to define and to analyze the Stokes operator in the space

L̃q
σ(Ω) =

{
Lq

σ(Ω) ∩ L2
σ(Ω), 2 ≤ q < ∞

Lq
σ(Ω) + L2

σ(Ω), 1 < q < 2
.

It was proved that for every unbounded domain Ω ⊆ R3 of uniform C2-type
the Stokes operator in L̃q

σ satisfies the usual resolvent estimate, that it generates
an analytic semigroup and has maximal regularity. Moreover, the Helmholtz
decomposition of L̃q(Ω) exists for every unbounded domain Ω ⊆ Rn, n ≥ 2, of
uniform C1,1-type, see [6].

To describe this result, we introduce the space of gradients

G̃q(Ω) =

{
Gq(Ω) ∩G2(Ω), 2 ≤ q < ∞
Gq(Ω) + G2(Ω), 1 < q < 2

,

where Gq(Ω) = {∇p ∈ Lq(Ω) : p ∈ Lq
loc(Ω)} and recall the notion of domains of

uniform Ck– and Ck,1-type.

Definition 1.1 A domain Ω ⊆ Rn, n ≥ 2, is called a uniform Ck-domain of
type (α, β, K), k ∈ N, α > 0, β > 0, K > 0, if for each x0 ∈ ∂Ω we can choose
a Cartesian coordinate system with origin at x0 and coordinates y = (y′, yn),
y′ = (y1, . . . , yn−1), and a Ck-function h(y′), |y′| ≤ α, with Ck-norm ‖h‖Ck ≤ K
such that the neighborhood

Uα,β,h(x0) := {y = (y′, yn) ∈ Rn : |yn − h(y′)| < β, |y′| < α}

of x0 implies Uα,β,h(x0) ∩ ∂Ω = {(y′, h(y′)) : |y′| < α} and

U−
α,β,h(x0) := {(y′, yn) : h(y′)− β < yn < h(y′), |y′| < α} = Uα,β,h(x0) ∩ Ω.

By analogy, a domain Ω ⊆ Rn, n ≥ 2, is called a uniform Ck,1-domain of type
(α, β, K), k ∈ N∪{0}, if the functions h mentioned above may be chosen in Ck,1

such that the Ck,1-norm satisfies ‖h‖Ck,1 ≤ K.

Theorem 1.2 [6] Let Ω ⊆ Rn, n ≥ 2, be a uniform C1−domain of type (α, β, K)
and let q ∈ (1,∞). Then each u ∈ L̃q(Ω) has a unique decomposition

u = u0 +∇p, u0 ∈ L̃q
σ(Ω), ∇p ∈ G̃q(Ω),
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satisfying the estimate

‖u0‖L̃q + ‖∇p‖L̃q ≤ c‖u‖L̃q , (1.1)

where c = c(α, β, K, q) > 0. In particular, the Helmholtz projection P̃q defined by
P̃qu = u0 is a bounded linear projection on L̃q(Ω) with range L̃q

σ(Ω) and kernel
G̃q(Ω). Moreover, L̃q

σ(Ω) is the closure in L̃q(Ω) of the space C∞
0,σ(Ω) = {u ∈

C∞
0 (Ω)n : div u = 0},

(
L̃q

σ(Ω)
)′

= L̃q′
σ (Ω) and

(
P̃q

)′
= P̃q′, q′ = q

q−1
.

Using the Helmholtz projection P̃q we define the Stokes operator Ãq as an
operator with domain

D(Ãq) =

{
Dq(Ω) ∩D2(Ω), 2 ≤ q < ∞
Dq(Ω) + D2(Ω), 1 < q < 2

,

where Dq(Ω) = W 2,q(Ω) ∩W 1,q
0 (Ω) ∩ Lq

σ(Ω), by setting

Ãqu = −P̃q∆u, u ∈ D(Ãq).

Let I be the identity and Sε = {0 6= λ ∈ C; | arg λ| < π
2

+ ε}, 0 < ε < π
2
. Then

our main result reads as follows:

Theorem 1.3 Let Ω ⊆ Rn be a uniform C1,1-domain of type (α, β, K) and let
1 < q < ∞, δ > 0. Then

Ãq = −P̃q ∆ : D(Ãq) ⊂ L̃q
σ(Ω) → L̃q

σ(Ω)

is a densely defined closed operator. For any 0 < ε < π
2

and for all λ ∈ Sε, its

resolvent (λI + Ãq)
−1 : L̃q

σ(Ω) → L̃q
σ(Ω) is well-defined and u = (λI + Ãq)

−1f ,
f ∈ L̃q

σ(Ω), satisfies the resolvent estimate

‖λu‖L̃q
σ

+ ‖∇2u‖L̃q ≤ C‖f‖L̃q
σ
, |λ| ≥ δ, (1.2)

where C = C(q, ε, δ, α, β, K) > 0.

Corollary 1.4 Under the assumptions of Theorem 1.3 the Stokes operator Ãq

satisfies the duality relation

〈Ãqu, v〉 = 〈u, Ãq′v〉 for all u ∈ D(Ãq), v ∈ D(Ãq′). (1.3)

and generates an analytic semigroup e−tÃq with bound

‖e−tÃq f‖L̃q
σ
≤ Meδt ‖f‖L̃q

σ
, f ∈ L̃q

σ, t ≥ 0, (1.4)

where M = M(q, δ, α, β, K) > 0.
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Moreover, let f ∈ L̃q(Ω). Then the Stokes resolvent equation

λu−∆u +∇p = f, div u = 0 in Ω, u = 0 on ∂Ω

has a unique solution (u,∇p) ∈ D(Ãq) × G̃q(Ω) defined by u = (λI + Ãq)
−1P̃qf

and ∇p = (I − P̃q)(f + ∆u) satisfying

‖λu‖L̃q + ‖∇2u‖L̃q + ‖∇p‖L̃q ≤ C‖f‖L̃q , (1.5)

with a constant C = C(q, ε, δ, α, β, K) > 0.

Note that the bound δ > 0 in Theorem 1.3 and Corollary 1.4 may be chosen
arbitrarily small, but that it is not clear whether δ = 0 is allowed for a general
unbounded domain and whether the semigroup e−tÃq is uniformly bounded in L̃q

σ

for 0 ≤ t < ∞.

2 Preliminaries

Let us recall some properties of sum and intersection spaces known from inter-
polation theory, cf. [2], [13].

Consider two (complex) Banach spaces X1, X2 with norms ‖ · ‖X1 , ‖ · ‖X2 ,
respectively, and assume that both X1 and X2 are subspaces of a topological
vector space V with continuous embeddings. Further, we assume that X1 ∩ X2

is a dense subspace of both X1 and X2. Then the sum space

X1 + X2 := {u1 + u2; u1 ∈ X1, u2 ∈ X2} ⊆ V

is a well-defined Banach space with the norm

‖u‖X1+X2 := inf{‖u1‖X1 + ‖u2‖X2 ; u = u1 + u2, u1 ∈ X1, u2 ∈ X2}.

The intersection space X1 ∩X2 is a Banach space with norm

‖u‖X1∩X2 = max(‖u‖X1 , ‖u‖X2).

Suppose that X1 and X2 are reflexive Banach spaces. Then an argument using
weakly convergent subsequences yields the following property: Given u ∈ X1+X2

there exist u1 ∈ X1, u2 ∈ X2 with u = u1 + u2 such that

‖u‖X1+X2 = ‖u1‖X1 + ‖u2‖X2 .

The dual space (X1 + X2)
′ of X1 + X2 is given by X ′

1 ∩X ′
2, and we get

(X1 + X2)
′ = X ′

1 ∩X ′
2
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with the natural pairing 〈u, f〉 = 〈u1, f〉+ 〈u2, f〉 for all u = u1 + u2 ∈ X1 + X2,
f ∈ X ′

1 ∩X ′
2. Thus it holds

‖u‖X1+X2 = sup
{ |〈u1, f〉+ 〈u2, f〉|

‖f‖X′
1∩X′

2

; 0 6= f ∈ X ′
1 ∩X ′

2

}
and

‖f‖X′
1∩X′

2
= sup

{ |〈u1, f〉+ 〈u2, f〉|
‖u‖X1+X2

; 0 6= u = u1 + u2 ∈ X1 + X2

}
;

see [2], [13]. By analogy,
(X1 ∩X2)

′ = X ′
1 + X ′

2

with the natural pairing 〈u, f1 + f2〉 = 〈u, f1〉 + 〈u, f2〉 for u ∈ X1 ∩ X2 and
f = f1 + f2 ∈ X ′

1 + X ′
2.

Consider closed subspaces L1 ⊆ X1, L2 ⊆ X with norms ‖ · ‖L1 = ‖ · ‖X1 ,
‖ · ‖L2 = ‖ · ‖X2 and assume that L1 ∩ L2 is dense in both L1 and L2. Then
‖u‖L1∩L2 = ‖u‖X1∩X2 , u ∈ L1∩L2, and an elementary argument using the Hahn-
Banach theorem shows that also

‖u‖L1+L2 = ‖u‖X1+X2 , u ∈ L1 + L2. (2.1)

In particular, we need the following special case. Let B1 : D(B1) → X1,
B2 : D(B2) → X2 be closed linear operators with dense domains D(B1) ⊆ X1,
D(B2) ⊆ X2 equipped with graph norms

‖u‖D(B1) = ‖u‖X1 + ‖B1u‖X1 , ‖u‖D(B2) = ‖u‖X2 + ‖B2u‖X2 .

We assume that D(B1) ∩ D(B2) is dense in both D(B1) and D(B2) in the cor-
responding graph norms. Each functional F ∈ D(Bi)

′, i = 1, 2, is given by
some pair f, g ∈ X ′

i in the form 〈u, F 〉 = 〈u, f〉 + 〈Biu, g〉. Using (2.1) with
Li = {(u, Biu); u ∈ D(Bi)} ⊆ Xi × Xi, i = 1, 2, and the equality of norms
‖ · ‖(X1×X1)+(X2×X2) and ‖ · ‖(X1+X2)×(X1+X2) on (X1 ×X1) + (X2 ×X2), we con-
clude that for each u ∈ D(B1) + D(B2) with decomposition u = u1 + u2, u1 ∈
D(B1), u2 ∈ D(B2),

‖u‖D(B1)+D(B2) = ‖u1 + u2‖X1+X2 + ‖B1u1 + B2u2‖X1+X2 . (2.2)

Concerning Definition 1.1 for domains of uniform C1,1-type we introduce fur-
ther notations and discuss some properties. Obviously, the axes ei, i = 1, . . . , n, of
the new coordinate system (y′, yn) may be chosen in such a way that e1, . . . , en−1

are tangential to ∂Ω at x0. Hence at y′ = 0 we have h(y′) = 0 and ∇′h(y′) =
(∂h/∂y1, . . . , ∂h/∂yn−1)(y

′) = 0. Since h ∈ C1,1, for any given constant M0 > 0,
we may choose α > 0 sufficiently small such that ‖h‖C1 ≤ M0 is satisfied.
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It is easily shown that there exists a covering of Ω by open balls Bj = Br(xj)
of fixed radius r > 0 with centers xj ∈ Ω, such that with suitable functions
hj ∈ C1,1 of type (α, β, K)

Bj ⊂ Uα,β,hj
(xj) if xj ∈ ∂Ω, Bj ⊂ Ω if xj ∈ Ω. (2.3)

Here j runs from 1 to a finite number N = N(Ω) ∈ N if Ω is bounded, and
j ∈ N if Ω is unbounded. Moreover, as an important consequence, the covering
{Bj} of Ω may be constructed in such a way that not more than a fixed number
N0 = N0(α, β, K) ∈ N of these balls have a nonempty intersection. Related to
this covering, there exists a partition of unity {ϕj}, ϕj ∈ C∞

0 (Rn), such that

0 ≤ ϕj ≤ 1, supp ϕj ⊂ Bj, and
N∑

j=1

ϕj = 1 or
∞∑
j=1

ϕj = 1 on Ω. (2.4)

The functions ϕj may be chosen so that |∇ϕj(x)|+ |∇2ϕj(x)| ≤ C uniformly in
j and x ∈ Ω with C = C(α, β, K).

If Ω is unbounded, then Ω can be represented as the union of an increasing
sequence of bounded uniform C1,1-domains Ωk ⊂ Ω, k ∈ N,

Ω1 ⊂ . . . ⊂ Ωk ⊂ Ωk+1 ⊂ . . . , Ω =
∞⋃

k=1

Ωk, (2.5)

where each Ωk is of the same type (α′, β′, K ′). Without loss of generality we
assume that α = α′, β = β′, K = K ′.

Using the partition of unity {ϕj} we will perform the analysis of the Stokes
operator by starting from well-known results for certain bounded and unbounded
domains. For this reason, given h ∈ C1,1(Rn−1) satisfying h(0) = 0, ∇′h(0) = 0
and with compact support contained in the (n − 1)-dimensional ball of radius
r, 0 < r = r(α, β, K) < α, and center 0, we introduce the bounded domain

H = Hα,β,h;r = {y ∈ Rn : h(y′)− β < yn < h(y′), |y′| < α} ∩Br(0) ;

here we assume that Br(0) ⊂ {y ∈ Rn : |yn − h(y′)| < β, |y′| < α}.
On H we consider the classical Sobolev spaces W k,q(H) and W k,q

0 (H), k ∈ N,

the dual space W−1,q(H) =
(
W 1,q′

0 (H)
)′

and the space

Lq
0(H) =

{
u ∈ Lq(H) :

∫
H

u dx = 0
}

of Lq-functions with vanishing mean on H.

Lemma 2.1 Let 1 < q < ∞ and H = Hα,β,h;r.
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(i) There exists a bounded linear operator

R : Lq
0(H) → W 1,q

0 (H)n

such that div ◦R = I on Lq
0(H) and R

(
Lq

0(H)∩W 1,q
0 (H)

)
⊂ W 2,q

0 (H). Moreover,
there exists a constant C = C(α, β, K, q) > 0 such that

‖Rf‖W 1,q ≤ C‖f‖Lq(H) for all f ∈ Lq
0(H)

‖Rf‖W 2,q ≤ C‖f‖W 1,q(H) for all f ∈ Lq
0(H) ∩W 1,q

0 (H) .
(2.6)

(ii) There exists C = C(α, β, K, q) > 0 such that for every p ∈ Lq
0(H)

‖p‖q ≤ C‖∇p‖W−1,q = C sup
{ |〈p, div v〉|

‖∇v‖q′
: 0 6= v ∈ W 1,q′

0 (H)
}

. (2.7)

(iii) For given f ∈ Lq(H) let u ∈ Lq
σ(H) ∩W 1,q

0 (H) ∩W 2,q(H), p ∈ W 1,q(H)
satisfy the Stokes resolvent equation λu − ∆u + ∇p = f with λ ∈ Sε. More-
over, assume that supp u ∪ supp p ⊂ Br(0). Then there are constants λ0 =
λ0(q, α, β,K) > 0, C = C(q, α, β,K) > 0 such that

‖λu‖Lq(H) + ‖u‖W 2,q(H) + ‖∇p‖Lq(H) ≤ C‖f‖Lq(H) (2.8)

if |λ| ≥ λ0.

Proof: (i) It is well known that there exists a bounded linear operator R :
Lq

0(H) → W 1,q
0 (H)n such that u = Rf solves the divergence problem div u = f.

Moreover, the estimate (2.6)1 holds with C = C(α, β, K, q) > 0, see [8], III,
Theorem 3.1. The second part follows from [8], III, Theorem 3.2.

(ii) A duality argument and (i) yield (ii), see [6], [11], II.2.1.
(iii) We extend u, p by zero so that (u,∇p) may be considered as a solution

of the Stokes resolvent system in a bent half space; then we refer to [4], Theorem
3.1, (i).

Now let Ω ⊆ Rn be a bounded C1,1-domain. Obviously, such a domain is of
type (α, β, K). We collect several results on Sobolev embedding estimates and
on the Stokes operator Aq, 1 < q < ∞.

Lemma 2.2 (i) Let 1 < q < ∞, 0 < M ≤ 1. Then there exists some C =
C(q, M, α, β,K) > 0 such that

‖∇u‖Lq ≤ M‖∇2u‖Lq + C‖u‖Lq (2.9)

for all u ∈ W 2,q(Ω).
(ii) If 2 ≤ q < ∞, 0 < M ≤ 1, then there exists a constant C =

C(q, M, α, β,K) > 0 such that

‖u‖Lq ≤ M‖∇2u‖Lq + C
(
‖∇2u‖L2 + ‖u‖L2

)
(2.10)

for all u ∈ W 2,q(Ω).
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Proof: The proofs of (i), (ii) are easily reduced to the case u ∈ W 2,q
0 (Ω′), Ω ⊂ Ω′,

Ω′ a bounded C1,1-domain, using an extension operator on Sobolev spaces the
norm of which is shown to depend only on q and (α, β, K). In (ii) we choose
an r ∈ [2, q) such that ‖u‖Lq ≤ M‖∇2u‖Lr + C‖u‖Lr and use the interpolation
inequality

‖v‖Lr ≤ γ
(1

ε

)1/γ

‖v‖L2 + (1− γ)ε1/(1−γ)‖v‖Lq , (2.11)

with γ ∈ (0, 1), 1
r

= γ
2

+ 1−γ
q

, for v = u and v = ∇2u for suitable ε > 0 to get

(2.10). For basic details see [1], IV, Theorem 4.28, [7] and [11], II.1.3.

Lemma 2.3 Let 1 < q < ∞ and let Ω ⊆ Rn be a bounded C1,1-domain.
(i) The Stokes operator Aq = −Pq∆ : D(Aq) → Lq

σ(Ω), where D(Aq) =
Lq

σ(Ω) ∩W 1,q
0 (Ω) ∩W 2,q(Ω), satisfies the resolvent estimate

‖λu‖Lq + ‖Aqu‖Lq ≤ C‖f‖Lq , C = C(ε, q, Ω) > 0, (2.12)

where u ∈ D(Aq), λu + Aqu = f ∈ Lq
σ(Ω) and λ ∈ Sε, 0 < ε < π

2
. In particular,

it holds the estimate

‖u‖W 2,q ≤ C‖Aqu‖Lq , C = C(q, Ω).

Moreover,

〈Aqu, v〉 = 〈u, Aq′v〉 for all u ∈ D(Aq), v ∈ D(Aq′)

and A′q = Aq′.
(ii) If q = 2, then the resolvent problem λu + A2u = f ∈ L2

σ(Ω), λ ∈ Sε, has
a unique solution u ∈ D(A2) satisfying the estimate

‖λu‖L2 + ‖A2u‖L2 ≤ C‖f‖L2 (2.13)

with the constant C = 1 + 2/ cos ε independent of Ω. Moreover, A2 is selfadjoint
and

〈A2u, u〉 = ‖A
1
2
2 u‖2

L2 = ‖∇u‖2
L2 , u ∈ D(A2) . (2.14)

Proof: For (i) see [4], [9], [12]. For (ii) – including even general unbounded
domains – we refer to [11].

Note that in the resolvent estimate (2.12) it is not yet clear how the constant
C will depend on the the underlying bounded domain Ω.
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3 Proofs

3.1 A preliminary result for bounded Ω

Lemma 3.1 Let Ω ⊆ Rn be a bounded C1,1-domain of type (α, β, K). Then the
graph norm ‖u‖D(Aq) = ‖u‖Lq + ‖Aqu‖Lq is equivalent to the norm ‖u‖W 2,q on
D(Aq) with constants only depending on q, α, β,K. More precisely,

C1‖u‖W 2,q ≤ ‖u‖D(Aq) ≤ C2‖u‖W 2,q , u ∈ D(Aq), (3.1)

with C1 = C1(q, α, β,K) > 0, C2 = C2(q, α, β,K) > 0.

Proof: We use the system of functions {hj}, 1 ≤ j ≤ N , the covering of Ω by
balls {Bj}, and the partition of unity {ϕj} as described in Section 2. Let

Uj = U−
α,β,hj

(xj) ∩Bj if xj ∈ ∂Ω and Uj = Bj if xj ∈ Ω, 1 ≤ j ≤ N.

Given f ∈ Lq
σ(Ω) and u ∈ D(Aq) satisfying Aqu = f , i.e. −∆u + ∇p =

f, div u = 0 in Ω, let wj = R
(
(∇ϕj) · u

)
∈ W 2,q

0 (Uj) be the solution of the
divergence equation div wj = div (ϕju) = (∇ϕj) · u in Uj, 1 ≤ j ≤ N . Moreover,
let Mj = Mj(p) be the constant such that p − Mj ∈ Lq

0(Uj). By Lemma 2.1
and the equation ∇p = f + ∆u we conclude that ‖wj‖W 1,q(Uj) ≤ C‖u‖Lq(Uj),
‖wj‖W 2,q(Uj) ≤ C‖u‖W 1,q(Uj) as well as

‖p−Mj‖Lq(Uj) ≤ C( ‖f‖Lq(Uj) + ‖∇u‖Lq(Uj))

with C = C(q, α, β,K) > 0 independent of j. Finally, let λ0 > 0 denote the
constant in Lemma 2.1 (iii). Then ϕju−wj satisfies the local resolvent equation

λ0(ϕju− wj)−∆(ϕju− wj) +∇
(
ϕj(p−Mj)

)
= ϕjf + ∆wj − 2∇ϕj · ∇u− (∆ϕj)u + (∇ϕj)(p−Mj) + λ0(ϕju− wj).

in Uj. By (2.8) with λ = λ0 and the previous a priori estimates we get the local
inequalities

‖ϕj∇2u‖q
Lq(Uj)

+ ‖ϕj∇(p−Mj)‖q
Lq(Uj)

≤ C( ‖f‖q
Lq(Uj)

+ ‖u‖q
W 1,q(Uj)

), (3.2)

1 ≤ j ≤ N. Taking the sum over j = 1, . . . , N and exploiting the crucial property
of the number N0 we are led to the estimate

‖∇2u‖q
Lq(Ω) + ‖∇p‖q

Lq(Ω) =

∫
Ω

(( ∑
j

ϕj|∇2u|
)q

+
( ∑

j

ϕj|∇p|
)q)

dx

≤
∫

Ω

N
q
q′
0

( ∑
j

|ϕj∇2u|q +
∑

j

|ϕj∇p|q
)

dx (3.3)

≤ CN
q
q′
0

( ∑
j

‖f‖q
Lq(Uj)

+
∑

j

‖u‖q
W 1,q(Uj)

)
.
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Next we use (2.9) for the term ‖u‖W 1,q(Uj). Choosing M > 0 sufficiently small in
(2.9), exploiting the absorption principle and again the property of the number
N0, (3.3) may be simplified to the estimate

‖∇2u‖Lq(Ω) ≤ C
(
‖f‖Lq(Ω) + ‖u‖Lq(Ω)

)
(3.4)

where C = C(q, α, β,K) > 0. Since f = Aqu and since the norm of the Helmholtz
projection Pq in Lq(Ω) is bounded by C = C(q, α, β,K) > 0, the proof of the
lemma is complete.

3.2 The Stokes resolvent in a bounded domain Ω when q ≥ 2

We consider for λ ∈ Sε the resolvent equation

λu + Aqu = λu−∆u +∇p = f in Ω

with f ∈ Lq
σ(Ω), where 1 < q < ∞, λ ∈ Sε, 0 < ε < π

2
. Our aim is to prove for

its solution u ∈ D(Aq) and ∇p = (I − Pq)∆u, the estimate

‖λu‖Lq∩L2 + ‖∇2u‖Lq∩L2 + ‖∇p‖Lq∩L2 ≤ C‖f‖Lq∩L2 (3.5)

with |λ| ≥ δ > 0, where δ > 0 is given, and C = C(q, ε, δ, α, β, K) > 0.
Note that this estimate is well-known for bounded domains with a constant
C = C(q, ε, δ, Ω) > 0. As in Subsection 3.1 let wj = R

(
(∇ϕj) · u

)
∈ W 2,q

0 (Uj)
and choose a constant Mj = Mj(p) such that p−Mj ∈ Lq

0(Uj). Then we obtain
the local equation

λ(ϕju− wj)−∆(ϕju− wj) +∇
(
ϕj(p−Mj)

)
(3.6)

= ϕjf + ∆wj − 2∇ϕj · ∇u− (∆ϕj)u− λwj + (∇ϕj)(p−Mj)

Concerning the term λwj, we choose in an intermediate step r ∈ [2, q), use the
interpolation estimate (2.11) for v = u and get by Lemma 2.2 (i) for M ∈ (0, 1)
that

‖wj‖Lq(Uj) ≤ C1‖wj‖W 1,r(Uj) ≤ M‖u‖Lq(Uj) + C2‖u‖L2(Uj);

here Ci = Ci(M, q, r, α, β, K) > 0. Moreover, ‖∇2wj‖Lq(Uj) ≤ C‖∇u‖Lq(Uj). For
p−Mj we use (2.7) and the equation ∇p = −λu + ∆u + f to see that

‖p−Mj‖Lq(Uj) ≤ C
(
‖f‖Lq(Uj)+‖∇u‖Lq(Uj)+sup

{ |〈λu, v〉|
‖∇v‖q′

: 0 6= v ∈ W 1,q′

0 (Uj)
})

,

C = C(q, α, β,K) > 0. Again we choose r ∈ [2, q), use (2.11) for v = λu and get

‖p−Mj‖Lq(Uj) ≤ C
(
‖f‖Lq(Uj) + ‖∇u‖Lq(Uj) + ‖λu‖q

L2(Uj)

)
+ M‖λu‖Lq(Uj).

Furthermore, we apply to the local resolvent equation (3.6) the estimate (2.8) with
λ replaced by λ + λ′0 where λ′0 ≥ 0 is sufficiently large such that |λ + λ′0| ≥ λ0 for
|λ| ≥ δ, λ0 as in (2.8).
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Now we combine these estimates and are led to the local inequality

‖λϕju‖Lq(Uj) + ‖ϕju‖Lq(Uj) + ‖ϕj∇2u‖Lq(Uj) + ‖ϕj∇p‖Lq(Uj) (3.7)

≤ C
(
‖f‖Lq(Uj) + ‖u‖Lq(Uj) + ‖∇u‖Lq(Uj) + ‖λu‖q

L2(Uj)

)
+ M‖λu‖q

Lq(Uj)

with C = C(M, q, δ, ε, α, β, K) > 0. Taking the sum over j = 1, . . . , N in the
same way as in (3.2)–(3.4) and using the crucial property of the integer N0 we
get the inequality

‖λu‖Lq(Ω) + ‖u‖Lq(Ω) + ‖∇2u‖Lq(Ω) + ‖∇p‖Lq(Ω) (3.8)

≤ C
(
‖f‖Lq(Ω) + ‖u‖Lq(Ω) + ‖∇u‖Lq(Ω) + ‖λu‖L2(Ω)

)
+ M‖λu‖q

Lq(Ω)

with C = C(M, q, δ, ε, α, β, K) > 0, |λ| ≥ δ. Applying (2.9) and choosing M
sufficiently small we remove the terms ‖∇u‖Lq(Ω) and ‖λu‖Lq(Ω) in (3.8) by the
absorption principle. The term ‖u‖Lq(Ω) is removed with the help of (2.10).

Now we combine this improved inequality (3.8) with the estimate (2.13) for
|λ| ≥ δ and we apply (3.1) with q = 2. This proves the desired estimate (3.5) for
2 ≤ q < ∞.

3.3 The case Ω bounded, 1 < q < 2

In this case we consider for f ∈ L2
σ + Lq

σ = Lq
σ and λ ∈ Sε, |λ| ≥ δ, the

equation λu−∆u +∇p = f with unique solution u ∈ D(Aq) +D(A2) = D(Aq),
∇p = (I − P̃q)∆u. Note that Aq = Ãq, Pq = P̃q and that C∞

0,σ(Ω) is dense in

Lq′(Ω)∩L2(Ω) = Lq′(Ω). Using f = λu− P̃q∆u, the density of D(Aq′)∩D(A2) =
D(Aq′) in Lq′

σ ∩ L2
σ and (3.5) (with q replaced by q′ > 2) we obtain that

‖f‖L2
σ+Lq

σ
= sup

{ |〈λu + Ãqu, v〉|
‖v‖

Lq′
σ ∩L2

σ

; 0 6= v ∈ D(Aq′) ∩ D(A2)
}

= sup
{ |〈u, λv + Ãq′v〉|

‖v‖
Lq′

σ ∩L2
σ

; 0 6= v ∈ D(Aq′) ∩ D(A2)
}

= sup
{ |〈u, g〉|
‖(λI − P̃q′∆)−1g‖

Lq′
σ ∩L2

σ

; 0 6= g ∈ Lq′

σ ∩ L2
σ

}
(3.9)

≥ |λ|C−1 sup
{ |〈u, g〉|
‖g‖

Lq′
σ ∩L2

σ

; 0 6= g ∈ Lq′

σ ∩ L2
σ

}
.

By Theorem 1.2 the last term sup{. . .} in (3.9) defines a norm on Lq
σ + L2

σ which
is equivalent to the norm ‖ · ‖Lq

σ+L2
σ
; the constants in this norm equivalence are

related to the norm of P̃q′ and depend only on q and (α, β, K). Hence we proved
the estimate ‖λu‖Lq

σ+L2
σ
≤ C‖f‖Lq

σ+L2
σ

and even

‖λu‖Lq
σ+L2

σ
+ ‖u‖Lq

σ+L2
σ

+ ‖Aqu‖Lq
σ+L2

σ
≤ C‖f‖Lq

σ+L2
σ
, λ ∈ Sε, |λ| ≥ δ. (3.10)
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From the equivalence of norms ‖ · ‖D(Aq) and ‖ · ‖W 2,q , cf. (3.1), and from (2.2)
with B1 = Aq, B2 = A2, we conclude that also the norms ‖u‖W 2,q+W 2,2 and
‖u‖Lq

σ+L2
σ

+ ‖Aqu‖Lq
σ+L2

σ
are equivalent with constants depending only on q and

(α, β, K). Then (3.10) and the identity ∇p = f − λu + ∆u lead to the estimate

‖λu‖Lq
σ+L2

σ
+ ‖u‖W 2,q+W 2,2 + ‖∇p‖Lq+L2 ≤ C‖f‖Lq

σ+L2
σ

with C = C(q, δ, ε, α, β, K) > 0. Hence we proved the inequality

‖λu‖L̃q
σ

+ ‖u‖W̃ 2,q + ‖∇p‖L̃q ≤ C‖f‖L̃q
σ
, u ∈ D(Ãq) , (3.11)

with C = C(q, δ, ε, α, β, K) > 0 when |λ| ≥ δ > 0. Now the proof of Theorem
1.3 is complete for bounded domains.

3.4 The case Ω unbounded

Consider the sequence of bounded subdomains Ωj ⊆ Ω, j ∈ N, of uniform C1,1-
type as in (2.5), let f ∈ L̃q

σ(Ω) and fj := P̃qf |Ωj

. Then consider the solution

(uj,∇pj) of the Stokes resolvent equation

λuj − P̃q∆uj = λuj −∆uj +∇pj = fj, ∇pj = (I − P̃q)∆uj in Ωj.

From (3.11) we obtain the uniform estimate

‖λuj‖L̃q
σ(Ωj)

+ ‖uj‖W̃ 2,q(Ωj)
+ ‖∇pj‖L̃q(Ωj)

≤ C‖f‖L̃q
σ(Ω) (3.12)

with |λ| ≥ δ > 0, C = C(q, δ, ε, α, β, K) > 0. Extending uj and ∇pj by 0 to
vector fields on Ω we find, suppressing subsequences, weak limits

u = w− lim
j→∞

uj in L̃q
σ(Ω), ∇p = w− lim

j→∞
∇pj in L̃q(Ω)

satisfying u ∈ D(Ãq), λu − ∆u + ∇p = λu − P̃q∆u = f in Ω and the a priori
estimate (1.2). Note that each ∇pj when extended by 0 need not be a gradient
field on Ω; however, by de Rham’s argument, the weak limit of the sequence
{∇pj} is a gradient field on Ω. Hence we solved the Stokes resolvent problem
λu + Ãqu = λu−∆u +∇p = f in Ω and proved (1.2).

Finally, to prove uniqueness of u we assume that there is some v ∈ D(Ãq) and
λ ∈ Sε satisfying λv− P̃q∆v = 0. Given f ′ ∈ L̃q′(Ω) let u ∈ D(Ãq′) be a solution
of λu− P̃q′∆u = P̃q′f

′. Then

0 = 〈λv − P̃q∆v, u〉 = 〈v, (λ− P̃q′∆)u〉 = 〈v, P̃q′f
′〉 = 〈v, f ′〉

for all f ′ ∈ L̃q′(Ω); hence, v = 0.
Now Theorem 1.3 is completely proved.

Proof of Corollary 1.4: The assertions of this Corollary are proved by standard
duality arguments and semigroup theory.
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