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Asymptotic Properties of Solutions to the Homogeneous
Navier-Stokes Equations inR3

Zdeňek Skaĺak∗
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Abstract. We show as the main result of the paper that ifw is a weak global solution of homogeneous Navier-Stokes
equations satisfying the strong energy inequality andβ ∈ (3/4, 1), then there existt0 ≥ 0, C0 ≥ 0 andδ0 > 0 such that

‖Aβw(t)‖+ ‖w(t)‖
‖Aβw(t + δ)‖+ ‖w(t + δ)‖ ≤ C0

for all t ≥ t0 andδ ∈ [0, δ0]. So, measuringw in the graph norm‖Aβw‖ + ‖w‖ and starting at timet0, we exclude fast
decays ofw on short time intervals.

Mathematics Subject Classification (2000). 35Q30, 76D05.

1. Introduction

In this paper we study some asymptotic properties of weak global solutions of the Cauchy problem for the Navier-
Stokes equations in the space domainΩ = R3:

∂w

∂t
−∆w + w · ∇w +∇p = 0 in R3 × (0,∞), (1)

∇ · w = 0, w(x, 0) = w0(x), (2)

with w0 ∈ L2(R3)3,∇ · w0 = 0. By a weak global solutionw we mean a function

w ∈ Cw([0,∞);L2(R3)3) ∩ L2
loc((0,∞);W 1,2(R3)3) (3)

with ∇ · w = 0, which satisfies the integral relation

(w(t), φ(t)) +
∫ t

0

[
−

(
w(s),

∂φ

∂s
(s)

)
+ (∇w(s),∇φ(s)) + (w(s) · ∇w(s), φ(s))

]
ds = (w0, φ(0)), t > 0,

for all smooth vector fieldsφ with compact support and∇ · φ = 0. (·, ·) denotes the scalar product and‖ · ‖
denotes the norm inL2(R3)3. Cw denotes the space of weakly continuous functions. The existence of weak
global solutions is well known (see [1] or [7]).

From now on we suppose that the solutions satisfy the strong energy inequality

‖w(t)‖2 + 2
∫ t

s
‖∇w(σ)‖2dσ ≤ ‖w(s)‖2

for s = 0 and almost alls > 0, and allt ≥ s.
It is known (see [4]) that the global weak solutions with the strong energy inequality become strong after a

finite time:

there is someT0 = T0(‖w0‖) ≥ 0, such thatw ∈ C([T0,∞);Lp) for everyp ∈ [2,∞). (4)

The following theorem is the main result of the paper.
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Theorem 1 Letβ ∈ (3/4, 1), w0 ∈ L2(R3)3,∇ ·w0 = 0, w0 6= 0. Letw be a weak global solution of (1) and (2)
satisfying the strong energy inequality and letT0 be from (4). Then there existC0 > 1 andδ0 ∈ (0, 1) such that

‖Aβw(t)‖+ ‖w(t)‖
‖Aβw(t + δ)‖+ ‖w(t + δ)‖ ≤ C0, ∀t ≥ T0 + 2, ∀δ ∈ (0, δ0]. (5)

Let us present in this connection a theorem proved in [5]:

Theorem 2 Let w0 ∈ D(A), w0 6= 0. Let w be a strong global solution of the Navier-Stokes equations (1) and
(2) in a smooth and bounded domainΩ ⊂ R3 endowed with the homogeneous Dirichlet boundary conditions. If
k, l,m ∈ N ∪ {0}, then there existC = C(k, l, m) > 1, t0 = t0(k, l, m) ≥ 0 andδ0 ∈ (0, 1) such that

∥∥∥∥∥
dkw

dtk
(t)

∥∥∥∥∥
m,2

≤ C

∥∥∥∥∥
dlw

dtl
(t + δ)

∥∥∥∥∥ , ∀t ≥ t0, ∀δ ∈ [0, δ0].

It is clear that the result from Theorem 2 for the case of a bounded domain is stronger than the result presented
in Theorem 1. In this paper we do not have the ambition to prove an analogical version of Theorem 2 for the
whole spaceR3 and Theorem 1 is only the first step in this direction. Let us also remark that unlike the case of
a bounded domain, we do not have the inequality‖B(w, w)‖ ≤ ‖A1/2w‖ ||Aβw||, which must be replaced by
‖B(w, w)‖ ≤ ‖A1/2w‖ (||Aβw||+ ||w||) (see the second section for the notation). It leads to the form of the left
hand side in (5). Therefore, Theorem 1 says that if we measure the solutionw in the graph norm‖Aβ · ‖ + ‖ · ‖,
then, starting at timeT0 + 2, fast decays ofw on short time intervals are excluded. Let us remark, that the question
of fast decays of solutions on short time intervals was raised and studied in [3].

2. Notations

Lq = Lq(R3), q ≥ 1: the Lebesgue spaces with the norm‖ · ‖q. If q = 2, we denote‖ · ‖ = ‖ · ‖2.
W s,q = W s,q(R3), s ≥ 0, q ≥ 2: the Sobolev spaces endowed with the norm‖ · ‖s,q.
L2

σ: the closure of{ϕ ∈ C∞
0 (R3)3;∇ · ϕ = 0} in L2(R3)3.

Pσ: orthogonal projection ofL2(R3)3 ontoL2
σ.

A: the Stokes operator onL2
σ,D(A) = {u ∈ W 2,2;∇ · u = 0}, Au = −∆u, ∀u ∈ D(A).

Aα, α ≥ 0: the fractional powers of the Stokes operator.
e−At, t ≥ 0: the Stokes semigroup generated by the Stokes operator−A.
B(w, w) = Pσ(w · ∇w).
the graph norm|||w|||β = ‖Aβw‖+ ‖w‖.

3. Auxiliary results

At first, let us present several known properties of weak global solutions which will be used in this paper.
According to [8], if w is a weak global solutions of (1) and (2) satisfying the strong energy inequality and if
w0 ∈ L2(R3)3 ∩ Lp(R3)3 with p ∈ [1, 2) then

‖w(t)‖ ≤ C(1 + t)−
6−3p
4p , t ≥ 0.

Using the results from [2] and [8] we can disregard the assumptionp ∈ [1, 2) and derive that

‖w(t)‖ ≤ C(1 + t)−µ, t ≥ 0

for anyµ ∈ (0, 1/2) whereC possibly depends onµ. Applying now a result from [4], we get that form, k ∈ N
andµ ∈ (0, 1/2) there isCm,k = Cm,k(µ,C), independent ofT0, such that

∥∥∥∥∥Dm dkw

dtk
(t)

∥∥∥∥∥ ≤ Cm(t− T0 − 2)−µ−m/2−k, t ≥ T0 + 1. (6)
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The following inequality can be derived as a consequence of Hölder inequality and Lemma 2.4.3 form [6]: if
γ ∈ [3/4, 1) then there existsc > 0 such that

‖B(u, u)‖ ≤ c‖A1/2u‖ |||u|||γ , ∀u ∈ D(Aγ). (7)

Finally, if γ ∈ [3/4, 1) then there existsc > 0 such that

‖A1/2u‖ ≤ c|||u|||γ , ∀u ∈ D(Aγ). (8)

4. Proofs of the main results

We prove at first the following lemma. Its corollary is substantial for the proof of Theorem 1.

Lemma 3 If w ∈ D(Aα), w 6= 0, t ≥ 0 and0 ≤ β ≤ α then

‖Aαw‖
‖Aβe−Atw‖ ≥

‖Aαe−Atw‖
‖Aβe−2Atw‖ .

Proof: Let Eλ, λ ≥ 0 be the resolution of identity for the Stokes operatorA. Then

‖Aβe−Atw‖2 =
∫ ∞

0
λ2βe−2λtd‖Eλw‖2, t ≥ 0. (9)

By the Hölder inequality we get easily that

‖Aβe−Atw‖2 =
∫ ∞

0
λ2βe−2λtd‖Eλw‖2 ≤

(∫ ∞

0
λ2βd‖Eλw‖2

)1/2 (∫ ∞

0
λ2βe−4λtd‖Eλw‖2

)1/2

= ‖Aβw‖‖Aβe−2Atw‖

and immediately

‖Aβw‖
‖Aβe−Atw‖ ≥

‖Aβe−Atw‖
‖Aβe−2Atw‖ . (10)

We will show further that the functiont 7→ ‖Aαe−Atw‖2/‖Aβe−Atw‖2 is non-increasing. Firstly, for everyγ ≥ 0

d

dt
‖Aγe−Atw‖2 = −2‖Aγ+1/2e−Atw‖2, t > 0

and therefore

d

dt

‖Aαe−Atw‖2

‖Aβe−Atw‖2
=

2‖Aαe−Atw‖2‖Aβ+1/2e−Atw‖2 − 2‖Aα+1/2e−Atw‖2‖Aβe−Atw‖2

‖Aβe−Atw‖4
, t > 0.

Further,

‖Aαe−Atw‖2‖Aβ+1/2e−Atw‖2 ≤ ‖Aα+1/2e−Atw‖2‖Aβe−Atw‖2,

as follows from the moment inequality

‖Ayu‖ ≤ ‖Azu‖x−y
x−z ‖Axu‖ y−z

x−z ,

which holds for every0 ≤ z < y < x andu ∈ D(Ax). So,

d

dt

‖Aαe−Atw‖2

‖Aβe−Atw‖2
≤ 0, t > 0

3



and due to the continuity from the right at0 we get that the above mentioned function is non-increasing. It means
especially, that

‖Aαw‖2

‖Aβw‖2
≥ ‖Aαe−Atw‖2

‖Aβe−Atw‖2
, t ≥ 0. (11)

Using now (10) and (11), we get

‖Aαw‖
‖Aβe−Atw‖ =

‖Aαw‖
‖Aβw‖

‖Aβw‖
‖Aβe−Atw‖ ≥

‖Aαe−Atw‖
‖Aβe−Atw‖

‖Aβe−Atw‖
‖Aβe−2Atw‖ =

‖Aαe−Atw‖
‖Aβe−2Atw‖ ,

which completes the proof of the lemma.©
Corollary 4 If w ∈ D(Aα), w 6= 0, t ≥ 0 and0 ≤ β ≤ α then

|||w|||α
|||e−Atw|||β ≥

|||e−Atw|||α
|||e−2Atw|||β .

Proof: The proof of the corollary follows immediately from Lemma 3 and from the elementary fact that ifα1
β1
≥ β1

γ1

and α2
β2
≥ β2

γ2
for some positiveαi, βi, γi, i = 1, 2, thenα1+α2

β1+β2
≥ β1+β2

γ1+γ2
. ©

Throughout the proof of Theorem 1c denotes the generic constant which can change from line to line.
Proof of Theorem 1: Let the assumptions of Theorem 1 be fulfilled. We will use the method from [5]. We denote

H = max
t∈[T0+2,∞)

|||w(t)|||β.

It follows from (6) thatH < ∞. Since‖Aβw(t)‖ 6= 0 for all t ∈ [T0 + 2,∞), there existC ′
0 > 1 andδ′0 ∈ (0, 1)

such that
|||w(t)|||β

|||w(t + δ)|||β ≤ C ′
0, ∀t ∈ [T0 + 2, T0 + 4], ∀δ ∈ (0, δ′0]. (12)

We set nowD0 = 6C ′
0 and letδ0 ∈ (0, δ′0] be such a number that

4Hc

(
D0e

5D0
2(D0−1)

)3
(

δ1−β
0

1− β
+ δ0

)
≤ 1. (13)

We will prove now the following proposition:
Proposition P: Let t > T0 + 4, δ ∈ (0, δ0]. Let further

|||w(t)|||β
|||w(t + δ)|||β = C ∈

(
D0, D0e

5D0
2(D0−1)

)
(14)

and
|||w(t)|||β ≥ |||w(s)|||β, ∀s ∈ [t, t + δ]. (15)

Then there existst∗ ∈ [t− δ, t) such that

|||w(t∗)|||β
|||w(t)|||β ≥ |||w(t)|||β

|||w(t + δ)|||β

(
1− |||w(t)|||β

2H

)2

(
1 + |||w(t)|||β

2H

) . (16)

Proof of Proposition P: Let (14) and (15) be fulfilled. We can suppose that

max
s∈[t−δ,t]

|||w(s)|||β < C|||w(t)|||β, (17)

because otherwise (16) would be satisfied immediately. We begin with the integral representation ofw:

w(t + δ) = e−Aδw(t) +
∫ δ

0
e−A(δ−s)B(w(t + s), w(t + s)) ds, (18)
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w(t) = e−Aδw(t− δ) +
∫ δ

0
e−A(δ−s)B(w(t− δ + s), w(t− δ + s)) ds. (19)

Applying gradually (7), (8) and (17) we obtain that

|||w(t)− e−Aδw(t− δ)|||β ≤∫ δ

0
c((δ − s)−β + 1) ‖B(w(t− δ + s), w(t− δ + s)‖ ds ≤

∫ δ

0
c((δ − s)−β + 1) ‖A1/2w(t− δ + s)‖ |||w(t− δ + s)|||β ds =

|||w(t)|||β
∫ δ

0
c((δ − s)−β + 1)

||A1/2w(t− δ + s)||
|||w(t− δ + s)|||β ×

|||w(t− δ + s)|||β
|||w(t)|||β |||w(t− δ + s)|||β ds ≤ |||w(t)|||2βcC2

∫ δ

0
((δ − s)−β + 1) ds.

So we can get from (13) and (14) that

|||w(t)− e−Aδw(t− δ)|||β ≤ |||w(t)|||β
[
2HcC2

(
δ1−β
0

1− β
+ δ0

)]
|||w(t)|||β

2H
≤

|||w(t)|||β |||w(t)|||β
2H

(20)

and also

|||w(t)− e−Aδw(t− δ)|||β ≤ |||w(t + δ)|||β
[
4HcC3

(
δ1−β
0

1− β
+ δ0

)]
×

|||w(t)|||β
4H

≤ |||w(t + δ)|||β |||w(t)|||β
4H

. (21)

(21) now gives immediately that

|||e−Aδw(t)− e−2Aδw(t− δ)|||β ≤ |||w(t + δ)|||β |||w(t)|||β
4H

. (22)

It follows from (18), (7), (8), (14), (15) and (13) that

|||w(t + δ)− e−Aδw(t)|||β ≤∫ δ

0
(c(δ − s)−β + 1)||A1/2w(t + s)|| |||w(t + s)|||β ds =

|||w(t + δ)|||β
∫ δ

0
(c(δ − s)−β + 1)

||A1/2w(t + s)||
|||w(t + s)|||β

|||w(t + s)|||β
|||w(t + δ)|||β ×

|||w(t + s)|||β ds ≤ |||w(t + δ)|||β |||w(t)|||β c C

∫ δ

0
((δ − s)−β + 1) ds =

|||w(t + δ)|||β
[
4HcC

(
δ1−β
0

1− β
+ δ0

)]
|||w(t)|||β

4H
≤ |||w(t + δ)|||β |||w(t)|||β

4H
. (23)

(22) and (23) provide the estimate

‖||e−2Aδw(t− δ)− w(t + δ)|||β ≤ |||e−2Aδw(t− δ)− e−Aδw(t)|||β +

|||e−Aδw(t)− w(t + δ)|||β ≤ |||w(t + δ)|||β |||w(t)|||β
2H

. (24)
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It follows now from Corollary 4 and (20) and (24) that

|||w(t− δ)|||β ≥
|||e−Aδw(t− δ)|||2β
|||e−2Aδw(t− δ)|||β ≥

|||w(t)|||2β
(
1− |||w(t)|||β

2H

)2

|||w(t + δ)|||β
(
1 + |||w(t)|||β

2H

) .

If we put t∗ = t − δ, (16) is proved. The proof of Proposition P is finished and we can continue in the proof of
Theorem 1.

Let us fixt ∈ [T0 + 2,∞), δ ∈ (0, δ0] and suppose that

|||w(t)|||β > H/D0 and (25)

|||w(t)|||β
|||w(t + δ)|||β ≥ D0

1 + 1/2
(1− 1/2)2

= 6D0. (26)

SinceD0 > C ′
0 andδ0 ≤ δ′0, it follows from (12) and (26) thatt > T0 + 4. We can also suppose without loss of

generality that

|||w(t)|||β = max
s∈[t,t+δ]

|||w(s)|||β

and (by possible decreasing ofδ)

|||w(t)|||β
|||w(t + δ)|||β = 6D0.

Let us notice that6D0 < D0e
5D0

2(D0−1) (D0 > 1) and the conditions (14) and (15) are satisfied. By Proposition P
there existst∗ ∈ [t− δ, t) so that

|||w(t∗)|||β
|||w(t)|||β ≥ |||w(t)|||β

|||w(t + δ)|||β

(
1− |||w(t)|||β

2H

)2

(
1 + |||w(t)|||β

2H

) ≥ 6D0
(1− 1/2)2

1 + 1/2
= D0.

Thus, by (25),|||w(t∗)|||β ≥ D0|||w(t)|||β > D0H/D0 = H and it is the contradiction with the definition ofH.
Let D1 = 6D0. We proved
Proposition P1: Let t ∈ [T0 + 2,∞), δ ∈ (0, δ0] and|||w(t)|||β > H/D0. Then

|||w(t)|||β
|||w(t + δ)|||β < D1.

We define now

Dn = Dn−1

1 + 1
2D0D1...Dn−2(

1− 1
2D0D1...Dn−2

)2 , ∀n ∈ N, n ≥ 2. (27)

We have
6 < D0 < D1 < . . . < Dn−1 < Dn, ∀n ∈ N, (28)

Dn = 6D0

n−2∏

j=0

1 + 1
2D0D1...Dj(

1− 1
2D0D1...Dj

)2 ≤ D0

n−1∏

j=0

1 + 1

2Dj
0(

1− 1

2Dj
0

)2 , ∀n ≥ 2

and

ln Dn ≤ ln D0 +
n−1∑

j=0

ln

(
1 +

1
2Dj

0

)
− 2 ln

(
1− 1

2Dj
0

)
, ∀n ≥ 1.

6



It follows from the elementary properties of the functionx → ln (1 + x) that

ln Dn < ln D0 +
n−1∑

j=0

(
1

2Dj
0

+ 4
1

2Dj
0

)
< ln D0 +

5D0

2(D0 − 1)

and

Dn < D0e
5D0

2(D0−1) , ∀n ∈ N. (29)

We will prove now that for everyn ∈ N the following proposition is valid:
Proposition Pn: Let t ∈ [T0 + 2,∞), δ ∈ (0, δ0] and

|||w(t)|||β >
H

D0D1 . . . Dn−1
.

Then

|||w(t)|||β
|||w(t + δ)|||β < Dn.

We will use the mathematical induction. PropositionP1 has already been proved. Let us suppose thatPn holds
for somen ∈ N and we will prove the validity ofPn+1. Thus, lett ∈ [T0 + 2,∞), δ ∈ (0, δ0] and|||w(t)|||β >
H/D0D1 . . . Dn. We can suppose that

|||w(t)|||β ≤ H/D0D1 . . . Dn−1, (30)

since otherwise we would apply PropositionPn, get |||w(t)|||β/|||w(t + δ)|||β < Dn < Dn+1 and Proposition
Pn+1 would be proved. We suppose by contradiction that

|||w(t)|||β
|||w(t + δ)|||β ≥ Dn+1. (31)

It follows then from (12) and (28) thatt > T0 + 4. We can suppose without loss of generality that

|||w(t)|||β ≥ |||w(s)|||β, ∀s ∈ [t, t + δ] (32)

and also
|||w(t)|||β

|||w(t + δ)|||β = Dn+1. (33)

Due to (28), (29), (32) and (33) we see that (14) and (15) are satisfied. Therefore, Proposition P, (33), (30) and (27)
yield that there existst∗ ∈ [t− δ, t) so that

|||w(t∗)|||β
|||w(t)|||β ≥ |||w(t)|||β

|||w(t + δ)|||β

(
1− |||w(t)|||β

2H

)2

(
1 + |||w(t)|||β

2H

) ≥ Dn+1

(
1− 1

2D0D1...Dn−1

)2

(
1 + 1

2D0D1...Dn−1

) = Dn. (34)

If we use the assumptions of PropositionPn+1 we obtain that

|||w(t∗)|||β ≥ Dn|||w(t)|||β > Dn
H

D0D1 . . . Dn
=

H

D0D1 . . . Dn−1

and according to PropositionPn we get that

|||w(t∗)|||β
|||w(t)|||β < Dn,

which is the contradiction to (34). Therefore, (31) does not hold, in fact

|||w(t)|||β
|||w(t + δ)|||β < Dn+1

7



and PropositionPn+1 is proved. We proved that PropositionPn holds for everyn ∈ N .
We now finish the proof of Theorem 1. Let us fixt ∈ [T0 + 2,∞) andδ ∈ (0, δ0]. Then there existsn ∈ N so

that|||w(t)|||β > H
D0D1...Dn−1

. By PropositionPn and by (29) we get that

|||w(t)|||β
|||w(t + δ)|||β < Dn < D0e

5D0
2(D0−1) .

SettingC0 = D0e
5D0

2(D0−1) the proof of Theorem 1 is complete.©
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