

Asymptotic Properties of Solutions to the Homogeneous Navier-Stokes Equations in \mathbf{R}^{3}

Zdeněk Skalák*

Key-Words: Navier-Stokes equations, global solution, asymptotic properties, fast decays

Abstract

We show as the main result of the paper that if w is a weak global solution of homogeneous Navier-Stokes equations satisfying the strong energy inequality and $\beta \in(3 / 4,1)$, then there exist $t_{0} \geq 0, C_{0} \geq 0$ and $\delta_{0}>0$ such that $$
\frac{\left\|A^{\beta} w(t)\right\|+\|w(t)\|}{\left\|A^{\beta} w(t+\delta)\right\|+\|w(t+\delta)\|} \leq C_{0}
$$ for all $t \geq t_{0}$ and $\delta \in\left[0, \delta_{0}\right]$. So, measuring w in the graph norm $\left\|A^{\beta} w\right\|+\|w\|$ and starting at time t_{0}, we exclude fast decays of w on short time intervals.

Mathematics Subject Classification (2000). 35Q30, 76D05.

1. Introduction

In this paper we study some asymptotic properties of weak global solutions of the Cauchy problem for the NavierStokes equations in the space domain $\Omega=\mathbf{R}^{3}$:

$$
\begin{align*}
& \frac{\partial w}{\partial t}-\Delta w+w \cdot \nabla w+\nabla p=0 \quad \text { in } \mathbf{R}^{3} \times(0, \infty) \tag{1}\\
& \nabla \cdot w=0, \quad w(x, 0)=w_{0}(x) \tag{2}
\end{align*}
$$

with $w_{0} \in L^{2}\left(\mathbf{R}^{3}\right)^{3}, \nabla \cdot w_{0}=0$. By a weak global solution w we mean a function

$$
\begin{equation*}
w \in C_{w}\left([0, \infty) ; L^{2}\left(\mathbf{R}^{3}\right)^{3}\right) \cap L_{l o c}^{2}\left((0, \infty) ; W^{1,2}\left(\mathbf{R}^{3}\right)^{3}\right) \tag{3}
\end{equation*}
$$

with $\nabla \cdot w=0$, which satisfies the integral relation

$$
(w(t), \phi(t))+\int_{0}^{t}\left[-\left(w(s), \frac{\partial \phi}{\partial s}(s)\right)+(\nabla w(s), \nabla \phi(s))+(w(s) \cdot \nabla w(s), \phi(s))\right] d s=\left(w_{0}, \phi(0)\right), \quad t>0
$$

for all smooth vector fields ϕ with compact support and $\nabla \cdot \phi=0 .(\cdot, \cdot)$ denotes the scalar product and $\|\cdot\|$ denotes the norm in $L^{2}\left(\mathbf{R}^{3}\right)^{3}$. C_{w} denotes the space of weakly continuous functions. The existence of weak global solutions is well known (see [1] or [7]).

From now on we suppose that the solutions satisfy the strong energy inequality

$$
\|w(t)\|^{2}+2 \int_{s}^{t}\|\nabla w(\sigma)\|^{2} d \sigma \leq\|w(s)\|^{2}
$$

for $s=0$ and almost all $s>0$, and all $t \geq s$.
It is known (see [4]) that the global weak solutions with the strong energy inequality become strong after a finite time:

$$
\begin{equation*}
\text { there is some } T_{0}=T_{0}\left(\left\|w_{0}\right\|\right) \geq 0, \text { such that } w \in C\left(\left[T_{0}, \infty\right) ; L^{p}\right) \text { for every } p \in[2, \infty) \tag{4}
\end{equation*}
$$

The following theorem is the main result of the paper.

[^0]Theorem 1 Let $\beta \in(3 / 4,1)$, $w_{0} \in L^{2}\left(\mathbf{R}^{3}\right)^{3}, \nabla \cdot w_{0}=0, w_{0} \neq 0$. Let w be a weak global solution of (1) and (2) satisfying the strong energy inequality and let T_{0} be from (4). Then there exist $C_{0}>1$ and $\delta_{0} \in(0,1)$ such that

$$
\begin{equation*}
\frac{\left\|A^{\beta} w(t)\right\|+\|w(t)\|}{\left\|A^{\beta} w(t+\delta)\right\|+\|w(t+\delta)\|} \leq C_{0}, \forall t \geq T_{0}+2, \forall \delta \in\left(0, \delta_{0}\right] \tag{5}
\end{equation*}
$$

Let us present in this connection a theorem proved in [5]:
Theorem 2 Let $w_{0} \in D(A), w_{0} \neq 0$. Let w be a strong global solution of the Navier-Stokes equations (1) and (2) in a smooth and bounded domain $\Omega \subset \mathbf{R}^{3}$ endowed with the homogeneous Dirichlet boundary conditions. If $k, l, m \in N \cup\{0\}$, then there exist $C=C(k, l, m)>1, t_{0}=t_{0}(k, l, m) \geq 0$ and $\delta_{0} \in(0,1)$ such that

$$
\left\|\frac{d^{k} w}{d t^{k}}(t)\right\|_{m, 2} \leq C\left\|\frac{d^{l} w}{d t^{l}}(t+\delta)\right\|, \forall t \geq t_{0}, \forall \delta \in\left[0, \delta_{0}\right]
$$

It is clear that the result from Theorem 2 for the case of a bounded domain is stronger than the result presented in Theorem 1. In this paper we do not have the ambition to prove an analogical version of Theorem 2 for the whole space \mathbf{R}^{3} and Theorem 1 is only the first step in this direction. Let us also remark that unlike the case of a bounded domain, we do not have the inequality $\|B(w, w)\| \leq\left\|A^{1 / 2} w\right\|\left\|A^{\beta} w\right\|$, which must be replaced by $\|B(w, w)\| \leq\left\|A^{1 / 2} w\right\|\left(\left\|A^{\beta} w\right\|+\|w\|\right)$ (see the second section for the notation). It leads to the form of the left hand side in (5). Therefore, Theorem 1 says that if we measure the solution w in the graph norm $\left\|A^{\beta} \cdot\right\|+\|\cdot\|$, then, starting at time $T_{0}+2$, fast decays of w on short time intervals are excluded. Let us remark, that the question of fast decays of solutions on short time intervals was raised and studied in [3].

2. Notations

$L^{q}=L^{q}\left(\mathbf{R}^{3}\right), q \geq 1$: the Lebesgue spaces with the norm $\|\cdot\|_{q}$. If $q=2$, we denote $\|\cdot\|=\|\cdot\|_{2}$. $W^{s, q}=W^{s, q}\left(\mathbf{R}^{3}\right), s \geq 0, q \geq 2$: the Sobolev spaces endowed with the norm $\|\cdot\|_{s, q}$.
L_{σ}^{2} : the closure of $\left\{\varphi \in C_{0}^{\infty}\left(\mathbf{R}^{3}\right)^{3} ; \nabla \cdot \varphi=0\right\}$ in $L^{2}\left(\mathbf{R}^{3}\right)^{3}$.
P_{σ} : orthogonal projection of $L^{2}\left(\mathbf{R}^{3}\right)^{3}$ onto L_{σ}^{2}.
A : the Stokes operator on $L_{\sigma}^{2}, \mathcal{D}(A)=\left\{u \in W^{2,2} ; \nabla \cdot u=0\right\}, A u=-\Delta u, \forall u \in \mathcal{D}(A)$.
$A^{\alpha}, \alpha \geq 0$: the fractional powers of the Stokes operator.
$e^{-A t}, t \geq 0$: the Stokes semigroup generated by the Stokes operator $-A$.
$B(w, w)=P_{\sigma}(w \cdot \nabla w)$.
the graph norm $\|\mid w\|_{\beta}=\left\|A^{\beta} w\right\|+\|w\|$.

3. Auxiliary results

At first, let us present several known properties of weak global solutions which will be used in this paper. According to [8], if w is a weak global solutions of (1) and (2) satisfying the strong energy inequality and if $w_{0} \in L^{2}\left(\mathbf{R}^{3}\right)^{3} \cap L^{p}\left(\mathbf{R}^{3}\right)^{3}$ with $p \in[1,2)$ then

$$
\|w(t)\| \leq C(1+t)^{-\frac{6-3 p}{4 p}}, \quad t \geq 0
$$

Using the results from [2] and [8] we can disregard the assumption $p \in[1,2)$ and derive that

$$
\|w(t)\| \leq C(1+t)^{-\mu}, \quad t \geq 0
$$

for any $\mu \in(0,1 / 2)$ where C possibly depends on μ. Applying now a result from [4], we get that for $m, k \in N$ and $\mu \in(0,1 / 2)$ there is $C_{m, k}=C_{m, k}(\mu, C)$, independent of T_{0}, such that

$$
\begin{equation*}
\left\|D^{m} \frac{d^{k} w}{d t^{k}}(t)\right\| \leq C_{m}\left(t-T_{0}-2\right)^{-\mu-m / 2-k}, \quad t \geq T_{0}+1 \tag{6}
\end{equation*}
$$

The following inequality can be derived as a consequence of Hölder inequality and Lemma 2.4.3 form [6]: if $\gamma \in[3 / 4,1)$ then there exists $c>0$ such that

$$
\begin{equation*}
\|B(u, u)\| \leq c\left\|A^{1 / 2} u\right\|\|u\|_{\gamma}, \forall u \in \mathcal{D}\left(A^{\gamma}\right) \tag{7}
\end{equation*}
$$

Finally, if $\gamma \in[3 / 4,1)$ then there exists $c>0$ such that

$$
\begin{equation*}
\left\|A^{1 / 2} u\right\| \leq c\| \| u \mid \|_{\gamma}, \forall u \in \mathcal{D}\left(A^{\gamma}\right) \tag{8}
\end{equation*}
$$

4. Proofs of the main results

We prove at first the following lemma. Its corollary is substantial for the proof of Theorem 1.
Lemma 3 If $w \in \mathcal{D}\left(A^{\alpha}\right), w \neq 0, t \geq 0$ and $0 \leq \beta \leq \alpha$ then

$$
\frac{\left\|A^{\alpha} w\right\|}{\left\|A^{\beta} e^{-A t} w\right\|} \geq \frac{\left\|A^{\alpha} e^{-A t} w\right\|}{\left\|A^{\beta} e^{-2 A t} w\right\|}
$$

Proof: Let $E_{\lambda}, \lambda \geq 0$ be the resolution of identity for the Stokes operator A. Then

$$
\begin{equation*}
\left\|A^{\beta} e^{-A t} w\right\|^{2}=\int_{0}^{\infty} \lambda^{2 \beta} e^{-2 \lambda t} d\left\|E_{\lambda} w\right\|^{2}, \quad t \geq 0 \tag{9}
\end{equation*}
$$

By the Hölder inequality we get easily that

$$
\begin{aligned}
& \left\|A^{\beta} e^{-A t} w\right\|^{2}=\int_{0}^{\infty} \lambda^{2 \beta} e^{-2 \lambda t} d\left\|E_{\lambda} w\right\|^{2} \leq \\
& \left(\int_{0}^{\infty} \lambda^{2 \beta} d\left\|E_{\lambda} w\right\|^{2}\right)^{1 / 2}\left(\int_{0}^{\infty} \lambda^{2 \beta} e^{-4 \lambda t} d\left\|E_{\lambda} w\right\|^{2}\right)^{1 / 2}=\left\|A^{\beta} w\right\|\left\|A^{\beta} e^{-2 A t} w\right\|
\end{aligned}
$$

and immediately

$$
\begin{equation*}
\frac{\left\|A^{\beta} w\right\|}{\left\|A^{\beta} e^{-A t} w\right\|} \geq \frac{\left\|A^{\beta} e^{-A t} w\right\|}{\left\|A^{\beta} e^{-2 A t} w\right\|} \tag{10}
\end{equation*}
$$

We will show further that the function $t \mapsto\left\|A^{\alpha} e^{-A t} w\right\|^{2} /\left\|A^{\beta} e^{-A t} w\right\|^{2}$ is non-increasing. Firstly, for every $\gamma \geq 0$

$$
\frac{d}{d t}\left\|A^{\gamma} e^{-A t} w\right\|^{2}=-2\left\|A^{\gamma+1 / 2} e^{-A t} w\right\|^{2}, \quad t>0
$$

and therefore

$$
\frac{d}{d t} \frac{\left\|A^{\alpha} e^{-A t} w\right\|^{2}}{\left\|A^{\beta} e^{-A t} w\right\|^{2}}=\frac{2\left\|A^{\alpha} e^{-A t} w\right\|^{2}\left\|A^{\beta+1 / 2} e^{-A t} w\right\|^{2}-2\left\|A^{\alpha+1 / 2} e^{-A t} w\right\|^{2}\left\|A^{\beta} e^{-A t} w\right\|^{2}}{\left\|A^{\beta} e^{-A t} w\right\|^{4}}, \quad t>0
$$

Further,

$$
\left\|A^{\alpha} e^{-A t} w\right\|^{2}\left\|A^{\beta+1 / 2} e^{-A t} w\right\|^{2} \leq\left\|A^{\alpha+1 / 2} e^{-A t} w\right\|^{2}\left\|A^{\beta} e^{-A t} w\right\|^{2}
$$

as follows from the moment inequality

$$
\left\|A^{y} u\right\| \leq\left\|A^{z} u\right\|^{\frac{x-y}{x-z}}\left\|A^{x} u\right\|^{\frac{y-z}{x-z}}
$$

which holds for every $0 \leq z<y<x$ and $u \in D\left(A^{x}\right)$. So,

$$
\frac{d}{d t} \frac{\left\|A^{\alpha} e^{-A t} w\right\|^{2}}{\left\|A^{\beta} e^{-A t} w\right\|^{2}} \leq 0, \quad t>0
$$

and due to the continuity from the right at 0 we get that the above mentioned function is non-increasing. It means especially, that

$$
\begin{equation*}
\frac{\left\|A^{\alpha} w\right\|^{2}}{\left\|A^{\beta} w\right\|^{2}} \geq \frac{\left\|A^{\alpha} e^{-A t} w\right\|^{2}}{\left\|A^{\beta} e^{-A t} w\right\|^{2}}, \quad t \geq 0 \tag{11}
\end{equation*}
$$

Using now (10) and (11), we get

$$
\frac{\left\|A^{\alpha} w\right\|}{\left\|A^{\beta} e^{-A t} w\right\|}=\frac{\left\|A^{\alpha} w\right\|}{\left\|A^{\beta} w\right\|} \frac{\left\|A^{\beta} w\right\|}{\left\|A^{\beta} e^{-A t} w\right\|} \geq \frac{\left\|A^{\alpha} e^{-A t} w\right\|}{\left\|A^{\beta} e^{-A t} w\right\|} \frac{\left\|A^{\beta} e^{-A t} w\right\|}{\left\|A^{\beta} e^{-2 A t} w\right\|}=\frac{\left\|A^{\alpha} e^{-A t} w\right\|}{\left\|A^{\beta} e^{-2 A t} w\right\|},
$$

which completes the proof of the lemma.
Corollary 4 If $w \in \mathcal{D}\left(A^{\alpha}\right), w \neq 0, t \geq 0$ and $0 \leq \beta \leq \alpha$ then

$$
\frac{\|w\|_{\alpha}}{\left\|\left\|e^{-A t} w\right\|_{\beta}\right.} \geq \frac{\| \| e^{-A t} w \mid \|_{\alpha}}{\left\|\mid e^{-2 A t} w\right\|_{\beta}} .
$$

Proof: The proof of the corollary follows immediately from Lemma 3 and from the elementary fact that if $\frac{\alpha_{1}}{\beta_{1}} \geq \frac{\beta_{1}}{\gamma_{1}}$ and $\frac{\alpha_{2}}{\beta_{2}} \geq \frac{\beta_{2}}{\gamma_{2}}$ for some positive $\alpha_{i}, \beta_{i}, \gamma_{i}, i=1,2$, then $\frac{\alpha_{1}+\alpha_{2}}{\beta_{1}+\beta_{2}} \geq \frac{\beta_{1}+\beta_{2}}{\gamma_{1}+\gamma_{2}}$.

Throughout the proof of Theorem $1 c$ denotes the generic constant which can change from line to line.
Proof of Theorem 1: Let the assumptions of Theorem 1 be fulfilled. We will use the method from [5]. We denote

$$
H=\max _{t \in\left[T_{0}+2, \infty\right)}\| \| w(t)\| \|_{\beta}
$$

It follows from (6) that $H<\infty$. Since $\left\|A^{\beta} w(t)\right\| \neq 0$ for all $t \in\left[T_{0}+2, \infty\right)$, there exist $C_{0}^{\prime}>1$ and $\delta_{0}^{\prime} \in(0,1)$ such that

$$
\begin{equation*}
\frac{\|\mid w(t)\| \|_{\beta}}{\|\mid w(t+\delta)\| \|_{\beta}} \leq C_{0}^{\prime}, \forall t \in\left[T_{0}+2, T_{0}+4\right], \forall \delta \in\left(0, \delta_{0}^{\prime}\right] \tag{12}
\end{equation*}
$$

We set now $D_{0}=6 C_{0}^{\prime}$ and let $\delta_{0} \in\left(0, \delta_{0}^{\prime}\right]$ be such a number that

$$
\begin{equation*}
4 H c\left(D_{0} e^{\frac{5 D_{0}}{2\left(D_{0}-1\right)}}\right)^{3}\left(\frac{\delta_{0}^{1-\beta}}{1-\beta}+\delta_{0}\right) \leq 1 \tag{13}
\end{equation*}
$$

We will prove now the following proposition:
Proposition P: Let $t>T_{0}+4, \delta \in\left(0, \delta_{0}\right]$. Let further

$$
\begin{equation*}
\frac{\|\|w(t)\|\|_{\beta}}{\|w(t+\delta)\| \|_{\beta}}=C \in\left(D_{0}, D_{0} e^{\frac{5 D_{0}}{2\left(D_{0}-1\right)}}\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\|w(t)\|\|_{\beta} \geq\|w(s)\| \|_{\beta}, \forall s \in[t, t+\delta] \tag{15}
\end{equation*}
$$

Then there exists $t^{*} \in[t-\delta, t)$ such that

$$
\begin{equation*}
\frac{\left\|\mid w\left(t^{*}\right)\right\| \|_{\beta}}{\left\|\left|\mid w(t)\| \|_{\beta}\right.\right.} \geq \frac{\|\mid w(t)\| \|_{\beta}}{\||w(t+\delta)|\|_{\beta}} \frac{\left(1-\frac{\|\mid w(t)\|_{\beta}}{2 H}\right)^{2}}{\left(1+\frac{\|\mid w(t)\| \|_{\beta}}{2 H}\right)} \tag{16}
\end{equation*}
$$

Proof of Proposition P: Let (14) and (15) be fulfilled. We can suppose that

$$
\begin{equation*}
\max _{s \in[t-\delta, t]}\left|\left\|w (s) \left|\left\|_{\beta}<C \mid\right\| w(t) \|_{\beta}\right.\right.\right. \tag{17}
\end{equation*}
$$

because otherwise (16) would be satisfied immediately. We begin with the integral representation of w :

$$
\begin{equation*}
w(t+\delta)=e^{-A \delta} w(t)+\int_{0}^{\delta} e^{-A(\delta-s)} B(w(t+s), w(t+s)) d s \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
w(t)=e^{-A \delta} w(t-\delta)+\int_{0}^{\delta} e^{-A(\delta-s)} B(w(t-\delta+s), w(t-\delta+s)) d s \tag{19}
\end{equation*}
$$

Applying gradually (7), (8) and (17) we obtain that

$$
\begin{aligned}
& \left\|w(t)-e^{-A \delta} w(t-\delta)\right\|_{\beta} \leq \\
& \int_{0}^{\delta} c\left((\delta-s)^{-\beta}+1\right) \| B(w(t-\delta+s), w(t-\delta+s) \| d s \leq \\
& \int_{0}^{\delta} c\left((\delta-s)^{-\beta}+1\right)\left\|A^{1 / 2} w(t-\delta+s)\right\|\| \| w(t-\delta+s) \|_{\beta} d s= \\
& \|\|w(t)\|\|_{\beta} \int_{0}^{\delta} c\left((\delta-s)^{-\beta}+1\right) \frac{\left\|A^{1 / 2} w(t-\delta+s)\right\|}{\|w(t-\delta+s) \mid\| \|_{\beta}} \times \\
& \left.\frac{\|w(t-\delta+s)\| \|_{\beta}}{\|\|w(t)\|\|_{\beta}}\|w(t-\delta+s)\|\left\|_{\beta} d s \leq\right\| \right\rvert\,\|(t)\|_{\beta}^{2} c C^{2} \int_{0}^{\delta}\left((\delta-s)^{-\beta}+1\right) d s
\end{aligned}
$$

So we can get from (13) and (14) that

$$
\begin{align*}
& \left\|\left|w(t)-e^{-A \delta} w(t-\delta)\right|\right\|_{\beta} \leq\|\mid w(t)\| \|_{\beta}\left[2 H c C^{2}\left(\frac{\delta_{0}^{1-\beta}}{1-\beta}+\delta_{0}\right)\right] \frac{\| \| w(t)\| \|_{\beta}}{2 H} \leq \\
& \|\mid w(t)\| \|_{\beta} \frac{\| \| w(t)\| \|_{\beta}}{2 H} \tag{20}
\end{align*}
$$

and also

$$
\begin{align*}
& \left\|\left|\left|w(t)-e^{-A \delta} w(t-\delta)\right|\left\|_{\beta} \leq\right\|\right| w(t+\delta) \mid\right\|_{\beta}\left[4 H c C^{3}\left(\frac{\delta_{0}^{1-\beta}}{1-\beta}+\delta_{0}\right)\right] \times \\
& \frac{\|\|w(t)\|\|_{\beta}}{4 H} \leq\| \| w(t+\delta)\| \|_{\beta} \frac{\|\mid w(t)\| \|_{\beta}}{4 H} \tag{21}
\end{align*}
$$

(21) now gives immediately that

$$
\begin{equation*}
\left\|\left\|e^{-A \delta} w(t)-e^{-2 A \delta} w(t-\delta)\right\|_{\beta} \leq\right\|\|w(t+\delta) \mid\|_{\beta} \frac{\||w(t)|\|_{\beta}}{4 H} \tag{22}
\end{equation*}
$$

It follows from (18), (7), (8), (14), (15) and (13) that

$$
\begin{align*}
& \left\|w(t+\delta)-e^{-A \delta} w(t)\right\| \|_{\beta} \leq \\
& \int_{0}^{\delta}\left(c(\delta-s)^{-\beta}+1\right)\left\|A^{1 / 2} w(t+s)\right\|\|w(t+s)\| \|_{\beta} d s= \\
& \|\|w(t+\delta)\|\|_{\beta} \int_{0}^{\delta}\left(c(\delta-s)^{-\beta}+1\right) \frac{\left\|A^{1 / 2} w(t+s)\right\|}{\| \| w(t+s)\| \|_{\beta}} \frac{\| \| w(t+s)\| \|_{\beta}}{\| \| w(t+\delta)\| \|_{\beta}} \times \\
& \|\|w(t+s)\|\|_{\beta} d s \leq\| \| w(t+\delta)\| \|_{\beta}\| \| w(t)\| \|_{\beta} c C \int_{0}^{\delta}\left((\delta-s)^{-\beta}+1\right) d s= \\
& \|w(t+\delta)\|\left\|_{\beta}\left[4 H c C\left(\frac{\delta_{0}^{1-\beta}}{1-\beta}+\delta_{0}\right)\right] \frac{\|w(t) \mid\| \|_{\beta}}{4 H} \leq\right\|\|w(t+\delta)\| \|_{\beta} \frac{\|w(t)\| \|_{\beta}}{4 H} \tag{23}
\end{align*}
$$

(22) and (23) provide the estimate

$$
\begin{align*}
& \left\|\left\|e^{-2 A \delta} w(t-\delta)-w(t+\delta)\right\|\right\|_{\beta} \leq\| \| e^{-2 A \delta} w(t-\delta)-e^{-A \delta} w(t) \|_{\beta}+ \\
& \left\|\left\|e^{-A \delta} w(t)-w(t+\delta)\right\|\right\|_{\beta} \leq\| \| w(t+\delta)\| \|_{\beta} \frac{\|w(t)\| \|_{\beta}}{2 H} \tag{24}
\end{align*}
$$

It follows now from Corollary 4 and (20) and (24) that

$$
\|\|w(t-\delta)\|\|_{\beta} \geq \frac{\left\|\mid e^{-A \delta} w(t-\delta)\right\| \|_{\beta}^{2}}{\left\|\mid e^{-2 A \delta} w(t-\delta)\right\| \|_{\beta}} \geq \frac{\| \| w(t)\| \|_{\beta}^{2}\left(1-\frac{\|w(t)\| \|_{\beta}}{2 H}\right)^{2}}{\|\mid w(t+\delta)\| \|_{\beta}\left(1+\frac{\|w(t)\|_{\beta}}{2 H}\right)}
$$

If we put $t^{*}=t-\delta,(16)$ is proved. The proof of Proposition P is finished and we can continue in the proof of Theorem 1.

Let us fix $t \in\left[T_{0}+2, \infty\right), \delta \in\left(0, \delta_{0}\right]$ and suppose that

$$
\begin{gather*}
\|\mid w(t)\| \|_{\beta}>H / D_{0} \text { and } \tag{25}\\
\frac{\|\|w(t)\|\|_{\beta}}{\||w(t+\delta)|\|_{\beta}} \geq D_{0} \frac{1+1 / 2}{(1-1 / 2)^{2}}=6 D_{0} \tag{26}
\end{gather*}
$$

Since $D_{0}>C_{0}^{\prime}$ and $\delta_{0} \leq \delta_{0}^{\prime}$, it follows from (12) and (26) that $t>T_{0}+4$. We can also suppose without loss of generality that

$$
\||w(t)|\|_{\beta}=\max _{s \in[t, t+\delta]} \mid\|w(s)\| \|_{\beta}
$$

and (by possible decreasing of δ)

$$
\frac{\|\mid w(t)\| \|_{\beta}}{\|w(t+\delta)\|_{\beta}}=6 D_{0}
$$

Let us notice that $6 D_{0}<D_{0} e^{\frac{5 D_{0}}{2\left(D_{0}-1\right)}}\left(D_{0}>1\right)$ and the conditions (14) and (15) are satisfied. By Proposition P there exists $t^{*} \in[t-\delta, t)$ so that

$$
\frac{\left\|\left\|w\left(t^{*}\right)\right\|_{\beta}\right.}{\|\mid\|(t)\left\|\|_{\beta}\right.} \geq \frac{\|\mid w(t)\| \|_{\beta}}{\|w(t+\delta)\| \|_{\beta}} \frac{\left(1-\frac{\|w(t)\|_{\beta}}{2 H}\right)^{2}}{\left(1+\frac{\|w(t)\| \|_{\beta}}{2 H}\right)} \geq 6 D_{0} \frac{(1-1 / 2)^{2}}{1+1 / 2}=D_{0}
$$

Thus, by (25), $\left\|\left\|w\left(t^{*}\right)\right\|_{\beta} \geq D_{0}\right\|\|w(t) \mid\|_{\beta}>D_{0} H / D_{0}=H$ and it is the contradiction with the definition of H. Let $D_{1}=6 D_{0}$. We proved
Proposition $P_{1}:$ Let $t \in\left[T_{0}+2, \infty\right), \delta \in\left(0, \delta_{0}\right]$ and $\|\mid w(t)\| \|_{\beta}>H / D_{0}$. Then

$$
\frac{\|\mid w(t)\| \|_{\beta}}{\|w(t+\delta)\| \|_{\beta}}<D_{1}
$$

We define now

$$
\begin{equation*}
D_{n}=D_{n-1} \frac{1+\frac{1}{2 D_{0} D_{1} \ldots D_{n-2}}}{\left(1-\frac{1}{2 D_{0} D_{1} \ldots D_{n-2}}\right)^{2}}, \forall n \in N, n \geq 2 \tag{27}
\end{equation*}
$$

We have

$$
\begin{gather*}
6<D_{0}<D_{1}<\ldots<D_{n-1}<D_{n}, \forall n \in N, \tag{28}\\
D_{n}=6 D_{0} \prod_{j=0}^{n-2} \frac{1+\frac{1}{2 D_{0} D_{1} \ldots D_{j}}}{\left(1-\frac{1}{2 D_{0} D_{1} \ldots D_{j}}\right)^{2}} \leq D_{0} \prod_{j=0}^{n-1} \frac{1+\frac{1}{2 D_{0}^{j}}}{\left(1-\frac{1}{2 D_{0}^{j}}\right)^{2}}, \forall n \geq 2
\end{gather*}
$$

and

$$
\ln D_{n} \leq \ln D_{0}+\sum_{j=0}^{n-1} \ln \left(1+\frac{1}{2 D_{0}^{j}}\right)-2 \ln \left(1-\frac{1}{2 D_{0}^{j}}\right), \forall n \geq 1
$$

It follows from the elementary properties of the function $x \rightarrow \ln (1+x)$ that

$$
\ln D_{n}<\ln D_{0}+\sum_{j=0}^{n-1}\left(\frac{1}{2 D_{0}^{j}}+4 \frac{1}{2 D_{0}^{j}}\right)<\ln D_{0}+\frac{5 D_{0}}{2\left(D_{0}-1\right)}
$$

and

$$
\begin{equation*}
D_{n}<D_{0} e^{\frac{5 D_{0}}{2\left(D_{0}-1\right)}}, \forall n \in N \tag{29}
\end{equation*}
$$

We will prove now that for every $n \in N$ the following proposition is valid:
Proposition P_{n} : Let $t \in\left[T_{0}+2, \infty\right), \delta \in\left(0, \delta_{0}\right]$ and

$$
\|\mid w(t)\| \|_{\beta}>\frac{H}{D_{0} D_{1} \ldots D_{n-1}} .
$$

Then

$$
\frac{\|\|w(t)\|\|_{\beta}}{\||w(t+\delta)|\|_{\beta}}<D_{n}
$$

We will use the mathematical induction. Proposition P_{1} has already been proved. Let us suppose that P_{n} holds for some $n \in N$ and we will prove the validity of P_{n+1}. Thus, let $t \in\left[T_{0}+2, \infty\right), \delta \in\left(0, \delta_{0}\right]$ and $\|\mid w(t)\|_{\beta}>$ $H / D_{0} D_{1} \ldots D_{n}$. We can suppose that

$$
\begin{equation*}
\|\mid w(t)\| \|_{\beta} \leq H / D_{0} D_{1} \ldots D_{n-1} \tag{30}
\end{equation*}
$$

since otherwise we would apply Proposition P_{n}, get $\left\|\left|w(t)\left\|\left\|_{\beta} /\right\||w(t+\delta)|\right\|_{\beta}<D_{n}<D_{n+1}\right.\right.$ and Proposition P_{n+1} would be proved. We suppose by contradiction that

$$
\begin{equation*}
\frac{\|\mid w(t)\| \|_{\beta}}{\|w(t+\delta)\| \|_{\beta}} \geq D_{n+1} \tag{31}
\end{equation*}
$$

It follows then from (12) and (28) that $t>T_{0}+4$. We can suppose without loss of generality that

$$
\begin{equation*}
\|\|w(t)\|\|_{\beta} \geq\| \| w(s)\| \|_{\beta}, \forall s \in[t, t+\delta] \tag{32}
\end{equation*}
$$

and also

$$
\begin{equation*}
\frac{\|\mid w(t)\| \|_{\beta}}{\|w(t+\delta)\| \|_{\beta}}=D_{n+1} \tag{33}
\end{equation*}
$$

Due to (28), (29), (32) and (33) we see that (14) and (15) are satisfied. Therefore, Proposition P, (33), (30) and (27) yield that there exists $t^{*} \in[t-\delta, t)$ so that

$$
\begin{equation*}
\frac{\left\|\mid w\left(t^{*}\right)\right\|_{\beta}}{\|\mid\| w(t)\left\|\|_{\beta}\right.} \geq \frac{\| \| w(t) \|_{\beta}}{\| \| w(t+\delta)\| \|_{\beta}} \frac{\left(1-\frac{\|w(t)\| \|_{\beta}}{2 H}\right)^{2}}{\left(1+\frac{\|w(t)\| \|_{\beta}}{2 H}\right)} \geq D_{n+1} \frac{\left(1-\frac{1}{2 D_{0} D_{1} \ldots D_{n-1}}\right)^{2}}{\left(1+\frac{1}{2 D_{0} D_{1} \ldots D_{n-1}}\right)}=D_{n} \tag{34}
\end{equation*}
$$

If we use the assumptions of Proposition P_{n+1} we obtain that

$$
\left\|\left|w\left(t^{*}\right)\right|\right\|_{\beta} \geq D_{n}\|\mid w(t)\| \|_{\beta}>D_{n} \frac{H}{D_{0} D_{1} \ldots D_{n}}=\frac{H}{D_{0} D_{1} \ldots D_{n-1}}
$$

and according to Proposition P_{n} we get that

$$
\frac{\left\|w\left(t^{*}\right)\right\|_{\beta}}{\|\mid w(t)\| \|_{\beta}}<D_{n}
$$

which is the contradiction to (34). Therefore, (31) does not hold, in fact

$$
\frac{\|\|w(t)\|\|_{\beta}}{\|w(t+\delta)\| \|_{\beta}}<D_{n+1}
$$

and Proposition P_{n+1} is proved. We proved that Proposition P_{n} holds for every $n \in N$.
We now finish the proof of Theorem 1. Let us fix $t \in\left[T_{0}+2, \infty\right)$ and $\delta \in\left(0, \delta_{0}\right]$. Then there exists $n \in N$ so that $\left|\|w(t) \mid\| \|_{\beta}>\frac{H}{D_{0} D_{1} \ldots D_{n-1}}\right.$. By Proposition P_{n} and by (29) we get that

$$
\frac{\|\mid w(t)\| \|_{\beta}}{\|w(t+\delta)\|_{\beta}}<D_{n}<D_{0} e^{\frac{5 D_{0}}{2\left(D_{0}-1\right)}}
$$

Setting $C_{0}=D_{0} e^{\frac{5 D_{0}}{2\left(D_{0}-1\right)}}$ the proof of Theorem 1 is complete.
Acknowledgements. Financial support of the Ministry of Education of the Czech Republic of the project MSM 6840770003 is gratefully acknowledged.

References:

[1] G.P. Galdi, An Introduction to the Navier-Stokes Initial-Boundary Value Problem. Fundamental Directions in Mathematical Fluid Mechanics, editors G.P. Galdi, J. Heywood and R. Rannacher, series "Advances in Mathematical Fluid Mechanics", Birkhauser-Verlag, Basel 2000, 1-98.
[2] Y. Giga and H. Sohr, Abstract L^{p} estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains, Journal of Functional Analysis 102 (1991), 72-94.
[3] B. Scarpellini, Fast decaying solutions of the Navier-Stokes equation and asymptotic properties, J. Math. Fluid Mech. 6 (2004), 103-120.
[4] M.E.Schonbek and M. Wiegner, On the decay of higher-order norms of the solutions of the Navier-Stokes equations, Proceedings of the Royal Society of Edinburgh 126A (1996), 677-685.
[5] Z. Skalák, On asymptotic dynamics of solutions of the homogeneous Navier-Stokes equations, to appear in Nonlinear Analysis.
[6] H. Sohr, The Navier-Stokes Equations, An Elementary Functional Analytic Approach. Birkhäuser Verlag, Basel, Boston, Berlin 2001.
[7] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland Publishing Company, Amsterodam, New York, Oxford 1979.
[8] M. Wiegner, Decay results for weak solutions of the Navier-Stokes equations in \mathbf{R}^{n}, J. London Math. Soc.(2) 35 (1987), 303-313.

[^0]: ${ }^{*}$ Department of Mathematics, Faculty of Civil Engineering, Czech Technical University, Thákurova 7, 16629 Prague 6, Czech Republic, e-mail: skalak@mat.fsv.cvut.cz

