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On stability of equilibrium figures of a uniformly

rotating liquid drop in n-dimensional space

Padula M., Solonnikov V.A.

Key words: Nonlinear Stability; Free boundary; Rotating drop.
Math.Rew. 76/E

Abstract

In this note we study nonlinear stability of rigid rotations of a liquid
drop in Rn, with n arbitrary. Even though the case n > 3 has no physical
sense still it appears interesting from the mathematical point of view.
Moreover we prove a non linear instability theorem by direct Lyapunov
method.

1 Introduction

Problem of rotating drop has attracted the attention of researchers in several
different fields as mathematics (minimal surface, finite perimeter), astrophysics
(motion of stars, planets and Saturnus rings), engineering ( bubbles in a liquid),
nano-technology (hydrophobic, hydrophilic walls and capillary effects). It is out
of purposes of this notes to consider all aspects above mentioned. We wish to
give an idea only of some mathematical problems, in this regard we quote above
others, the papers [2], [14], [15], [16], where existence, uniqueness and regularity
of equilibrium figures of capillary fluids is studied in physical three-dimensional
case, and the papers [18], [17] where non steady case is first analyzed. It is also
worth mentioning the mathematical papers by [3-7] where it is studied the well
posedness problem in Rn with dimension n greater than 3 for the steady case.
The interest in this field is surprisingly increasing and we quote e.g., [1], [10-
13], [17], [19-23] as papers related to stability of equilibrium configurations of a
rotating drop. The enclosed bibliography is not at all exhaustive and doesn’t
give the idea of the number of different mathematical and physical problems
one encounters in dealing with rotating drops, however it is enough to explain
the scopes of this note.

In the present paper we consider the free boundary problem for the Navier-
Stokes equations governing non-stationary motions of an isolated mass of a
viscous incompressible capillary liquid in n-dimensional space. We analyze a
stationary solution of this problem related to the motion of the liquid as a rigid
body in the domain F independent of time. As in three-dimensional case, a
vector field U in Rn represents the velocity field of a rigid motion if

∂Ui

∂xj
+

∂Uj

∂xi
= 0, i, j = 1, ..., n,
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holds for the components of the velocity vector field U(x) depending on the
Eulerian coordinates x ∈ F . The solution of this system has a form U(x) = Cx
where C is a constant antisymmetric matrix. This gives the expression |Cx|2/2
for the energy of centrifugal forces slightly different from that used in [3], [5-7]
(see Remark 2.1 below). In Sec. 2 we study the kinematics of n-dimensional
rigid motion, and we show that it is much more rich than in the case n = 3
where it essentially reduces to the rotation about a fixed axis. In Sec. 3 we
pass to the ”rotating” reference frame, and we reduce the analysis of stability of
the above mentioned stationary solution to the analysis of stability of the rest
state v(x, t) = 0, x ∈ F . We then introduce a quadratic form corresponding to
a certain self-adjoint elliptic operator B1 given on G. In case n = 3 this form
coincides with the classical second variation of the energy functional. We also
give several technical Lemmas. In Sec 4 we prove that if the above quadratic
form is positive definite, the rest state is asymptotically stable in the class of
global solutions possessing regularity that permits our calculations, and unstable
if it can take negative values. We emphasize that the smallness assumption is
made only on the distance between the boundaries Γt and G.

The proof of stability and instability is achieved by constructing a special
functional playing a role of the Lyapunov function that guarantees stability or
instability of the rest state in relatively weak norms. The construction goes back
to the free work identity introduced in [8-10]. In the proof of instability we make
the assumption KerB1 = ∅. For n = 3 the problem of instability (without this
additional assumption) is solved in [21,22] by means of much harder technics.

It should be observed that the construction of our Lyapunov functional re-
quires the existence of global solutions v, Γt to the free boundary problem,
satisfying suitable estimates only on the distance between Γt and G. The proof
of existence of such a solution and of its estimates is outside the scope of the
present paper. For n = 3 it was carried out in the papers of the authors cited
above, when the initial data are close to the regime of a rigid rotation (i.e. the
velocity at the initial moment is close to U(x) and it is defined in a domain
close to F). In the case n > 3 it can be done in the same way.

It becomes clear from the proofs that also self-gravitating forces can be taken
into account, [17].

2 Rigid rotation of a fluid drop in Rn

We consider the evolution free boundary problem

vt + (v · ∇)v − ν∇2v +∇p = 0, (2.1)
∇ · v = 0, x ∈ Ωt, t > 0,

v(x, 0) = v0, x ∈ Ω0,

T (v, p)n = σH(x, t)n, W = v · n, x ∈ Γt ≡ ∂Ωt.

where unknown are a bounded domain Ωt ∈ Rn, the vector field v(x, t) =
(v1, ..., vn) and the function p(x, t) given in Ωt and satisfying (2.1). Here ν and
σ are positive constant coefficients of viscosity and of the surface tension, respec-
tively, T (v, p) = −pI + νS(v) is the stress tensor, S(v) =

(
∂vj

∂xk
+ ∂vk

∂vj

)
j,k=1,...,n

is the rate-of-strain tensor, H is n− 1 times mean curvature of Γt negative for
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convex domains, and W is the velocity of evolution of Γt in the direction of
exterior normal n. The density of a liquid is assumed to be equal to one. The
domain Ω0 is given. For n = 3 this problem was studied in [10]- [13], [17]-[23],
and other papers.

We observe that the solution of (2.1) is subjected to the same ”conservation
laws” as in 3-dimensional case, namely,

|Ωt| = |Ω0|,∫

Ωt

v(x, t)dx =
∫

Ω0

v0(x)dx, (2.2)
∫

Ωt

v(x, t) · ηij(x)dx =
∫

Ω0

v0(x) · ηij(x)dx ≡ mij , i 6= j, (2.3)

where ηij(x) = ejxi−eixj and ej is a unit vector in the direction of the xj-axis.
Indeed, (2.2) is easily obtained by integration of the first equation in (2.1) over
Ωt. We remind the Reynolds transport theorem

d

dt

∫

Ωt

f(x, t)dx =
∫

Ωt

[ft + (v · ∇)f ](x, t)dx

that holds for domains satisfying kinematic boundary condition

W (x, t) = (v · n)(x, t), x ∈ Γt. (2.4)

Hence we obtain

0 =
d

dt

∫

Ωt

v(x, t)dx− σ

∫

Γt

H(x, t)ndS =
d

dt

∫

Ωt

v(x, t)dx. (2.5)

Since H(x, t)n = ∆Γtx, and Γt is closed, the surface integral vanishes. In the
same way equations (2.3) are obtained - see [12], [17].

We would like to study the stability of solutions corresponding to a rigid
motion of the liquid. We say that the motion is rigid if the vector field of
velocity U given as a function of Eulerian coordinates x satisfies the relations

∂Ui(x)
∂xj

+
∂Uj(x)

∂xi
= 0, i, j = 1, ..., n.

It is easily seen that this is the case if and only if

U = Cx + h (2.6)

where C(t) is an antisymmetric matrix and h(t) is a vector, constants in space
and functions of t only. If C, and h are constant in time, then the motion will
be called uniform. In the sequel we take h = 0, and C constant in time. The
functions

U(x) = Cx, P (x) =
1
2
|Cx|2 + p0, p0 = const, (2.7)

satisfy the system of the Navier-Stokes equations. Substituting U and P into
the boundary conditions we obtain the equation for the equilibrium figure F
filled with a rotating liquid:

σH(x) +
1
2
|Cx|2 + p0 = 0, x ∈ G ≡ ∂F . (2.8)
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where H is n− 1 times mean curvature of G.
Without loss of generality we can assume that the matrix C has a canonical

form:
C = diag

(
C1, ..., Cl, O

)
, (2.9)

where l ≤ n/2, O is n− 2l×n− 2l matrix whose elements are zeros and Ck are
2× 2 antisymmetric matrices of the form

Ck =
(

0 −ωk

ωk 0

)
. (2.10)

In particular, if n = 3, then l = 1 and U is the velocity of the liquid rotating as a
rigid body about the x3-axis with the angular velocity ω1. In the n-dimensional
case there are l ”angular velocities” ωk.

Remark 2.1 If we write explicitly the term |Cx|2 in (2.8) we find

|Cx|2 =
l∑
1

ω2
k(x2

2(k−1)+1 + x2
2k).

This term differs from the term F = ω2
∑n−1

k=1 x2
k used in [3], [5], [6], [7], in

particular F cannot represent centrifugal force if n is even. Furthermore, in case
n odd F may represent a centrifugal force only for ωk = ω for all k = 1, . . . , n−1.

Passing to the Lagrangean coordinates, it is easy to calculate the trajectories
of particles, whose velocity as a function of the Eulerian coordinates is U(x). If
x(0) = ξ, then

x2k−1(t) = ξ2k−1 cosωkt− ξ2k sin ωkt,

x2k(t) = ξ2k−1 sin ωkt + ξ2k cos ωkt, k = 1, ..., l,

xm = ξm, m = 2l + 1, ..., n,

i.e., the projection of the trajectory onto the xk, xk+1-plane is a circle with the
center at the origin, along which the motion proceeds with a constant velocity
proportional to ωk. This complicated motion is in general non-periodic.

We say that the figure F is symmetric, if it is invariant under transformation

x = Zy

where
Z = diag

(
Z1, ..., Zl, In−2l

)
,

In−2l is a unit n− 2l × n− 2l matrix and

Zk =
(

cosϕk −sinϕk

sinϕk cosϕk

)
, k = 1, . . . , l.

It is easily seen that the velocity of liquid particles located at the boundary G
of a symmetric F is tangential to G, i.e.,

Cx ·N(x)|G = 0,
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where N is the exterior normal to G. This means that the functions (2.7) given
in the symmetric domain F solution to (2.7) represent a stationary solution of
(2.1). We consider here only symmetric F .

It follows from the symmetry that
∫

F
xjdx = 0, j = 1, ..., 2l, (2.11)

∫

F
xjxqdx = 0, j = 1, ..., 2l, q = 1, ..., n, q 6= j

(some of these relations can be also deduced from equation (2.8), as in the three-
dimensional case, see [23]). Without loss of generality we can fix the origin of
coordinate system at center of mass, and we can assume that

∫

F
xjdx = 0, j = 1, ..., n. (2.12)

Let
ηij(x) = xiej − xjei, i < j.

If the matrix C has a canonic form (2.9) and the figure is symmetric, then the
corresponding matrix of momenta

mij =
∫

F
Cx · ηij(x)dx

also has a canonic form. Indeed, since

Cx =
l∑

q=1

ωqηq(x)

where ηq(x) = η2q−1,2q(x), it is easily verified , using (2.11), that mij can be
different from zero if and only if i = 2k − 1, j = 2k, k ≤ l, in which case

m2k−1,2k = ωk‖ηk‖2L2(F).

We do not consider the problem of existence and uniqueness of equilibrium
figures, as well as of their geometry, but we can prove the existence of a sym-
metric equilibrium figure of a given volume in the case of small velocities (i.e.,
of small Cik). For n = 3 this result was obtained in [17].

3 Preliminary lemmas

Let us return to problem (2.1). We assume that F is a given bounded domain
with a smooth boundary and that

|Ωt| = |Ω0| = |F|,
∫

Ωt

xjdx = 0, j = 1, ..., n, (3.1)
∫

Ωt

v(x, t)dx =
∫

Ω0

v0(x)dx = 0,

∫

Ωt

v(x, t) · ηij(x)dx =
∫

Ω0

v0(x) · ηij(x)dx =
∫

F
Cx · ηij(x)dx. (3.2)
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We shall work with the evolution problem for the perturbations

vr = v −U , pr = p− P

written in the coordinate system rigidly connected with the liquid whose velocity
is given by (2.7). We make the change of variables

x = Z(t)y

and the corresponding transformation of unknown functions

w(y, t) = Z−1(t)vr(Z(t)y, t), q(y, t) = pr(Z(t)y, t),

where
Z(t) = diag

(
Z1(t), ..., Zl(t), In−2l

)
,

In−2l is a unit n− 2l × n− 2l matrix and

Zk(t) =
(

cosωkt −sinωkt
sinωkt cosωkt

)
.

This leads to the problem

wt + (w · ∇)w + 2Cw − ν∇2w +∇q = 0,

∇ ·w = 0, y ∈ Ωt, t > 0,

T (w, q)n =
(
σH +

1
2
|Cy|2 + p0

)
n, (3.3)

W = w · n, y ∈ Γt,

w(y, 0) = v0(y), y ∈ Ω0,

in a transformed domain denoted again by Ωt. Conditions (3.1), (3.2) take the
form

|Ωt| = |F|,
∫

Ωt

xjdx = 0, j = 1, ..., n, (3.4)
∫

Ωt

w(x, t)dx = 0,

∫

Ωt

w(x, t) · ηij(x)dx +
∫

Ωt

Cx · ηij(x)dx =
∫

F
Cx · ηij(x)dx. (3.5)

We assume that Γt is close to G and is given by equation

x = y + N(y)ρ(y, t), y ∈ G (3.6)

with a small function ρ(y, t) defined on G. Let N∗ and ρ∗ be extensions of N
and ρ from G into F made in such a way that

∂

∂N
N∗(x, t)|G = 0,

∂

∂N
ρ∗(x, t)|G = 0, (3.7)

|ρ∗(·, t)|C1(F) ≤ δ ¿ 1.
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The transformation

x = y + N∗(y)ρ∗(y, t) ≡ eρ(y), y ∈ F (3.8)

is invertible, if δ is small enough, and it maps F onto Ωt. Let L = ∂eρ

∂y be the
Jacobi matrix of this transformation with the elements

lij = δij + ρ∗(y, t)
∂

∂yj
N∗

i (y) + N∗
i (y)

∂

∂yj
ρ∗(y, t), (3.9)

and with the determinant L. By lij and L̂ij , i, j = 1, 2, ..., n we denote the
elements of the inverse matrix L−1 and of the cofactors matrix L̂ = LL−1,
respectively. Set

Λ(y, ρ) = N(y) · L̂N(y),

ϕ(y, ρ) =
∫ 1

0

ρ(y)Λ(y, sρ)ds,

ψ(y, ρ) =
∫ 1

0

(yi + sNi(y)ρ(y))ρ(y)Λ(y, sρ)ds.

From formula (2.9) in [20]

∫

Ωt

f(x)dx−
∫

F
f(y)dy =

∫ 1

0

ds

∫

G
f(esρ(y))ρΛ(y, sρ)dSy

it follows that the restrictions (3.1) can be written in terms of ρ as

∫

G
ϕ(y, ρ)dS = 0,

∫

G
ψi(y, ρ)dS = 0, i = 1, 2, 3..., n, (3.10)

We remind that the (−1)i+jL̂ij are the determinants of L with row j and
column i deleted. From (3.9) we notice that

lkm = akm(y, ρ∗) + N∗
k (y)

∂ρ∗

∂ym
,

hence, L̂ij does not contain products of two or more derivatives of ρ∗. This
means that L̂ is a linear function of ∇ρ∗. Furthermore, the calculation of the
first variation of Λ with respect to ρ (see [20], formula (2.10)) shows that δΛ is
independent of ∇ρ. Thus, Λ, ϕ and ψi are functions of y and ρ.

In order to use Korn’s inequality, we need to introduce the part w⊥ of w
orthogonal to all ηkm:

w⊥ = w −w′, w′ =
∑

k<m

γkm(t)ηkm(x). (3.11)

Since ηkm(x) are linearly independent, the matrix A(t) with the elements

Akm,ij(t) =
∫

Ωt

ηkm(x) · ηij(x)dx (3.12)
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is non-degenerate, moreover, it is positive definite. By virtue of (3.11) and (3.5),
the functions γkm(t) are defined by

γkm(t) =
∑

i<j

Akm,ij(t)
∫

Ωt

w′(x, t) · ηij(x)dx (3.13)

= −
∑

i<j

Akm,ij(t)
( ∫

Ωt

Cx · ηij(x)dx−
∫

F
Cy · ηij(y)dy

)

where Akm,ij(t) are elements of A−1(t). We need the following auxiliary propo-
sition

Lemma 3.1 For arbitrary k, m ≤ n, k < m the vector field Cηkm(x) can be
represented in the form

2Cηkm(x) = −∇(Cx · ηkm(x)) + Rkm(x) (3.14)

where Rkm is a linear combination of ηij.

Proof We consider the left hand side, and we have

2Cηkm(x) = 2
n∑

i=1

(Cimxk − Cikxm)ei = 2
n∑

i=1

(Cimxk − Cikxm)∇xi = (3.15)

n∑

i=1

Cimxk∇xi +
n∑

i=1

Cim[∇(xixk)− xi∇xk]−
n∑

i=1

Cikxm∇xi −
n∑

i=1

Cik[∇(xixm)− xi∇xm] =

n∑

i=1

Cimηki(x)−
n∑

i=1

Cikηmi(x) +
n∑

i=1

∇(Cimxkxi − Cikxmxi) =

n∑

i=1

Cimηki(x)−
n∑

i=1

Cikηmi(x) +
n∑

i=1

∇(Cx · (xmek(x)− xkem(x) =

n∑

i=1

Cimηki(x)−
n∑

i=1

Cikηmi(x)−
n∑

i=1

∇Cx · ηkm(x).

The proposition is proved. ¤
From lemma 3.1 it follows that

2Cw′ = −∇(Cx ·w′) + R

where w′ is defined in (3.11) and R is a linear combination of ηij .
Let us introduce the operators

B0ρ = −σδ(H(x)−H(y))[ρ]− 1
2
δ(|Cx|2 − |Cy|2)[ρ] = −σ∆Gρ− b(y)ρ

and
B1ρ = B0ρ− δCx ·w′

= B0ρ +
∑

k<m,i<j

Akm,ij
0 Cx · ηkm(x)

∫

G
ρCy · ηij(y)dS.
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Here Akm,ij
0 are elements of A−1

0 and A0 is the matrix with the elements (3.12)
calculated for Ωt replaced with F . By δ we mean the first variation with respect
to ρ:

δ(g(eρ(y))− g(y)) =
d

ds
(g(y + sρ(y))− g(y))

∣∣∣
s=0

;

hence, B0 is a linear operator and δCx ·w′ is a linear functional of ρ. It follows
from well known formula for the variation of the mean curvature that B0ρ does
not contain the first derivatives of ρ, and it holds

b(y) = σc2(y) + Cy · CN(y),

where c2(y) is the sum of squares of the principal curvatures of G at point y.
Let P be an orthogonal in L2(G) projector onto the subspace H of the

functions r ∈ L2(G) satisfying the orthogonality conditions
∫

G
r(y)χp(y)dS = 0, p = 0, ..., n,

where

χ0(y) = 1, χi(y) = yi, i = 1, ..., n.

Lemma 3.2 Assume that ρ(y) satisfies (3.10) and that δ in (3.7) is sufficiently
small. Then

c1‖ρ‖W 1
2 (G) ≤ ‖r‖W 1

2 (G) ≤ c2‖ρ‖W 1
2 (G)

where ci are constants independent of ρ, W 1
2 (G) is the Sobolev space (see for

instance [24]).

Proof We have

Pρ = ρ(y)−
n∑

p=0

cpχp(y).

The constants cp are found from the equations

∫

G
ρχqdS =

n∑
p=0

cp

∫

G
χpχqdS ≡

n∑
p=0

Xpqcp.

Since χp are linearly independent functions on G, the matrix with the elements
Xpq is non-degenerate, and

cq =
n∑

p=0

Xqp

∫

G
ρχpdS,

where Xpq are elements of the inverse matrix. Since
∫

G
ρχ0dS =

∫

G
ρdS =

∫

G
(ρ− ϕ(y, ρ))dS,

∫

G
ρχidS =

∫

G
ρyidS =

∫

G
(ρyi − ψi(y, ρ))dS, i = 1, ..., n,
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we have
n∑

p=0

|cp| ≤ c

n∑
p=0

∣∣∣∣
∫

G
ρχpdS

∣∣∣∣ ≤ cδ‖ρ‖L2(G),

which proves the lemma.
The following lemma is a modification of problem (23) solved in [13], see

also Lemma 4.1 of [20], and [12] for the case n = 3, the proof given in [13], and
[20] may be extended to the n-dimensional case. It concerns the construction of
a special auxiliary vector field satisfying estimates in some Sobolev-Slobodevski
norms.

Lemma 3.3 Assume that Γt = ∂Ωt is given by equation (3.6) with ρ satisfying
(3.7) and having bounded first derivatives with respect to t and second derivatives
with respect to xi. Let f0(y, t), y ∈ G be an arbitrary function with a finite
norm

‖f0(·, t)‖W
1/2
2 (G)

+ ‖f0(·, t))‖Lq(G) + ‖f0t(·, t))‖L2(G), q > 1,

that satisfies the condition
∫

G
f0(y, t)dS = 0.

Then there exists a vector field V (x, t), x ∈ Ωt such that

∇ · V (x, t) = 0,

V · τ i|x=eρ(y) = 0, V · n|x=eρ(y) = f0(y)/|L̂T N(y)|, x ∈ Γt,

with τ i, i = 1, . . . , n− 1 tangential unit vectors, and
∫

Ωt

V(x, t) · ηij(x)dx = 0

Finally, the estimates

‖V (·, t)‖W 1
2 (Ωt) ≤ c‖f0(·, t)‖W

1/2
2 (G)

,

‖V (·, t)‖Lq(Ωt) ≤ c‖f0(·, t)‖Lq(G), q > 1

‖V t(·, t)‖L2(Ωt) ≤ c
(
‖f0t(·, t)‖L2(G) + ‖f0(·, t)‖W

1/2
2 (G)

)
,

hold with constants independent of t.

4 Non linear stability and instability of rigid ro-
tations of a fluid drop in Rn

Now, we obtain the main result of the paper.
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Theorem 4.1 Assume that problem (3.3) has a classical solution defined for
t ∈ [0, T ], T ≤ ∞, and that Ωt satisfies the assumptions of Lemma 3.3, in
particular, Γt is given by equation (3.6), and

|ρ(·, t)|C1(G) ≤ δ (4.1)

with a small (but fixed) δ > 0.
1. If ∫

G
r(y)B1r(y)dS ≥ c‖r‖2W 1

2 (G) (4.2)

for all r satisfying
∫

G
r(y)dS = 0,

∫

G
r(y)yidS = 0, i = 1, ..., n, (4.3)

then

‖w(·, t)‖2L2(Ωt)
+ ‖ρ(·, t)‖2W 1

2 (G) ≤ ce−bt
(
‖w0‖2L2(Ωt)

+ ‖ρ0‖2W 1
2 (G)

)
(4.4)

with b, c > 0 independent of T .
2. Assume that the form

∫
G r(y)B1 r(y)dS can take negative values for some

r satisfying (4.3), and that KerB1 = ∅. Then there exist arbitrarily small initial
values (w0, ρ0) such that the solution of (3.3) leaves sooner or later a certain
neighborhood of zero, i.e. for a certain t > 0 it holds the inequality

‖w(·, t)‖2L2(Ωt)
+ ‖ρ(·, t)‖2W 1

2 (G) ≥ ε > 0. (4.5)

In particular, condition (4.1) cannot be verified for all t > 0.

Proof We observe first of all that if inequality (4.2) holds for all r satisfying
(4.3), then it is true also for ρ sufficiently small and satisfying (3.10) (this follows
from Lemma 3.2). When we multiply the first equation in (3.3) by w, integrate
over Ωt and take account of the Reynolds transport formula (see Sec. 1), we
obtain the energy relation

d

dt

(1
2
‖w(·, t)‖2L2(Ωt)

+ σ|Γt| − 1
2

∫

Ωt

|Cx|2dx
)

+
ν

2
‖S(w)‖2L2(Ωt)

= 0

that can be written in the form

d

dt

(1
2
‖w⊥(·, t)‖2L2(Ωt)

+
1
2
‖w′(·, t)‖2L2(Ωt)

+ G(t)−G(0)
)

+
ν

2
‖S(w)‖2L2(Ωt)

= 0.

(4.6)
The functional G(t) = G(ρ) is given by

G(t) = σ|Γt| − 1
2

∫

Ωt

|Cx|2dx− p0|Ωt|

and G(0) is the value of this functional with Ωt replaced by F . As in the three-
dimensional case, it can be shown that

δ(G(t)−G(0))[ρ] = 0,
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by virtue of (2.8), and

δ2(G(t)−G(0))[ρ] =
∫

G
ρB0ρdS.

Now, we write the first equation in (3.3) in the form

w⊥
t + (w · ∇)w⊥ + (w · ∇)w′ + 2Cw⊥ − ν∇2w⊥

+∇(p− Cx ·w′) = −w′
t −R

multiply it by the vector field V constructed in proposition 3.2 and integrate
over Ωt. For the moment we leave the function f0(y) indefinite. After integration
by parts we obtain

d

dt

∫

Ωt

w⊥ · V dx−
∫

Ωt

w⊥ · (V t + (w · ∇)V )dx +
∫

Ωt

(w · ∇)w′ · V dx

(4.7)

+2
∫

Ωt

Cw⊥ · V dx−
∫

G

(
σH +

1
2
|Cx|2 + p0 + Cx ·w′

)∣∣∣
x=y+Nρ

f0dS = 0.

Next, we add (4.6) and (4.7) multiplied by a small number γ > 0, and we
set f0 = Pρ ≡ r. This leads to

dE(t)
dt

+ E1(t) = 0 (4.8)

with

E(t) =
1
2
‖w⊥‖2L2(Ωt)

+
1
2
‖w′‖2L2(Ωt)

+ (G(t)−G(0)) + γ

∫

Ωt

w⊥ · V dx,

E1(t) =
ν

2
‖S(w⊥)‖2L2(Ωt)

− γ

∫

G

(
σH +

1
2
|Cx|2 + p0 + Cx ·w′

)∣∣∣
x=y+Nρ

rdS

−γ

∫

Ωt

w⊥ · (V t + (w⊥ + w′) · ∇V )dx+

(4.9)

γ

∫

Ωt

(w⊥ + w′) · ∇w′ · V dx + 2γ

∫

Ωt

Cw⊥ · V dx.

Now, we show that if γ and δ are small enough, the following estimates hold,
with constants independent of t:

c1(‖w(·, t)‖2L2(Ωt)
+ ‖ρ(·, t)‖2W 1

2 (G)) ≤ E(t) ≤ c2(‖w(·, t)‖2L2(Ωt)
+ ‖ρ(·, t)‖2W 1

2 (G)),
(4.10a)

D =
ν

2
‖S(w⊥)‖2L2(Ωt)

− γ

∫

G

(
σH +

1
2
|Cx|2 + p0 − Cx ·w′

)∣∣∣
x=y+Nρ

rdS ≥
(4.10b)

c3(‖w⊥(·, t)‖2W 1
2 (Ωt)

+ γ‖ρ(·, t)‖2W 1
2 (G)),

12



−γ

∫

Ωt

[
w⊥ · (V t + (w⊥ + w′) · ∇V )− (w⊥ + w′) · ∇w′ · V − 2Cw⊥ · V

]
dx ≥

(4.10c)

−ν

4
‖S(w⊥)‖2L2(Ω) − cγ2‖ρ(·, t)‖2W 1

2 (G).

We prove (4.10a) observing that

G[ρ]−G(0) =
∫ 1

0

d

ds
G[sρ]ds =

∫ 1

0

( d

ds
G[sρ]− d

ds
G[sρ]

∣∣∣
s=0

)
ds

=
1
2
δ2(G[ρ]−G(0)) +

∫ 1

0

( d2

ds2
G[sρ]− d2

ds2
G[sρ]

∣∣∣
s=0

)
ds

=
1
2
δ2(G[ρ]−G(0)) + q1(ρ),

where q1(ρ) is a small remainder, and

‖w(·, t)‖2L2(Ωt)
= ‖w⊥(·, t)‖2L2(Ωt)

+ ‖w′(·, t)‖2L2(Ωt)
.

By (3.11) and (3.13),

‖w′(·, t)‖2L2(Ωt)
=

∑

k<m,l<q

γkmγlq

∫

Ωt

ηkm · ηlqdx

=
∑

k<m,l<q

∑

i<j,r<s

Akm,ij(t)Alq,rs(t)Alq,km(t)Iij(t)Irs(t)

=
∑

i<j,r<s

Aij,rs(t)Iij(t)Irs(t),

where
Iij(t) =

∫

Ωt

Cx · ηij(x)dx−
∫

F
Cx · ηij(x)dx. (4.11)

Since
δIij =

∫

G
ρCx · ηij(x)dS,

we arrive at

‖w′(·, t)‖2L2(Ωt)
=

∑

i<j,r<s

Aij,rs
0 (t)

∫

G
ρCx · ηij(x)dS

∫

G
ρCx · ηrs(x)dS + q2(ρ)

and
E(t) =

1
2
‖w⊥(·, t)‖2L2(Ωt)

+
∫

G
ρB1ρdS+

1
2

( ∑

i<j,r<s

Aij,rs
0 (t)

∫

G
ρCx ·ηij(x)dS

∫

G
ρCx ·ηrs(x)dS

)
+γ

∫

Ωt

w⊥ ·V dx+q3(ρ)

with q3(ρ) = q1(ρ) + 1
2q2(ρ) satisfying

|q3(ρ)| ≤ cδ‖ρ(·, t)‖2W 1
2 (G). (4.12)
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(concerning the estimates of remainders qi, see [20] and [21], Sec 4). We also
have ∣∣∣∣

∫

Ωt

w⊥ · V dx

∣∣∣∣ ≤ c‖w⊥(·, t)‖L2(Ωt)‖ρ(·, t)‖W 1
2 (G).

hence, for γ small enough, (4.10a) holds.
We pass to the proof of (4.10b) and consider the surface integral in (4.9),

we call it −I. Since, by (2.8),

σH(x) +
1
2
|Cx|2 + p0 = σ(H(x)−H(y)) +

1
2
(|Cx|2 − |Cy|2)

= −B0ρ+σ(H(x)−H(y)−δ(H(x)−H(y)))+
1
2
(|Cx|2−|Cy|2−δ(|Cx|2−|Cy|2)),

Cx ·w′ = −
∑

k<m,i<j

Akm,ij(t)IijCx · ηkm(x),

where x = eρ(y). We have

−I =
∫

G
rB1ρdS + q4(ρ) =

∫

G
rB1rdS + q5(ρ)

with q4, q5 satisfying (4.12), hence (4.10b) holds.
Now, we obtain (4.10c). The kinematic boundary condition W = w · n in

(3.3) is equivalent to

ρt(y, t) =
w(x, t) · n(x)
N(y) · n(x)

.

Also, the definition of Iij

Iij =
∫

Γt

Cx · ηijdS −
∫

G
Cy · ηij(y)dS =

∫ 1

0

ds

∫

G
Cz · ηij(z)ρΛ(y, sρ)dS

with z = esρ(y), yields

|w′|C1(Ωt) ≤ c
∑

i,j

|Ii,j | ≤ c‖ρ‖L2(G).

Furthermore,

‖V t‖L2(Ωt) ≤ c‖rt(., t)‖L2(G)) ≤ c‖P (w⊥ · n + w′ · n)‖L2(G)

≤ c(‖w⊥‖W 1
2 (Ωt) + ‖ρ(., t)‖L2(G))

∣∣∣∣
∫

Ωt

w⊥ · V tdx

∣∣∣∣ ≤ c‖w⊥‖L2(Ωt)(‖w⊥‖L2(Ωt) + ‖ρ‖L2(G)),

∣∣∣∣
∫

Ωt

(w′ · ∇)V ·w⊥dx

∣∣∣∣ ≤ ‖w⊥‖L2(Ωt)‖∇V ‖L2(Ωt)‖w′‖L∞(Ωt) ≤

c‖w⊥‖L2(Ωt)‖ρ‖W
1/2
2 (G)

‖w′‖L∞(Ωt),

∣∣∣∣
∫

Ωt

(w⊥+w′)·∇)w′·V dx

∣∣∣∣ ≤ (‖w⊥‖L2(Ωt)+‖w′‖L2(Ωt))‖∇w′‖L∞(Ωt)‖V ‖L2(Ωt)) ≤
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c(‖w⊥‖L2(Ωt) + ‖ρ‖L2(G))‖ρ‖L2(G)‖∇w′‖L∞(Ωt),∣∣∣∣
∫

Ωt

Cw⊥ · V dx

∣∣∣∣ ≤ c‖w⊥‖L2(Ωt)‖ρ‖L2(G).

We also have
∫

Ωt

(w⊥ · ∇)V ·w⊥dx = −
∫

Ωt

(w⊥ · ∇)w⊥ · V dx +
∫

Γt

(w⊥ ·N)w⊥ · V dS,

∣∣∣∣−
∫

Ωt

(w⊥ · ∇)w⊥ · V dx

∣∣∣∣ ≤ ‖∇w⊥‖L2(Ωt)‖w⊥‖L 2n
n−2

(Ωt)‖V ‖Ln(Ωt)) ≤

c‖S(w⊥)‖2L2(Ωt)
‖ρ‖Ln(G)

∣∣∣∣
∫

Γt

(w⊥ ·N)w⊥ · V dS

∣∣∣∣ ≤
∣∣∣∣
∫

Γt

(w⊥ ·N)2
f0

|L̂T N |dS

∣∣∣∣ ≤

c‖ρ‖L∞(G)‖S(w⊥)‖2L2(Ωt)
≤ cδ‖S(w⊥)‖2L2(Ωt)

Hence, for small γ, and δ, (4.10c) follows. From inequality (4.10c) we also
deduce that

E1(t) ≥ bE(t). (4.13)

Moreover, applying Gronwall’s lemma we obtain E(t) ≤ e−btE(0) and, as a
consequence, (4.4). The first part of the theorem is proved.

Let us consider the case 2. Since KerB1 = ∅, the space H ⊂ L2(G) of
functions satisfying (4.3) is representable as the orthogonal sum H = H− ⊕
H+ where H− = Span(ϕ1, ...ϕm), ϕj are eigenfunctions of B1 corresponding
to the negative eigenvalues, and H+ is the lineal hull of eigenfunctions of B1

corresponding to the positive eigenvalues. Let P± be projectors onto these
spaces and let r± = P±r. For arbitrary r ∈ H we have

(r,B1r) = (r+, B1r+) + (r−, B1r−)

where (r1, r2) is a scalar product in L2(G), and

c1‖r‖2W 1
2 (G) ≤ (r+, B1r+)− (r−, B1r−) ≤ c2‖r‖2W 1

2 (G).

We assume that problem (3.3) has a solution defined for t ≥ 0 and satisfying
condition (4.1). We aim to show that this is impossible for some special (ar-
bitrarily small) initial data and some small but fixed ε. Let V ± be the vector
fields mentioned in Lemma 3.3, corresponding to f0 = P±Pρ ≡ r±. When we
set V = V + − V − in (4.6), we obtain

d

dt

∫

Ωt

w⊥ · (V + − V −)dx−
∫

Ωt

w⊥ · ((V + − V −)t + (w · ∇)(V + − V −))dx

+
∫

Ωt

(w · ∇)w′ · (V + − V −)dx + 2
∫

Ωt

Cw⊥ · (V + − V −)dx

−
∫

G

(
σH(x) +

1
2
|Cx|2 + p0 − Cx ·w′

)∣∣∣
x=y+ρ

(r+(y)− r−(y))dS = 0.

(4.14)
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From (4.14) and (4.6) we deduce

dz(t)
dt

= z1(t)

where

z(t) = −1
2
‖w(·, t)‖2L2(Ωt)

− (G(t)−G(0))− γ

∫

Ωt

w⊥ · (V + − V −)dx,

z1(t) = −γ

∫

G

(
σH(x) +

1
2
|Cx|2 + p0 − Cx ·w′

)∣∣∣
x=y+Nρ

(r+(y)− r−(y))dS

+
ν

2
‖S(w⊥)‖2L2(Ωt)

− γ

∫

Ωt

w⊥ · ((V + − V −)t + (w · ∇)(V + − V −))dx

+γ

∫

Ωt

(w · ∇)w′ · (V + − V −)dx + 2γ

∫

Ωt

Cw⊥ · (V + − V −)dx.

(4.15)

The surface integral in (4.15) equals
∫

G
(r+ − r−)B1ρdS + q6(ρ) = (r+, B1r+)− (r−, B1r−) + q7(ρ)

with q6, q7 satisfying (4.12). Other integrals in (4.14) are estimated as above in
the case 1, so we have

z1(t) ≥ c(‖w(·, t)‖2L2(Ωt)
+ ‖ρ(·, t)‖2W 1

2 (G)) ≥ bz(t).

Hence, dz(t)
dt ≥ bz(t), and if we choose initial data arbitrarily small but such

that z(0) > 0 (which is possible), we obtain

z(t) ≥ ebtz(0).

Hence, for t large enough (4.5) holds, and the theorem is proved.¤
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