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Anisotropic L*—estimates of weak solutions
to the stationary Oseen-type equations in R?
for a rotating body

S.Kracmar, S.Necasova and P.Penel

Abstract

We study the Oseen problem with rotational effect in the whole three-
dimensional space. Using a variational approach we prove existence and unique-
ness theorems in anisotropically weighted Sobolev spaces. As the main tool we
derive and apply an inequality of the Friedrichs-Poincaré type.

1 Introduction

1.1 A formulation of the problem

In a three-dimensional exterior domain in R3 the classical Oseen problem [19] de-
scribes the velocity vector u and the associated pressure p by a linearized version of
the incompressible Navier-Stokes equations as a perturbation of v, the velocity at
infinity; v is generally assumed to be constant in a fixed direction, say the first axis,
Voo = |Voo| €1. In the next we denote |v| by k, and we will write the Oseen operator
k 0;v. On the other hand it is known that for various flows past a rotating obstacle,
the Oseen operator appears with some concrete non-constant coefficient functions,
e.g. a(xX) = w X X, where w is a given vector, see [10, 18]; in view of industrial
applications a(x) can also play the role of an “experimental” known velocity field, see
[?].

This paper is devoted to the study of the following problem in R for vector function
u = u (x) and scalar function p = p (x):

—vAu+koju— (wxx)-Vut+wxu+Vp = f in R? (1.1)
divu = ¢ in R (1.2)
u—0 as [|x|— o (1.3)

where w = (0, 0, 0) is a constant vector, v, k and @ are some positive constants, and
f = f(x) a given vector function, g = ¢ (x) a given scalar function.

We examine the problem assuming conditions which are necessary for an extension
of existence and uniqueness results also on the case of exterior domains (and solenoidal
solutions), see a forthcoming paper [13]. In particular, we need the assumption of a
non-zero divergence in general. We restrict ourselves to the assumption of compact



support of g, it is sufficient for this aim. For this reason we will also prove two
different uniqueness theorems, see Section 3.

The system arises from the Navier-Stokes system modelling viscous incompressible
fluid around a rotating body which is moving with a non-zero velocity in the direction
of its axis of rotation. An appropriate coordinate transform and a linearization yield
in the stationary case equations (1.1) and (1.2), for details see |3, 10].

Let us begin with some comment and relevant process of analysis of the problem
(1.1)—(1.3). The governing fluid motion is linear, but we are concerned in this paper
with R?® and the convective operators, k9; and (w X x) - V, cannot be treated as
perturbations of lower order of the Laplacian, this is well known.

A common approach for studying the asymptotic properties of the solutions to
the Dirichlet problem of the classical steady Oseen flow is to use convolutions with
Oseen fundamental tensor and its first and second gradients for the velocity (or with
the fundamental solution of Laplace equation for the pressure): the L7 estimates
in anisotropically weighted Sobolev spaces can be derived, see e.g. |2, 12, 14, 15].
The fundamental solution to rotating Oseen problem in the time dependent case is
known, see [21], but, unfortunately, the respective stationary kernel is not seem to
be of Calderon-Zygmund type. The Littlewood-Paley theory offers another approach
for an L?-analysis: Thus, L? estimates in non-weighted spaces were derived for the
rotating Stokes problem by T. Hishida [10, 11|, and for the rotating Oseen problem in
R? by R. Farwig, T. Hishida and D. Miiller [5], see also |3, 4]. Looking for estimates
in anisotropically weighted spaces, see [6], this approach generates some technical
difficulties. Another approach using non-stationary equations in both the linear and
also non-linear cases is proposed by G.P. Galdi and A.L. Silvestre in [9].

In this paper we will prefer a variational approach. The same variational view-
point has been already applied in [16, 17| by S. Kra¢mar and P. Penel to solve the
following generic scalar model equation with a given non-constant and, in general,
non-solenoidal vector function a in an exterior domain €2

—vAu+kbiu—a-Vu=f in Q

together with boundary conditions v =0 on 99 and u — 0 as |x| — 0.
To reflect the decay properties near the infinity we introduce the following weight
functions:

w(z) = 15 (x) = 152 (x) = (L+0r)" (1 +es)”,

with r =7 (x) = x| = (30022, s=s(x) =7 —x1, x ER? £,6 >0, o, €R.
Discussing the range of the exponents o and 3 the corresponding weighted spaces
L7 (R3; w) give the appropriate framework to test the solutions to (1.1)-(1.3). This
paper is concerned with ¢ = 2.

Let us mention that 1§ belongs to the Muckenhoupt class Ay of weights in R3 if
—1l<pfB<land 3<a+p<3.

1.2 Basic notations and elementary properties

Let us outline our notations. Let

D= D (89) = {u € L, (%) : D€ 19 (%))
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1/q
with the seminorm |ul,, , = (Zm:m Jas |u|q> . It is known that D9 is a Banach

space (and if ¢ = 2 a Hilbert space), provided we identify two functions wu;, usy
whenever |u; — us|,, , =0, i.e. uy, up differ (at most) on the polynomial of the degree
m — 1. As usual, we denote by Dy"? the closure of Cg°= Cg° (R*) in D™9.

Let (L? (R3; w))® be the set of measurable vector functions £ = (fy, fo, f3) on R3
such that

161 . = / £ 0 dix < oo,
R3

We will use the notation L2 ; instead of (L* (R?; 77%))5 and |- [|,, 5 instead of

| - H(LQ(R3;ng))3' Let us define the weighted Sobolev space H' (R% 73, 75!) as the
set of functions u € L? . with the weak derivatives d;u € L? The norm of

0,80 ai,Bre

u e H' (R% 75,75 is given by

1/2
2 o 2 «
HuHHl(R3;n§§,n§11) - (/]RS |u| nﬂg dx + /]R3 |Vu| Ugf dX> .

As usual, H' (RZ; ngg,ngll) will be the closure of C3° in H'(R?; ngg,ngll) , where
Cyr is (C5° (R?))”.
For simplicity, we shall use the following abbreviations:

L2, instead of (L2 (R®; 15))”
I lloas  imstead of 11l ga 1
Iil;ig instead of  H! (R3; ngjll, %)
Vs instead of  H'(R?; 75", 15)

We shall use these last two Hilbert spaces for « > 0, 8 > 0, a + 3 < 3. H! and
H' mean, as usual, the non-weighted spaces (H'(R3; 1, 1))® and (H' (R?; 1, 1))3,
respectively.

Concerning the weight functions 75 , we will use two notations 1§ (z) and ngf(a:)
taking the advantages of the following remark:

Remark 1.1 Let us note that for ngf and for any 01, 09, £1,62 > 0 one has

a,d9

a,01 a,02
Cmin " Tgey < Mgey S Cmax*Tgley)

Coin = min (1, (61/82)")-min(1, (51/52)5), Cmax = max (1, (01/d2)) - max(1, (51/62)5).
The parameters 0 and € are useful to rescale separately the isotropic and anisotropic
parts of weight function 7.

We also use the notation of sets B = {x € R3; |x| < R}, B = {x € R?; |x| > R}.



1.3 Main results

The weighted estimates of the solution to the stationary classical Oseen problem were
firstly obtained by R. Finn 1959, see [7], and then improved by R. Farwig [1] in 1992,
see |16| for other comments and references.

Let us assume for a moment that pressure p is known. In solving the problem
(1.1)-(1.3) with respect to u and p by means of a pure variational approach, we shall
deal with the following equation:

k
1// ]Vu\2wdx+u/ uVu-dex——/ u|? Bywdx (1.4)
R3 R3 2 Jps

1 lul? div (w [w Xx])dX:/

fuwdx—/ Vp-uwdx
2 R3 R3 R3

as we get integrating formally the product of (1.1) and wu with w an appropriate
weight function. First, let us note that div (77,% [w x x]) equals zero for w = ng. The
left hand side can be estimated from below:

27 [ |[Vu]Pwdx + 271 / lu|? (—v V| Jw — kojw) dx (1.5)
R3 R3

Because the term —v |[Vw|? /w — kdyw is known explicitly, we have the possibility to
evaluate it from below by a small negative quantity in the form —C ngjll without any
constraint in s(-) (see Lemma 2.5).

An improved weighted Friedrichs-Poincaré type inequality in ITI}I 5 is necessary: it
is the first main technical result of this paper. The obtained inequality allows us to
compensate by the viscous Dirichlet integral the “small” negative contribution in the
second integral of (1.5). We finally prove the existence of a weak solution (1.1) - (1.3)
in V, g by the Lax-Milgram theorem.

The main results can be summarized in the following theorems (parameters «, 3,
J, € are specified in Section 1.2):

Theorem 1.2 Let § > 0. There are positive constants Ry, ¢y, ¢1 depending on «,
B, 8, e (explicit expressions of these constants are given by Lemma 2.3, essentially
co=0(E24+062%) and ¢, = O(e157Y) for § and e tending to zero) such that for all

VeHé’ﬂ

MEaaps < o IWPigacee [ vvPigas )
Br, BERo

Theorem 1.3 (Ezistence and uniqueness) Let 0 < < 1,0 < a <y 3, f € L2, 5,
g € VVol’2 with suppg = K CC R3, and fR3 gdx = 0; y; will be precised in Lemma
4.3. Then there ezists a unique weak solution {u, p} of the problem (1.1) - (1.8) such
thatuw € Vo, p€ L2 5 ,, Vpe L2, 5 and

[y s+ 190l 0p + 1Pt + 19001 < C (Il asrs + o) -



2 Friedrichs-Poincaré inequality

In this section we derive an inequality of the Friedrichs-Poincaré type in weighted
Sobolev spaces. We also recall some necessary technical assertions, for more details
see [16].

Proposition 2.1 For arbitrary a, 3 >0 and x € R3, x # 0 :
Ang (x) > 26min (1, 5) 607 (x)

Proof.  We introduce 3* = min(3, 1) in an explicit expression of Ang:

1+es 1+es
ﬁa — 22 o 200 2
s {( 51+5r &51+5>+ ﬁ(sg

+20 (8 — ) (14 dr)

1+¢
1 5 o
+204(52(1+€S)5 +(1-=p"+05) ﬂ;(l—i—ér)}nﬁ_ll,
for r > 0. We denote the five terms in { } by 71, Ty, ..., T5, and overwrite the previ-
ous relation as Ang = {[Ty +Tu] + To + [T3 + (1 — 5*) T5] +5*T5} ng:ll. Observing
that T5 > 23¢6, the proposition is trivial. O

Proposition 2.2 Let a« > 0, 3> 0,6 >0, € > 0 and kK > 1. Then for x € R?,
x| > 67t = (2) | (k— 1)

}Vng (x)‘2 <2kde (a+ 5)2 <ng:11//22 (x))2 (2.7)

Leta>0,3>0,0>0,e>0and (8—a)(2e —0) > 0. Then forx € R3 x # 0:
fe% 2 2 a—1/2 2
Vg ()| < (a0 +262)? (5173 () (28)

Proof. If f =0 and o = 0 then both inequalities (2.7) and (2.8) are valid. Let us
concentrate on the nontrivial cases:

For r > 0, s € [0, 2r], we have that Jg/0s > 0, where g is a function defined by
relations:

Vi " = gl ().r (9) (51 ()
g(s,r) = a?é? (1 +68) +2a658; + 23%? (1 +5T> ;

1+ or 1+4es

So, g(s,r) is increasing as a function of s and

G(r) = max g(s,r)=g(2rr) (2.9)
s€[0,2r]
1+ 2er 1+or
_ L 2¢2 2_2 < 2
a’d—— Tior +4afde + 45%¢ 1o S 2k (a+ B)" 0¢

for k> 1and r> [67! — (25)_1‘ (k —1)"". So, inequality (2.7) is proved.



To justify second inequality (2.8), we observe that for the given values of «, 3, 6,
e and for r > 0, G(r) < G(0). O

Next we derive an inequality of the Friedrichs-Poincaré type in the space Hé g It
is necessary for our aim to get expressions of constants in this inequality. It follows
from Proposition 2.1

Lemma 2.3 Let « >0, 3 >0, a+ 3 <3, k > 1. Let 0 and € be arbitrary positive
constants, such that (8 — ) (26 — 6) > 0. Then for all ueH,, 4

2
[ull3.0_1 51 < ol Vul Br,ll3 .4+ c1 || Vu| B

||2M , (2.10)

where o = [(ad +202) / (35702))", e = [(2%) / (0€)] - [( + B) / (B37)] and Fo >
67— (2e) | (k= 1)"

Remark 2.4 Let us observe that if additionally 6 < 2¢ and 1 < k <2e¢/5+6/ (2¢) —1
then ¢y > ¢;.

Proof of Lemma 2.8 Due to the density of C3° in Hy, 4 it is sufficient to prove the
inequality for all u € C{°. From Proposition 2.1 it follows that for v € C{°

25ﬁ*55/ V277§711 dx < / V2Ang dx
R3\B, R3\B,

= —2/ VVV-Vngdx+/ VQVng-ndS
R3\B, 0B,

1
< 55*58/ olgx + ——— / vvl|© |V —atl gy
R3\B, nﬁ 1 ﬁﬁ*éf R5\B, | | ’ 775| N_3+1

—l—/ v? Vnz-nds.
0B,

Hence, because the surface integral is a value of the order O (p?), we have:

) o d —ard 2.11
gorde | viptacs o [ WP VisPagiiae 2

By means of the Cauchy-Schwarz inequality and from Proposition 2.2 with R3=Bp, U
Bfo, Ry> |67t — (25)71| /(k — 1) we finally get (2.10). O

We will need some technical lemmas. Let us define F, s(s,r; v) by the relation:

a— J— (e% 2 (o3 «
Fop(s,r;v)- e l=—v |V775‘ /ng — ko1 (2.12)
The following lemma gives the evaluation of F, (s, r; v) from below

Lemma 2.5 Let 0 <a <3, k>1,0<e<(1/(2x)) (k/v) - ((8—«a)/B?) and 4,
v, k>0. Then

Fop(s,riv) — (1—&7") kée (B —a)s > —adk (1 + vk~ ad) (2.13)

for all >0 and s € [0,2r].



Proof. Expressing the function F, g (s, r;v) explicitly we get:

1 1+0
Fop(s,rv) = —va?s? (1 1 Zi) — 2VO(55€§ — w322 <%) ;
r—s s
—kad (1+¢s) + ke (14 6r) .

For convenient use we subtract (1 — k™) kde (8 — a) s from F, 5 (s,7;v). We observe
(see Appendix A) that, for the given «, [, ¢, &, for all §, v, & > 0 and for r >
0, Fop(s,r;v)— (1 —rHkée(B—a)s > F,z5(0,7; v), which immediately gives
inequality (2.13). O

The following technical proposition about the existence of a solution of an ordi-
nary differential equation in a space of periodical functions we need in the proof of
uniqueness of a solution of problem (1.1)-(1.3), see the proof of Theorem 3.1, and
also in the proof of existence of a solution of the problem for checking solenoidality
of a constructed solution, see the proof of Theorem 4.4.

Proposition 2.6 Let a € C, Rea > 0. Let f € C* (R) be a 2w-periodical complex
function. Then there is unique 2m-periodical solution g € C*° (R) of the equation

g +ag=f

and the solution g can be expressed in the following form:

7 (p) = (62”“—1)_1/0ﬂe“tf(g0+t) dt:e““"/w e F (1) dt

—00

Proof of the proposition follows from standard computations.

3 Uniqueness in R?

In this section we will prove two theorems about uniqueness of a weak solution of
problem (1.1)—(1.3). The first method gives the uniqueness in “larger” function spaces.
On the other hand the second method can be used without any change also in the
case of an exterior domain. In the present paper we need only one of these two
uniqueness results. But, the both theorems (the second formulated in an exterior
domain) are necessary for extension the results of present paper onto the case of an
exterior domain, see [13].

Theorem 3.1 (Uniqueness in R?) Let {u,p} be a distributional solution of the prob-
lem (1.1)~(1.3) with £ = 0, g = 0 such that u € Dy* and p € L},.. Then u=0 and
p = const.

Proof. From the condition u € Dy? we get Vu € L?, ue LS, u € S'. Because
div((w x x)-Vu—w x u) = (w x x)-Vdivu = 0, we have Ap = 0. Hence, applying
Laplacian and the Fourier transform we get

A(—vAu+kou— (wxx)-Vut+wxu)=0,

7



P (v [€Pa+ik&u— (wx€) - Vai+wxtd) =0 inS.

Assuming the equation in cylindrical coordinates (&1, p, @), and denoting T'(p) Vv =
u (517 P, 90) ) where

we get
€2 {0,V + [(v/@) |¢f +i (k/D) &)V} =0 in S (3.14)

We will show that from this equation follows that suppv C {0}, and due to the
definition of v we will have also suppu C {0} . This means that u is a polynomial of
Ty, Ty, r3. Because u € L® we get u = 0. Substituting into (1.1) we get Vp = 0 and
p = const.

So, we have to prove that for an arbitrary real vector function ¥ € C3° (R?\ {0})
defined for [¢1, &, &3] € R? we have (v, U) = 0. If for each ¥ € C° (R3\ {0}) there
is a function ® € C (R?\ {0}) such that

0y (1€ @) + [(w/@) ¢+ (k/D) &1] (1€ @) = @ (3.15)
then from (3.14) follows:

0= ([¢}{=0,v+ [(v/@) &> +i (k/@)&] V), @)
= (¥, 0, (1€ ®) + [(v/®) |€)> + i (k/@) &] (1€ ®)) = (¥, )

Hence, the proof of supp v C {0} is reduced to the solvability of (3.15). First we note
that it is sufficient to solve the equation

0,¢ + ((w/@) |67 +1i (k/D) &) (=T (3.16)
because the division on the expression [£ |2 defines the one-to-one correspondence of
the space C° (R?\ {0}) onto C* (R?\ {0}).

To analyze the equation (3.16) we assume this equation in cylindrical coordinates

&1, p,0], p= (2 + 5%)1/2. For an arbitrary real vector function ¥ € C¥ (R?\ {0})
defined for [£;,&s, &3] € R? we define f (t) :== U (&, p cost, p sint), a = (v/©) |§]2 +
i(k/w) &, assuming w > 0. Using the Proposition 2.6 we get the solution of (3.16 )
in the form

-1
C(&,pp) = {eXp {% (Z |§|2+i£>} —1}
w w
2
/ exp Kg |§|2+i£§1) t} U (&, peos(t+ @), psin(t+¢)) dt.
0 w w

It is easy to see that function ¢ as the function of [£1, &y, €3] is infinitely differentiable
with respect to these variables and ¢ € C (R*\ {0}). Finally we put ® = ¢/ |¢]*.
g

Theorem 3.2 Let {u,p} be a distributional solution of the problem (1.1)-(1.3) with
f =0 and g =0 such that u €Vyy and p € Lz_l’o. Then u =0 and p = 0.

8



Proof. Let ® = ®(z) € C5°((0,+00)) be a non-increasing cut-off function such
that ®(z) =1 for z < 1/2 and ®(z) =0 for z > 1. Let |®'| < 3. Let &g = Pg (x) =
® (|x|/R). We have |[V®g| < 3/R and |0,Pr| < 3/R for x € R*, R/2 < |x| < R.
Let {R;} € R be an increasing sequence of radii with the limit +o00. So we have that

u; = u-dp, 61311, and {u;} is a sequence of functions with limit u in the space V.
Using the (non-solenoidal) test functions ¢ = u ®% = u; Pp, € H' for equation
(1.1) we get:

J//R3 Vu-V(u@%j) dx +k g 81u-u<bi3j dx (3.17)

+/ (wxx)-Vu-u@%_dx—l—/ Vp-udj dx =0
R3 ! R3 ’

Using in (3.17) relation Vu-V (u @%j) = |Vu;> — VOp, - V®p, u?, integrating by

parts, we get after some evident rearrangements

1
V/ IV, dx—i/ div (w x x) uf dx
R3 R3

k 1
——/ u281(1>§%_dx——/ u? (w x x) - VOF dx
2 Jps J 2 J

R3

—v !V(I)Rj‘Q u? dx — / pu-V (@%j) dx = 0.
R3 R3

2 2 —1 -1
v g |Vu,| dxéC(/BRj/Qur clx%—/ngj/2 Ip| [a|r dx).
J

R

uel?, pe L, pucll So, for j — oo we get [, |Vu|* dx < 0. Hence,
the function Vu = 0 a.e. in R?, and this means u is a constant a.e. in R?. From
u € L2_1,0 follows that u = 0 a.e. in R3. Using now an arbitrary test function ¢ for
equation (1.1), we get [ps Vp@dx = 0. So, the function Vp = 0 a.e. in R?, and this
means p is a constant a.e. in R3. From p € L%LO follows that p = 0 a.e. in R?, and
the uniqueness is proved. O

4 Existence of a solenoidal solution

In this section we will construct a weak solution of the problem assuming that g = 0.

4.1 Existence of the pressure in R?
If there exist distributions u, p satisfying

—vAu+koiu— (wxx)-Vu+wxu+Vp = f in R?
divu = 0 in R?

then pressure p satisfies the equation

Ap = divf (4.18)

9



because div ((w X x) - Vu—w X u) = (w X x)-Vdivu = 0, and div(Au + kdju) =0
provided divu = 0.

Let £ be the fundamental solution of the Laplace equation, i.e. € = —1/ (47r).
Assuming firstly f €C{° we have p = Exdivf and Vp = VExdivf and so, p = VE+ f
and Vp = V2Exf. Tt is well known that both formulas can be extended for f € L2, 4
with 0 < 3 < 1 and —2 < a+ 8 < 2 (the last convolution Vp = V2€ % f due to
the fact that V2& is the singular kernel of the Calderon-Zygmund type and that ng“
belongs to the Muckenhoupt class of weights A ), see [2, Thm. 3.2, Thm 5.5], [15,
Thm. 4.4, Thm 5.4|, where the theorems are formulated for the pressure part P of
the fundamental solution of the classical Oseen problem, so P = V& and VP = V€.
Forf € L2,  sweget p€ L2 5, and Vp € L2, 4, and there are positive constants
C1, Cs such that the following estimates are satisfied:

2 2 2 2
||p||2,aﬂ—1 S Cl ||f||2,o¢+1,ﬁ ’ ||vp||2,a+1,ﬁ S 02 ||f||2,a+1,ﬁ (419)

4.2 The problem in Bp.

We will study in this section the existence of a weak solution of the following problem
in a bounded domain Bp, pressure p is assumed here to be known, the right hand
side f —Vp=Ffel, z:

—vAu+kou— (wxx)-Vu+wxu = f in Bg (4.20)
u = 0 ondBg (4.21)

We show the existence of a weak solution ug € }OI(BR). Following (1.4), (1.5) again
with w = 7720, Bo € (0,1], using notation (2.12), let us introduce a continuous bilinear

form Q (-,-) on H(Bg)xH(Bg):

Q(u,v) = / vVu -V (v-ny) dx+k ou- (Vngo) dx
Br

Br

+/ (wxx)-Vu (v} dx,
Br

Q(v,v) > 2—1v/

Vv’ ngodx +271 / Vv2Fy 5, (8,75 V) nﬂ_olfldx. (4.22)
Br

Br
Lemma 4.1 Let 0 < fy < 1. Then, for all £ € L} 5 (Bg), €0 < (1/2)- (k/v)-(1/5),
N5 = N oo there exists unique ug € H(Br) such that for all v € H(Br)

Q(uR,v):/B ?‘VT]%O dx. (4.23)

Proof. The bilinear form @ is coercive, i.e. there exists a constant C'r > 0 such

that Q (v,v) > Cr ||v|*, where ||-|| is here the norm in the space ﬁ(BR). Indeed,
we get

v 1 _
Q(v,v) > 5/3 ]Vv]2 ngodx—i— 5/3 V2F0750(8,7"; V) nﬁol_ldx
R R

10



Because g < (1/2) - (k/v) - (1/5) there is a constant x satisfying all previous con-
ditions and additionally ¢ < (1/2k) - (k/v) - (1/06y). Because a = 0 we get from
Lemma 2.5

Br

Bgr

~ 1 1
Q(v,v)> = 5 /B IVv[’ 13,d% + 5 (1 - —> kaoﬁ(]/B V5 (e0s) dx.
R R

Using Lemma 2.3 and Remark 2.4 we derive:

~ 14

2, -1
Qv,v) = 4/BR\VV| Mg, dx + 5050/ Vlg,—10X

1
—|—2 (1 — —> ksoﬁo/ V2775_01—1 (e08) dx
Br

1\v . k
2 (1 — E) Z min {1, Zé‘gﬂg, 2;/6050} (424)
: (/ Vol ngodx—i—/ % nﬂldx)
Br Br
Q(v,v) > Ch </ IVv|? dx+/ V2dX) = Cr|Iv|?, (4.25)
Br Br

where Cr = (v/4) - (1 — k1) - min {1, €262/4, 2 (k/v) Beo} - (1 + &9 R) . Using Lax-
Milgram theorem we get that there is ug € H(Bg) such that (4.23) is satisfied. O

Remark 4.2 An arbitrary function <I>€}OI(BR) can be expressed in the form ® =
(;57]20, where ¢ is a function from ﬁ(BR). Therefore we have for ug

Q (up, ®) = / f-®dx, (4.26)

Bpr

for an all ® € ﬁ(BR) where by the definition Q (ug, ®) = Q (uR, O - 77%0) =Q (ug, @) .

4.3 Uniform estimates of up

Our next aim is to prove that the weak solutions ug of (4.23) are uniformly bounded
in Vo3 as R — +oo.

Let y; be the unique real solution of the algebraic equation 4%+ 8y?+5y—1 = 0.
It is easy to verify that y; € (0,1). We will explain later, why the control of /(3 by
Y1 1S necessary.

Lemma 4.3 Let 0 < < 1,0 < a<yp, fELaHﬁ Then, as R — +o00, the weak
solutions ug of (4.23) given by Lemma 4.1 are uniformly bounded in V. g. There is
a constant ¢ > 0, which does not depend on R such that

/ uRng‘ 1dx—|—/ \Viig|” nﬂdx<c/ ’ ) no‘“clx (4.27)
R3

for all R greater than some Ry > 0, Gig being extension by zero of ur on R®\ Bg.
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Proof. First, we derive estimate of ur on a bounded subdomain Br, C Bp; the
choice of Ry will be given in the next part of the proof. Our aim is to get an estimate
with a constant not depending on R. Let us substitute ¢ = ug into (4.23). Hence,
we get from (4.24):

Q (ugr,ug) = / fupnf,dx > Cy </ |VUR\2T)?;OdX+/ ufzﬁgoldX) 7
Br Br Br

with the constant C; > 0 stated in (4.24). Let Ry be some fixed positive number
such that 0 < Ry < R. We get

/ |VuR\2ngdx+/ u?;mgldngg/
Br Br Br

where the constant Cy = C7' (1 + 9 Ro)® (1 + €0 2 Ro)"” ™! depend on k, v, «, 8,
0o, €0, Ry, k, but does not depend on R.

Now, we are going to derive an estimate of ugp on domain Bpg. Using the test
function ® =ugng =ug(1l+6r)*(1+¢es)’ € H(Bg) in (4.26) we get after integration
by parts:

f‘ g ngdx, (4.28)

k
y/ ]VuR]Qngdx+u/ uRVuR-Vnng——/ u?%amﬁdx
BR BR

2 /g,
:/ fuRngdx
Br

So, we get, for some k£ > 1:

14

2 o 1 a—
5/ [Vug|” ngdx + 5 upF,p(s,r; v)ng_idx <
Br Br

Br

T,
Let Ry > }5‘1—(25)71“%; — 1)7'. Using Lemma 2.5 (with 0 < a < 3, ¢ <

(1/(2k)) (k/v) ((B — «) /%)) and Lemma 2.3 (with § < 2¢), the second term in
the previous estimate can be evaluated from below:

[ Bt v
Br
9 2
> —adk (1+”—;a5)5—§(aﬁg*ﬁ) /|VuR|2ngdx
BRo

I (1 _ 5—1) koe (3 — a)/ u%ngjlls dx — 26’4/ |VuR’2ngdx
Bgo Bg,

Denote Cs = adk (1+ & (v/k) ad) (k] (6¢)) ((a+ B) / (B6*))*. It is clear that Cy <
v/ (2K < v/ (2k) if 1 + vkad/k < I (ie. 6 < (k/v) -((k—1))/(kB) ) and
a < (1/(26%) - (v/k) - (B67) / (v + )" . We have

v IVug|? ng dx + % (1 — l) koe (8 — a)/ u%ngjll sdx

2k Jp, K Br

—06/ uéngjdx—c%/ |VuR]2 ngdxg/
Br, Br, Br

12

?’ lug|ngdx.



We use now relation (4.28) in order to estimate the integrals computed on the domain
Bpr,. Before using the mentioned inequality we should re-scale it with respect to new
values ¢, 6, see Remark 1.1. The new constant in (4.28) after rescaling we denote C5.

V/ |Vug|? ngdx + kde (8 — )/ u?;mg‘ llstSC’g/
Kk JBg Br Br

f) lug|ngdx,

where Cs = {1 4 Cymax (Cg, C7)} -2+ (1 — k)", We use Lemma 2.3 and Remark
2.4. So,if 6 <2cand 1 <k <2e/5+ 6/ (2e) — 1 we get

v (BB N [ 5 v

=== a <

2/6(0&5%—256) /RuRnﬂldX = 2% |VuR|
v 2 @ pproe / a1
o |Vug| nﬂdx+ (0454—255) BRuRn [ dx

+koe (ﬁ—a)/ uéng lsdx < CS/ m lug|ngdx.
BR BR
So we get

/B |VuR|2ngdx—|—2/ uf%ng_lldx%—%/ uéng Isdx
R

Br Bgr

/ |VuR| n dx—|—2/ u%ng_ldxg CIO/ ¥‘ lug|ngdx,
Br Bgr Bgr

Co =min (v/ (2r), (v/ (2k)) (BB*de/ (b + 26e))?, ké (6 — a) /2) and Cyy = Cs/Cy.

We have also:
3 @ 4 2 a—1 1
f‘ lug|ngdr < 2 uzng dx + >
BR BR BR

So, if we choose t = 2 - C; then we get :

/ \VupL[Qngdx+/ uéng_ldxgc
Bg B

R

~|2
| gt

a+1dx

It can be easily shown that the all conditions on «, f3, 5, g, k used in the proof are
compatible if 0 < o < 413, see Appendix B. O

4.4 The problem in R?® with zero divergence
Let y; be the same as in Lemma 4.3.

Theorem 4.4 (Ezistence and uniqueness) Let 0 < § <1,0<a <y, fe L2 .
Then there ezists a unique weak solution {u, p} of the problem

—vAu+kdu— (wxx)-Vut+twxu+Vp = f inR? (4.29)
divu = 0 in R (4.30)

such thatu € Vo5, p € Liﬂg_p Vp € Li+1,ﬁ and

2 2 2 2 2
||u||27a—17ﬁ + ||vu||2,a,ﬁ + ||p||27aﬂ—1 + ||vp||27o¢+17ﬁ S C ||f”2,o¢+1,ﬁ . (431)
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Proof. Existence. Let p be the same as in Subsection 4.1. Let R, C R, R, > 0,
n € N be a sequence converging to +00. Let ug, be the weak solution of (4.20),
(4.21) on Bg,. Extending ug, by zero on R*\ Bg, to a function 0, € V,, 5 we get a
bounded sequence {Gi,} in V,, 5. Thus, there is a subsequence @iy, of 01, with a weak
limit u in V, 3. Obviously, u is a weak solution of (4.29) and

2 2 o ~2 - ~ 2 a
Il st IVl < it ([ s [ 9P ax)

keN
12
< c’f‘ ngttdx = c/ f — Vp|* ngtdx.
R3
Taking into account also relation (4.19) we get (4.31).

Let us also check that for u the equation (4.30) is satisfied. Let us mention that
u € H;,. because f — Vp € L2, 3 So, computing the divergence of (4.29) we get

—v A (divu) + k0; (divu) — (w X x) - V (divu) = divf — Ap (4.32)
in distributional sense. From (4.18) and (4.31) we have
—vAy+ k07— (wxx)-Vy=0
for v = divu € L}, ; C L?. Using Fourier transform we get
(v IEP+ik&)F—(wxE) VA=0 in S.

Assuming 7 in cylindrical coordinates [£1,p, ], p = (&5 + 53)1/2, we can overwrite
the equation in the form:

—07 + [(v/@) [€]” +i (k/D) &] 7 = 0.

Using the same approach as in the proof of the uniqueness Theorem 3.1 we prove
that supp”y C {0} . The proof of this fact is reduced to the solvability of the equation
(3.16) which was proved for arbitrary ¥ € Cg° (R* \ {0}) in the proof of Theorem 3.1.
So, by the same procedure we derive that v is a polynomial in R? and because v € L?
we get v = 0, i.e. (4.30). The uniqueness of the solution follows from Theorem 3.1.

g

5 The problem with non-zero divergence

First of all let us formulate the lemma which will be used for the extension of our
results to the case with nonzero divergence:

Lemma 5.1 (M.E. Bogouvski, G.P. Galdi, H. Sohr)
Let Q CR™ n > 2, be a bounded Lipschitz domain, and 1 < g < oo, n € N. Then

for each g € Wég’q (Q) with [, gdx =0, there ezists G € (Wé€+1’q (Q))n satisfying
divG =g, ‘|GH(W§+1"I(Q))" <C ngwg’q(g)

with some constant C' = C (q, k, 2) > 0.
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For the proof and further references see e.g. [20, Lemma 2.3.1]. We will prove the
following theorem:

Theorem 5.2 (Ezistence and uniqueness) Let 0 < < 1,0 < a <y, fe LiHﬁ,

g e I/Vol’2 with suppg = K CC R3, and fR3 gdx = 0. Then there exists a unique weak
solution {u, p} of the problem

—vAu+kdu— (wxx)-Vut+twxu+Vp = f inR?
diva = ¢ inR?

such that w € Vo, p € L2, 51, Vp € L, 5 and

[0y IV 1ol s + 19005 < C (I e+ o)

Proof. Using Lemma 5.1 we find G € W(Q]’2, supp G C K, where K is a bounded
Lipschitz domain containing in eé—neighbourhood . of compact set K for an arbi-
trary € > 0, divG =g, [|Gll,, < C||g]|, - Let us assume the following problem

—VvAU+ kO U~ (wxx)-VU4+wxU+Vp = F in R?
divU = 0 in R3

where U=u+G, F=f—-vAG+£k0,G+ (wxx) VG —-wxG with G €
W2, function G has a compact support, and |Gy, < Cllgll;,- The assertion of
Theorem 5.2 follows from Theorem 4.4. O

Appendix A

Relation (2.13) follows from an estimate of the derivative of F :

0 0 _
%Fl (s,r) = %{Faﬂ (s,r; v) — (1—/1 1) kde (ﬁ—oz)s}
= —va’die — 21/04&551 — w322 L+or L 5
+or r r (14es)

—kade + kaé% (14 2es) + kBe (1 + 6r) %

— (1= K" kde (B — )
oe {r7 [k (a/e + B/6) — va® — 2vaf — 2v3% /6]
+[-2we+k(B—a)/k]} >0

IV

The last inequality follows from the fact that we have ka/e > va?+2vaf, k3/5 >
2v 3% /6, k(B —a)/rk > 2v6% if ¢ < (1/(2k)) (k/v) (B — ) /(%) . Hence, if the
last inequality (which is included in the conditions of Lemma 2.5) is satisfied then
(0/0s) Fy (s,r) > 0. So, we get immediately:

Fi(s,r) > F (0,r) = —kad — va®6® (14 0r) "' > —adk (1+ vk 'ad)
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Appendix B

Let us show that all conditions on «, (3, d, €, k used in the proof of Lemma 4.3 are
compatible if 0 < <1, 0 < a < y;18. Let us collect these assumptions: 0 < § < 2g,
1 <k <2/046/2)—1,0< a<pf, < (1/(2:%) - (k/v)  (B—a)/B%,
§< (/) (= 1)/ (8), o < (1] 2w) - (k/v) - (3" (a4 5))* .

Fom o < (1/(24") - (k/v) - (36°/ (a+ )’ e, and & < (1/(24%)) - (k/v) -
(B =) /6%) we get a < (1/(4x9)) - (3°)* (B —a) /(a+ B)*. So we get (v > 1,
B<1): a/f < (1/(4k%)(1—a/B)/(1+a/B)”. By substitution y = a/f we get
the inequality

4y + 82 4y + k% (y—1) <. (5.33)

Taking into account the condition 0 < a < 3 we seek for solutions from [0, 1).
It is clear that the equation 4y® + 8y*> + y + k %(y — 1) = 0 has a unique real
solution y, € (0,1) for k > 1. It is also clear that arbitrary y € [0,y.) solves
(5.33). The value y, as a function of k is decreasing. For Kk — 1 we get the
inequality 4y° + 8y®> + 5y — 1 < 0. This respective equation has a unique solu-
tion g1 = (V13/ (6v/6) +53/216) """ + (1/30) (v/13/ (6v/6) + 53/216) . Approx-
imately, with an error less than 10™® we have y; = 0.1582981, (y; > 1/7). If
0 < a < y1 0 then there is k > 1 sufficiently close to number 1, such that 0 < o < y,.3,
so the relation a < (1/ (4x%)) - (3*)* (6 — a) / (o + B)” is satisfied. Then we can de-
fine e = 1/ (26?) - (k/v) - (8 — @)/ (B?%)). The relation € < (1/ (2x)) - (k/v) - (1/5)
is satisfied. Then we take sufficiently small 6 > 0 such that 0 < § < 2¢ and
1 <k <2/6+0/(2¢) — 1. Hence, all conditions which we assume in the proof
of Lemma 4.3 are satisfied.
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