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DYNAMICAL SYSTEMS
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RESONANT DECOMPOSITION AND THE I-METHOD FOR THE
TWO-DIMENSIONAL ZAKHAROV SYSTEM

NoBU KISHIMOTO

Department of Mathematics, Kyoto University
Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8502, Japan

(Communicated by Joachim Krieger)

ABSTRACT. The initial value problem of the Zakharov system on a two-dimen-
sional torus with general period is considered in this paper. We apply the
I-method with some ‘resonant decomposition’ to show global well-posedness
results for small-in-L? initial data belonging to some spaces weaker than the
energy class. We also consider an application of our ideas to the initial value
problem on R? and give an improvement of the best known result by Pecher
(2012).

1. Introduction. We consider the initial value problem of the Zakharov system:

10u + Au = nu, u: [-T,T) x Z = C,
92n — An = A(|ul|?), n:|[-T,T| x Z =R, (1)
(u,n,@tn)ftzo = (ug,ng,n1) € H* x H" x |V|H".

Here, Z = R? or T2 := R?/(2n11Z) x (2n7y27Z) (two-dimensional torus of gen-
eral period v = (71,72) € R2). |V|H" denotes the space of all functions f such
that |[V|~1f € H". The Zakharov system was introduced in [16] for a model of
the Langmuir turbulence in unmagnetized ionized plasma; u represents the slowly
varying envelope of a rapidly oscillating electric field, and n is the deviation of ion
density from its mean value.

(1) is described as a Hamiltonian PDE with the Hamiltonian given by

H(u,n)(t) = [ Vu®)|[ + 5(n@) 22 + 1917 0n0)]22)

+/Zn(t,x)|u(t,a:)| dx.

Local well-posedness in the energy space H! x L? x |V|L? was obtained in [4] for
Z =R? and in [11] for Z = 'H‘%. In particular, using conservation of the mass and
the Hamiltonian and the sharp Gagliardo-Nirenberg inequality

2
||UJH24(Z) < m”“”i?(Z)Hv“H;(z) + CH“H;(T?Y)
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(the last term in the right hand side is required only in the periodic case; see [15, 6]),
we have the a priori control of the energy norm of solutions in the energy class if
luollz < [|Qll2(r2), where @ is the ground state of the cubic NLS on R?. More
precisely, if 7 :=1 — [lug||32/]|Q||32 (r2) > 0, then we have

1—7)/2 4

| [Ou@P] < (0] 2 w0, < IOz + 5=y Ol

<1—77/2H
2

Va7 + 0Hu<t)HLz~

[ m

Therefore, we have the following a priori estimate

n/2 n 1o 2
1—7]/2Hv HL2 7“ ||L2 +§H‘V‘ latn(t)Hm
< H(u,n)(t) + C||u(t)||i2 = H(u,n)(0) + C’Huoui2

as long as the solution (u(t),n(t)) exists in the energy class. Consequently, (1) is
globally well-posed for initial data in the energy space with ||uo||z2 < [|Q|lL2(r2)-
In fact, the solution also exists globally for initial data in H' x L? x H~! with
luollz> < |QllL2(r2y (see [10] for Z = R? and [12] for Z = T?).

The present article addresses the global well-posedness of (1) for some initial data
without finite energy. The proof will rely on the I-method, which was originally
introduced by Colliander, Keel, Staffilani, Takaoka, and Tao to deal with nonlinear
Schrodinger equations and has been applied to a wide variety of nonlinear dispersive
equations. For the details of the I-method, we refer to [7, 14, 8] and references
therein.

The I-method for the Zakharov system was initiated by Fang, Pecher, and Zhong
[9] for the R? case, who established the global well-posedness in H*® x L% x |V|L?
with 1 > s > %. Their estimate of the modified energy was mainly based on the
Strichartz estimate for the Schrodinger equation and its bilinear refinement, as well
as some crude estimates with the Holder inequality and the Sobolev embedding.
It is worth noting that they did not use the scaling argument in the I-method;
thus it was quite important for global well-posedness under the minimal regularity
assumptions to obtain the best estimate for the lower bound of local existence time
in terms of the size of initial data.

Our principal aim is to apply the I-method in the periodic case Z = T%, where
the local well-posedness of (1) below the energy space is known for % <s<1l,r=0
([11]). However, it turns out not to be trivial at all to adjust their argument to the
periodic setting. In fact, since the dispersive effect is limited on torus, the same
estimate as for R? cannot be expected in general. For example, the L* Strichartz
estimate for the Schrédinger equation on ']I‘,QY cannot hold without some loss of
derivative (see [2, 5]). To obtain the best decay order in the almost conservation
law, we will use the sharp trilinear estimates established in [11] which control various
interactions between two Schrodinger solutions and a wave solution.

We remark that, in [9], the trilinear terms have the biggest contribution in the
increment of the modified energy and force them to assume s > %. To improve
further, we shall introduce a new modified energy based on the concept of ‘resonant
decomposition’ (see [8], for instance). The trilinear terms then become harmless; in
fact, we find that these terms are acceptable for the wider regularity range s > %
However, some portion of the quadrilinear terms in the modified energy increment
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still has a large contribution, which will require the regularity s > % even for the
case of R? if we estimate it in the same manner as [9]. To control these quadrilinear
terms, we carry out a more refined analysis with the Strichartz estimate for the
wave equation. At the end, we will push down the threshold to s > %.

Theorem 1.1. Let 1 > s > 19—4 and r = 0. Then, for any spatial period v, (1) on
T? is globally well-posed for initial data with luollr2(r2)y < [|QllL2(r2). Moreover,
the global solutions satisfy

s 4(1—s)

s (le®)ll . + @] 2 + 1917 0n(0)] 2) < OO+ Tyt T=s b

for any T > 0, where the constant C > 0 depends on s, 7y, the implicit constant in
the exponent, and the size of initial data.

Remark 1. (i) The period v has nothing to do with the regularity range in the
above theorem, as in the local theory [11].

(ii) In contrast to the nonperiodic problem, we know ([11]) that the data-to-
solution map for (1) on T2 cannot be smooth (nor C?) for r < 0. That is why
we restrict our attention to the case r = 0 in the above theorem. Compare this to
Theorem 1.2 below.

Of course, these approaches are also effective for the R? case. Recently, Pecher
[13] extended the previous result [9] for global well-posedness on R? to a wider
regularity range, in H® x H" x |V|H" with

r<0, s<r+1, s(r+32)>1

The new ingredient was the global well-posedness with regularity for the wave data
below L2. Note that even local well-posedness was not known in these regularities
before. He first established the local well-posedness of (1) with the operator I,
and then applied the argument in [9] to obtain an almost conservation law of the
modified energy. Even for the case r = 0 he could improve the previous threshold
5> % to s > % by refining the analysis of the worst trilinear terms in the increment
of the modified energy. However, since he used the same modified energy as [9], the
trilinear terms still require the regularity s > % Therefore, it is strongly expected
that his result, combined with our approaches, can be improved further. We carry
out this and obtain the following result.

Theorem 1.2. Let s <1, 7 <0 be such thatr > s—1 and s > 1941381. Then, (1)

on R? is globally well-posed for initial data with ||uo||2r2) < ||Q| L2(r2). Moreover,
the global solutions satisfy

sup_ ([[u()]| . + 00| 5o + [1V17*2em(0)] . )

—T<t<T

< C(1 4+ T)P> Gt marsne—wram
for any T > 0, where the constant C' > 0 depends on s, r, the implicit constant in
the exponent, and the size of initial data.

Remark 2. (i) If we consider the particular case r = 0, then the above result shows
the global well-posedness for 1 > s > 19—4 just as the periodic case.
(ii) See Figure 1 for the range of regularity in the theorem. The previous result

of Pecher [13] is indicated by [\\\], and the optimal corner is A = (1(V17 —
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1), 3 (V17 = 5)) ~ (0.781,-0.219). We extend it to the range N\, and the

optimal corner is B = (15(v/201 — 3), £ (v/201 — 19)) ~ (0.699, —0.301).

N[ —=

FicURE 1. Range of regularity for global well-posedness in the
nonperiodic case.

The plan of this article is as follows. In Section 2, we recall some definitions and
multilinear estimates given in the previous local results on R? [1] and on T2 [11].
In Section 3, we construct our modified energy. A proof of the almost conservation
law for the periodic case and Theorem 1.1 will be given in Section 4. We indicate in
Section 5 how to apply our ideas to the nonperiodic case, obtaining Theorem 1.2. In
Appendix A we give an elementary proof of the Strichartz estimate for the periodic
wave equation, which is used in Section 4.

2. Function spaces and preliminary lemmas. First of all, we need to define
dyadic decomposition operators and the X*°-type norms. We will use the same
notations as used in [11].

Definition 2.1 (Littlewood-Paley decomposition). Let n € C°°(R) be an even
function with the properties

n=1 on [_171]7 supp 1 C (_2a2)a 0<n<L
Define a partition of unity on R, ny for dyadic N > 1, by

2r

me=mn, () =alg) —n5), N=2
Define the frequency localization operator Py on functions f : Z — C by

Fo(Pno)(€) = nn(1EN)S(E),

where F,(-) =~ denotes the spatial Fourier transform on Z = R* or T2. We also
use the notation Py to denote the operator on functions in (¢, z),

Fu(Pyu)(t, ) := nn ([€])u(t, §).
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Also, define the operators Qf, szi on spacetime functions by

‘Ft,I(Qiu)(T7 5) = nL(T + |§|2)ﬂ(7—7 5)’ }—t,w(QzViw)(Ta €) = nL(T + If'){ﬁ(ﬂ §)

for dyadic numbers L > 1, where F; ,(-) = ~den0tes the spacetime Fourier transform
on R x Z. We will write P;\g, L= PNQL, N 7= PNQL for brevity. Finally, we
define several dyadic frequency regions:

Pr={(nolEl$2}, Pyv={(n¢|F<KI<2N}, N=>2
Si={nO|lr+lefl S 2k Su={o|h<lr+iePl<2}, L22
WE = {(no)|Ir £l s2}, WE={(rno)|L<Irtlgl<2}, L>2

In what follows, capital letters N and L with various subscripts are used to de-

note dyadic numbers > 1. We will always use IV for the frequency and L for the
modulation. It is convenient to introduce the notations

Nij.. =max{N;,N;,... }, N, :=min{N;,N;,...}.

ij...

The following will be used for the specific indices;
Nmax = NOIQ, Nmin = ﬂ0127 Lmax = Z012; Lmin = L0127
and we denote by Lyeq the median of Ly, L1, Lo.

Deﬁnition 2.2 (Function spaces X*"P). For s,b € R and 1 < p < 0o, define the
spaces X g7 and X} p by the completion of Schwartz functions on R x Z, Z = R?
or ']I‘,Qy, with respect to the following norms

lell g := NINLONBR Lull 2 gyl s,

H“Hx;&? = HHNSLbHPWiuHL2 (sz)HeiHeﬁv‘
For T > 0, define the restricted space X5"P(T) (x = S or W4) by the restrictions
of distributions in X5*? to (=T, T) x Z, with the norm

||uHXj,b,p(T) = inf{ HUHXj,b,p ‘ U e X,f’b’p is an extension of u to R x Z }

With ny :=n +i|V|710;n and nyo := ng +i|V|~tny, (1) is transformed into

i+ Au = £ (ng +n_)u, u: [-T,T) x Z — C,
i0my — |Viny = [V|(|ul|?), ny : [-T,T) x Z — C, (2)
(u,ny)|,_y = (uo,ny0) € H* x H',

where n_ := fy, which conserves (formally) the L? norm of u(t) and

H(u,n)(0) = [ Vu(t)|[5 + 5 lne )] + 5 /Z (ny (t,2) + - (t,2)|u(t, 2)*da,

although H(u,n,) cannot be in general defined for (u(t),ny(t)) € H® x H" with
s <1lorr < 0. We can recover (1) from (2) by putting n := Rny since n is real
valued.

In [1, 11], the local well-posedness of (a slightly different version of) (2) was
established by means of an iteration argument in the spaces X ¢ 2! (TYx X ;V%l(T)
For later use we recall some of the estimates used for the local theory.
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The next lemma contains standard linear estimates and equally holds for R? and
for T,zy. Define the Duhamel operators

t t
IsF(t) := —i/ AR at! | Iw,.G(t) == Z/ eF=NIGHY at,
0

0

and a bump function s(t) := 1 (t/d), where ¢ € C§°(R) is a function with the
same property as 7 given in Definition 2.1.

Lemma 2.3 ([11], Lemma 4.1). Let s € R. For any 0 <38 <1 and 0 <b < 1, the
following estimates hold. The implicit constants do not depend on s, 0.

[se" S| oiga S uollyrer Ibse™ o] oya S ol 3)
S Wy
[sullgzon S50l egar lswllygon SO3 0wl yar (@)
K Wi
052 Fl e S8 96T Gl g S8 Ggnre 6)

In the periodic case, the local well-posedness for % < s <1, r =0 follows from

the next bilinear estimates of nonlinearities, together with the above estimate (3)
of linear solutions.

Lemma 2.4 ([11], Proposition 4.3). Let 3 < s <1 and u,v,w be smooth functions
on R x ’]I?/. Then, we have

[ Zs(uw)|| .yn  +[|Zsd)|| .. S 67 |ul ety
s (8)

:
_ 1_
y|:rW+<|V|<uv>>HX%1(6)562 el o 5.0 (5)|| et @

X X

We easily see that Lemma 2.4 is also verified for functions on R x R? by the
same proof. In fact, similar bilinear estimates are valid at the lower regularity
s=0,r= f% in the nonperiodic case. Here, we only state the estimate for the
Schrodinger part, which will be used in Section 5

Lemma 2.5 ([1], (5.11)). For smooth functions u,w on R x R?, we have

<6t ul 1

1Zs ()| o.g1 ) Bl =g a (8)

H M\»—l

We will also need various estimates of functions restricted in frequency over
dyadic regions Py, Sr, and VVLi The next one is a periodic analog of a bilinear
refinement of the linear L*-Strichartz estimate in the R? case as well as similar
estimates for the Schrédinger-wave interactions.

Lemma 2.6 ([11], Lemma 2.5 with Remark 2.8). Let N;,L; > 1 (j = 0,1,2) be
dyadic numbers.
(i) Suppose that ui,us € L*(R x T'Qv) satisfy

supp u1 C Py, NSy, supp uz C Py, NSp,.

We also assume No > 2. Then we have

1 /L 31
Pl S L (52 41) Wl el
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(ii) Suppose that u,w € L*(R x T,Qy) satisfy
supp w C Py, N WLiO, supp u C Py, NSy, .

Then we have
_ <73 Lo 3 3
oy + fll 5 2 (22 1) 8k [l

In the nonperiodic case, similar estimates are true without the ‘+1’ factor on the
right hand side, which clearly shows the restricted smoothing effect in the periodic
case. We will use the following for the R? case as a refinement of Lemma 2.6 (ii).

Lemma 2.7 ([1], Proposition 4.3 (ii)). Let N;,L; > 1 (j = 0,1) be dyadic numbers.
Suppose that u,w € L*(R x R?) satisfy

supp w C Py, N WLiO, supp u C Py, NSi,-

Then we have
_ 1 1/Ng\2
oy + ol < 2d2E (320) ol

Here and in the sequel we write ¢ = (7,£). When Z = ']T% we use k instead of &
as the discrete Fourier variable with respect to x and write

1
/cf(o = /GRW S flrk),  Z2i=r'Zxg 'L

kez2

Then, the bilinear estimates (6) and (7) (and corresponding estimates for the non-
periodic functions) are, after applying (5), dyadic decompositions and a duality
argument, reduced to trilinear estimates of

—~—

I[P @[P a] @ [P e

with dyadic numbers Nj, L; > 1. Therefore, we evaluate the integral

// f(C0)g1(¢1)g2(C2)
Co=C1—C2

for real-valued nonnegative functions f, g1, go with the support properties
supp f C Pn, ﬂWfO, supp g; C Py, NSz, j=1,2, (9)

under various assumptions on Nj, L;; see Lemmas 2.8-2.12 below. Again, these
lemmas are stated for spatially periodic functions but equally hold for functions
on the whole space (in this case, however, some of them are rougher than known
estimates).

Note that an application of the Cauchy-Schwarz inequality yields a bound with
loss of one derivative;

S| @002 S BN ] ol o
Co=C1—C2 < ¢ ¢

This bound immediately implies the trilinear estimates for the high modulation case
(Lmax = N2..) and the very low wave frequency case (Ng < 1). In particular, loss

max

of one derivative can be recovered (at the cost of L%).
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Lemma 2.8 ([11], Proposition 3.1). Let f,g1,g2 € LZ(R X Z3) be real-valued non-

negative functions satisfying (9). Assume Lmax 2 NI?MX Then, we have

[ @@ $ et N o
0—61 2

Lemma 2.9 ([11], Corollary 3.4). Let f,qg1,92 € Lz (R x Z2) be real-valued nonneg-
ative functions satisfying (9), and assume that No < 1. Then, we have

// T @)n€)02(6) £ (LoLaLa) el sl .

In the high-low interaction case (N7 ¢ N3) we may also assume high modulation
Limax 2 N2, because (9) and the relation (o = (; — (> imply

max?
LmaxN|TOi|k0H+’7—l+|kl| |+’T2+|k2‘ ’ > ||k1‘2 |k2|2 |k0|‘N max*

A refined analysis actually yields the following estimate with gain of % derivative.

Lemma 2.10 ([11], Proposition 3.2). Let f,g1,92 € LZ(R x Z2) be real-valued

nonnegative functions satisfying (9), and assume Ny > Ny or No > Ny. Then, we
have

//< . F(C0)91(C1)92(C2) S L LE e L3 NEN G |12 o1l g2 ] o
0—G01—G(2

For the lower modulation cases (Lmax < N2,,) it turns out that the frequen-
cies (ko, k1, k2) should be confined to a rather small region, so we can still have
the trilinear estimates with no derivative loss. However, the proof is much more
involved.

Lemma 2.11 ([11], Proposition 3.5). Let f,g1,92 € Lg(R x 72) be real-valued
nonnegative functions satisfying (9), and assume that 1 < Nog < N3 ~ Ny <
Liax < NE. Then, we have

3 N
J o H@n@en) S L ()" W sl oo
0=61—62

Lemma 2.12 ([11], Proposition 3.8). Let f,g1,92 € LZ(R x Z2) be real-valued
nonnegative functions with the support properties

supp f C {|k| > 1} ﬂWfo, supp g; C Pn; NSr;, j=1,2.
Assume that 1 < N1 ~ Ny and Ly.x < Ni. Then, we have

J[ . (i) § sl el

Finally, we give a Strichartz-type estimate for the periodic (reduced) wave equa-
tion. It seems that the Strichartz estimates in periodic setting do not follow imme-
diately from that on the whole space, because the finite speed of propagation does
not hold for the reduced wave linear propagator e¥*IV|. An elementary proof of
it will be given in Appendix A. This lemma is also true for spatially nonperiodic
functions.

Lemma 2.13. Let N,L > 1 be dyadic numbers, and suppose that u € L*(R x T?)
satisfies supp u C Py N VVLi Then we have

3 3
lall s, S ZEN*[Jull -
L%,m ~ L%,m
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3. Modified energy and resonant decomposition. In this section we introduce
our almost conservation quantity and prepare some basic lemmas in the I-method,
treating Z = R? and Z = ']I‘% simultaneously.

For s <1, r <0, and N > 1, we define the operator If,N for the Schrodinger
equation and the operator [ :/V ~ for the reduced wave equation as

I~5:N = fg_lml—s,N(f)-’T:x7 IXVZ\J; = ]:g_lm—r,N(g)]:z

S

with a radial function m, y € C*°(R?) (¢ > 0), non-increasing in |¢|, such that

)1 for |¢] < N,
TN T (Vg for ¢ > 2N

Note that IﬁN € B(H®, HY), ITWA*] € B(H", L?), and I&Vﬁ is the identity operator.

Define the modified energy of (u,n4) by
w. 2 1, w 2
H(IS yu, Ly ) (t) = || VIS yu() || + §HIT,1\+r”+(t)HL2

1
+35 / L (n(t,2) +n- (@) 2 yu(t, @) Pde.
Z

w. _ . .
The operators SS yand I ~ only act on u or % and on n4, respectively, so in what

follows we abbreviate as

1
H(Tu, Iny () = [VTu(t)| 7, + 5 [T (0]

+%/Zf(m(t,x)+n_(t,x))|1u(t,x)|2dx.

For an integer p > 2, we write fz to denote
p

/pr(glwuvgp)

= ry 0D [ 63 G = 0)der e d,
R? JR?
for the case Z = R? and
1
J N e e =D DU CHRY'S
p—1
PO (7172) Frvoo k€22
kit tkp=0

for the case Z = T2. Also, we use the notations &;; := & + &;, mq,; := mg,n(&;).
Note that

H(Iu,Iny) :/

P
1 N ~ ~ A
+ 3 M — 5,11 — 52— 30(E1)U(E2) (Mg + 11— ) (€3).
33
If Jluol|z2 < [|QllL2(r2), then |[Tu(t)]|z: < [[u(t)l|z2 = [luolle < IQllz2(r2) and
we have

P ) + 5 [ - (@)

[Tu(®) |2, + | Tns (0)|| 20 ~ [[Tu(®)||2, + H(Tu, Iny ) ().

Hence, we need an almost conservation law for the modified energy, as well as the
local well-posedness with the existence time written in terms of || Tug|| g1 +||In40]| L2
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For better decay of the increment of the modified energy, we introduce another
quantity

)= [ laPmt aa@i) +3 [ mtai@n @

43 [ A (046 L) ) + o (61.8)7-(6).
3

where the multipliers o1 will be defined soon. A direct calculation using (2) shows
that
d ~

aH(u, TL+)

)
=5 [ (laPmisa—lePmt o + i
3

= (60 = &2 + sl o (61, &) )& )U(E)4 ()
b5 L (alm - lePmta -
= (61 = [&2]? = Ial)o— (61, &2) )& i) ()
S A (CRCRARENCN L
+ (0 (19 82) = 0 (61, 629)) - (€0) ) U(E)U(E) (A +7-) ()

-3 /24 |€12] (04 — 0=) (€1, &2)T(&1)u(E2)U(Es)U(Ey).

An initial guess for o1 would be o = 0Z defined by

VA L |§1|2m%—s,l - |§2\2m%7512 + \512|m3r,12 10
04 (513 52) = ) 2 ’ ( )
€11% — |€2]? £ [€12]
which remove all the trilinear terms. Under this definition, however, ¢ have singu-
larities and we will fail to estimate the quadrilinear terms. Here arises an essential
difficulty in applying the I-method to the Zakharov system.
In [9, 13], they did not distinguish oy and o_ and used o4 = ¢ defined as
2,2 2,2
S |E1]*mi_g 1 — |&2*mi_; o
0 (61,62) = : : (11)
’ |€1]? — [&2]?

so that the worst terms including two derivatives would disappear in the trilinear
terms. It is easy to check that o is bounded. However, the remaining trilinear
terms are still much more massive than the quadrilinear terms. In fact, it was ex-
actly these terms that determined the regularity threshold for global well-posedness,
both in [9] (s > 2) and in [13] (s > 2).

We will use both (10) and (11) to obtain a slightly better estimate. It turns
out that when we use ¢ the biggest contribution in the remaining trilinear terms
comes from the frequency region for high-low interactions (|€1| % |£2]), which has
no intersection with the region ||£1]% — |€2]?| ~ [£12], where 0Z become unbounded.
Motivated by this fact, we shall employ the following definition.

01(61,8) = {“ﬂzc(&’&) it [|61]? — |&[?] > 2/612],

12
oS(en6) i |62 — || < 2lersl. (12)
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The above definition can be regarded as a variant of ‘resonant decomposition’ in-
troduced in [8] in the context of two-dimensional cubic NLS, since we consider
resonant and non-resonant frequencies separately to prevent the multipliers from
becoming singular. Observe that 04 (&1, &) = 04(—&1, —&2) = 05(£2,&1), and that
0+(&1,&) = 1 when max{|&1], |62} < N/2. Moreover, we can easily show the
following lemma. In particular, o4 (&1, &) are bounded.

Lemma 3.1. The multipliers o4 (&1,&2) given in (12) obey the following estimates.
2
(i) If [61] > &2, then o (61,6) —m?_, 1| S 12k + .
(i) If |&1] ~ [&2], then o (&1,82)| S 1.

Proof. Tt was shown in [9], Lemma 3.4, that |0°(£1,&2)| < 1 (this is true for any
s < 1). Therefore, we restrict our attention to the case || |* — [&[*| > 2[¢12], where

or =oZ and ||&]? — |&]? £ [&12]| = F[I&G17 — [&[3]- I [&1] > [&], then

2 _ |§2|2(m%73,1 - m%75,2) + |€12‘(m%r,12 - mis,l)
lox(€1,&2) —mi_g,| =

1€1]% — |&2]? £ 12|
< €2]? + [€12] N €% + |&1]
~ e - |&)? ST

which implies (i). On the other hand, it holds that

“51‘2”7‘%75,1 - ‘€2|2m%75,2| + ‘512‘m%r,12
|1€1]% — 1€2]?|
|§12| S 1’
16112 — [€2]?|

which shows (ii). O

|0£(f1a§2)| S

<|o®| +

We next show that the new quantity H(u,ny), which is our almost conserved
quantity, is always close to the (first generation) modified energy H (Iu,In, ).

Proposition 1 (Fixed-time difference). Let 1 > s > %, 0>r> f%. Suppose that
r>1—2s. Then, for any t € R, we have

~ _ 2
|H(Tu, Iny)(t) = H(u,ny ) ()] S N7 Tu(t) || 0 [ Ing-(8)]| -
Proof. From the definition and boundedness of multipliers, we have

’H(Iu,[n+)(t) - ﬁ(u,n+)(t)|
= % /Z [a€)I[u(2)] ‘ (ma—sami—som_rs — o4 (€1, &) N4 (&3)
+ (ml—s,lml—&zm_ng — o (517 52))ﬁ_ (53)’

<3 [ Ltz on ety (6 AENBLEN (4 ()] (6.

3

We may assume that all of @, &, Ny are real-valued and non-negative. Symmetry
allows us to assume |&;| > |&2]. Also, it suffices to consider the case of ny. Then
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the above is bounded by

Ny = N2 1—s No
Y Y @@y ()
N1 2N N2<Ni No<N;

< 1w, Tl [P Tl P s

Nl 1—s N2 1—s NO —r
X Y (@) (@
N12ZN N2<Ni No<Ny 1
X 1P Tl || P Tl || P o -

Since 2(1 — s) — r < 1, the prefactor is exceeded by N‘HNIOT Applying the
Cauchy-Schwarz inequality to each summation we reach the claim. O

4. Global solutions for the periodic case. In this section we consider the pe-
riodic case and prove Theorem 1.1. Since we always assume the wave data to be
in L2, the operator I is only applied to the Schrédinger equation, so we use the
notation m(k) to denote mi_s n (k) for simplicity.

Now we shall establish an almost conservation law for H (u,ny).

Proposition 2 (Almost conservation law). Let 1 > s > 7, r=0,0<6<1, and
let (u,my) be a smooth solution to (2) on (t,x) € [0,6] x ']I‘2 Then, we have

[H (u,n4)(8) = H(u, n4)(0)] sN-Ha%-||Iu\|§(;%,1(5)Hn+||X3é,1 "

£ (N72F 4 Nitgi— 4 No1tsio)

(g g el 2o, + 170 )

14
2
+
Proof. From the definition,

H(u,ny)(6) — H(u,ny)( / — H(u,n)(t)dt

)
2 ~ ~
=5 | L Lz G R lRiofae. k)i ko) (13)
3
X ((1 — oy (ky, b))y ( ks) — (1— o (ky, ko)A (8, k3)) dt
.
1 [ etk ) (4 A k)
4 0 4
% (0 (kra, k) = oy, b)) (8 ) (14)
+ (O'_ (klg,]{iz) —0_ (kl,kgg)) (t k4)) dt
)
- / / Rial (0 — o) (ke Ra)alt, k)t ko)t ks)ii(t, ke) dt. (15)
0 I
Estimate of (13). We may assume max{|k],|k2|} > N; otherwise (13) = 0.

Note that ||k1|? — |kz|?| < 2[k12| implies ||k1| — |k2|| < 2. Therefore, we may assume
|k1] ~ |k2] 2 N. We shall see only the first term in (13), since the second one is
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exactly the complex conjugate of the first one. Thus, we need to estimate
‘ / / L{[[ka[2 a2 <2lhral} (B1s B2) [ R1o
RJ5,
X [t kst k) (1= o (K, ko)) XoTis (1 k) dt

sé bttt Bol () g5 G ()
0—G01—G02

)IEDSED S ot ot

[Pf?il,Llwﬁu] (¢1) [Pjgz,@w&u] (¢2)
Ni~N22N No<SNi Lo,L1, Lz Co=C1=C2

IN

X [P}\};ZTLOXMH] (o)

)

where s := 1| 5. We remark that in the above summation, since |[k1[* — |k2|* —

\ko|| < |kol, either Liax < No or Linax ~ Lmeq holds. Then, from Lemmas 2.8, 2.9,
2.11, and 2.12, this is bounded by

Z Z Z NO (Lmameed)%+Liin

Ni~N22ZN No<Ny Lo, L1, L2

x |‘P]§71,L1 w‘suHLfr ||]Dj‘\5727[12¢5uHL?m ||P1‘\/;:TL0X6n+ HL?T

N Z NlHPNﬂ/’WHX;,%J|‘PN2¢6UHX;%+,1HXWJFHXO,%J + similar terms

Ni~N2>N W+
1 N
S Y w GNPt gl Prvstull g sl o
N1~Ny>N +

+ similar terms  (16)

SN_lHi/hSI“HX;%+J Hw‘SIUHX;%+J ”X6n+"X&%’l + similar terms

L

S 2
SN0l e

—+ =

0,
w.

In the last inequality we have used (4) and

X572 o S 6270 ]| oo

1
0<b<g, (17)

which can be verified similarly to (4).
Estimate of (14). Motivated by the argument in [9], we add

—
7/ o~ Py o~ o~ ~ ~
1 / / U(t, ka)u(t, ko) (e + 7 ) (8 k) (e +7_) (8, ka) - (M35 —m3s) dt =0
0 Jz,
to (14) and consider the estimate of
—
1 —~ = ~ ~
[ Atk k) G+ A k)
0 Jz,
x (04 (kis, ko) — mis — o (kas, k1) + m3s) N (¢, ka) dt,
-
(3 ~ ~ ~ ~
Z/ / u(t, k)u(t, ko) (R +n-)(t, ks)
0o Ju,

X (O'_(klg,k'g) — m;f3 — 0'+(l€23, kl) + m§3)ﬁ_(t,k4) dt.
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It is then sufficient to estimate

’ / / o+ (ki3, kig m13) (t, kq )ﬁ(t, k’g)ﬁi (t, k3)n4 (t, ky) dt
Xy

< / o4 (kg k) — | [5Gy )sa(Co) Koz (Co) o2 (Co)
C1+C2+C3+C4=0

S / o4 (K13, ko) — mis|

N1, N4>1 C1+C2+(3+C4=0

—_~—

X |15 Py u(C1)ps P, (C2) x5 Pyt (G3) X6 Py it (Ga)|

with an arbitrary choice of +. However, since the choice of ny plays no role in the
following, we consider the case ni only, and write

. — — — . ——
up = s Pnyul, W2 = [sPrn,al,  nz = |xsPnyntl,  nai= |xsPnynl

for simplicity. We thus need to estimate

/C+C T 0|J:t(/€137/€2)_m%?;’m(Q)%(@)ﬁg(@)/ﬁZ(@). (18)
N, Na>17 GtCetCatta=

First, we state an estimate which will be frequently used later.

Lemma 4.1. Suppose that u and n satisfy
supp u C Pn,, supp 7 C Py
for some dyadic Ny, N > 1. Then, for any 0 < ¢ < 1, we have

lunll e, S Mlll zegalinll yoy-cx =+ lull  gepsllnllcgon (19)
e

Here, the £ signs are allowed to be chosen as (+,+) or (—,—) only.

Proof. From Lemma 2.6, we have

lanllz | < Woll yoy allnll go.go + llull  3.3sllml] o0

1
°20
Wi

On the other hand, an application of the Holder inequality shows that

Junll ;< S lull ool e -
’ L?:r tae X;’Tl L‘f2’l‘

The required estimate is obtained from an interpolation between them. O

Let us begin to estimate (18). First of all we note that the multiplier o4 (k13, k2)—
m?, vanishes if N, Ny < N. We consider some cases separately.

Case 1. Ny = Ny. In this case we can assume Ny 2 N and bound the multiplier
by 1. Also, we see that either N7 or Ny has to be comparable to the biggest one
among N;’s.



I-METHOD FOR 2D ZAKHAROV SYSTEM 4109
(i) Consider the case N3 2 N. We use (19) twice to have

(185 > Nunsll o [7znall -

Ni,...,N4

N1 1—s N2 1—s 1
< - _c
S Y AR
Ni,...,Ng

(N2l ol e+ NE ] g )
+

(N gl o 8 ] ol )

Since s > %, there remains NY~ N3~ if we choose £ > 0 sufficiently small. Sum-
ming over N;’s and then applying (4) and (17), we obtain a bound of
-2+ —14 51— 2 2
(V-2 N e

1
PARN
T

(ii) Consider the case Ny < N, where we may assume Ny > N; and N is
comparable to the max. We further decompose the integral as

Sul 157u
DID DD DENED DR B AT RS .

N3Z>N N1<N N3,Ny<No L1,...,La>1 i -
x Qr,'n3(()Qp, ma(Ca).

Observe that if (1 +---+ (4 = 0, then
Liosa 2 |(r1 + [k |?) + (72 — [B2]?) + (73 + |ks|) + (4 + |kal)]|

~

= ||k1[* — k2| + |ks| + |k4l| 2 N3.

We begin with the case Lsy = Ligss. Without loss of generality we assume Ls is
the biggest one. We apply the Holder inequality and Lemma 2.6 (ii) to obtain that

3 /C C Q5 m(G)QE, 1 QL maC)Q )
1+ +CG=

Ly,....,L4>1
s Z HQEIUIHL;’;HQE?WHL%’|Q§2“2QK+H4|‘L§I
Ly, La>1
—1+
SLQ,%;NHMHX;%JNQ HT:SHX&%_J
1 /] i

X L224(N7224 + 1) N2 HszuQHL%J HQKWMHL%
No\1-s _ 1
S(F) v vl ol g

_1
(Nl g1+ Il

At the last inequality we have used Zg: < L3*. We perform the summation in N;’s
and use (4) and (17), concluding

(20) § (N2 N6 1l o
W,

1
3
+
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We next treat Lia = Lqa34 > L34, which is actually the worst case. (When L
is the max, however, we can have some better bound than obtained below.) If Lo
is the max, (20) is bounded by

> 2 2 2 ekl Q2w

NyZN N1<N N3,Ns<Ny L1,...,La>1

X ||QZ+TL3||L§’I ||QK;+R4HL?,I'

Now, we use the L* Strichartz estimate for wave (Lemma 2.13) to bound this by

Z Z Z Hul||X;’%a1N271Hu2||Xg,%,1(N3N4)%Hn3||X3[,/%,1Hn4||X0%,1

N2 N Ni<KN N3, Ny<SNo + Wy

Noy1-s _ 5
ST T Y ()Nl el
N2Z2N N1<N N3,N;y<N,
x anangv,%lwéleg&%l
§N7%+5%7HIU||12,%,1||n+”is‘é,1.

If Ly is the max, we first apply the Holder inequality as L7L3° - L°L2 - L} , - L},
and then make a similar argument, concluding the same bound.

Case 2. Ny < Ny. In this case |k13| = |kaa| > |k2| in the integral (18), so we
use Lemma 3.1 (1) to replace the multiplier with % + N%; We may also assume
Ny Z N.

(i) The case N1 = N. We follow the argument in Case 1 (i). Applying (19) twice,
we have

N2 1, ,Nivi-s/,Noyi-s 1
< Z P) V1 2
(18)NN N (Nf+N4)(N) ((N) +1)N1N2
Tseees 4

(N gl g e 5l )
(] 1l g e+ Nl )

After some calculation we reach the bound with prefactor N~2 4+ N~-1+§1—,
(ii) The case N; < N, where N3 ~ N4 is the max. If N, is so small that
N2 < Ny, the multiplier is bounded by — ~ and we obtain

~

]. N —s
(18) < Z E((ﬁ)l +1)HIul”LerLgoHIWHLf*L;oHn?)”Lf‘“ng||T“1HL;>°*L§£
Ni,..N

1 N-
S Y w (G ) Il ggona Tl gsonalsl o loall o -

Ni,..., Ny W+ W+

S N*1+517HI’U,H1;,%,1 ||7’L+HA2X€V%1

We thus assume N3 > N,. Now, we can ernploy the same argument as Case 1 (ii)

with a minor modification exploiting the term . The bound will be N=i+§1~
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Estimate of (15). We bound the multiplier o —o_ by 1, and decompose each
function dyadically in k, obtaining a bound on (15) of

> (N1 +Ny) i Ugusty de dt, (21)
R JT2
2

N1i,...,Ny

where

- - . _ - - . -
uy = |[YsPyyul|, Tz := |YsPnyul, uz:=|xsPnyul, 1= |xsPn,ul.

Without loss of generality we assume N; > No, which implies N; 2 N; otherwise
the multiplier vanishes. We may also assume that at least two of N;’s are 2 N
Case 1. Two of N;’s < N. It will be sufficient to consider the particular case

N1, No 2 N > N3, Ny, where Ny ~ Nj is the max. From a Holder argument,

(21) < > Nilua| 2+ 1 1|
N1~N2>N>>N3 N4
N N. 1
S X TG e g
[ usl] g -allTuall g

-

SNl Ly
XS
Case 2. More than two of N;’s 2 N. Prepare the following lemma.
Lemma 4.2. Suppose that w1 and us satisfy
supp u1 C Pn,,  supp uz C Pp,
for some dyadic N1, Ny > 1. Then, for any 0 < ¢ < 1, we have
luruallyy S Nia(leall cos-callual] gaeiscx + llurll yo.g-calluell goaec)- (22)

6 Xg Xg Xs

Proof. Making dyadic decompositions, we have

luvellye = fomls € 0 Y IPa@n QRmle

No<Nyp L1,L221
We use Lemma 2.6 (i) for Ny > 2 and Lemma 2.9 for Ny = 1,
Z Z Ly, L12 + Ny )HQL1“1HL2HQL2“2HL2
No<Nis L1,L22>1
On the other hand, we apply the Holder inequality to obtain
1
@< D Y Lipho[|Q ul| L[lQ7, el .
No<Nyp L1,L221

The required estimate is obtained from an interpolation between them. O

We go back to the estimate of (21). Define the biggest, the second biggest and
the smallest one among Ns, N3, Ny as N,, N, and N,, respectively. Then, we may
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assume that N, = Ny, Ny, N.. From (22), we obtain

~

s > Ml ueuel|
Nl,Na,szN,NC

S Y @TE@TNE (@ )R

Ni,...,Ny

o ot YR (PR, o Y BN 0 Y

y (N;1+4e’|ma||xlé_5,l{|Iuc||X1,%_€,1+NJ§+26||MG||X1 1. ||Iuc||Xé,5,1>.
S S s

‘We observe

Ny Ny 1-s N3

1—s _

(¥ (§F) F =N N,
T N ) L
((%)1 n 1)N Lde 4 ((%)1‘5 n 1)N§%+2€ <1

if s > %, and € > 0 sufficiently small. Consequently, we obtain a bound of
(N2 4 N=3H63 )| Tu)| 1pa
X2
Now, the proof of Proposition 2 is completed. O

As we have seen, the (first generation) modified energy H(Iu,Iny)(t), which is
close to the almost conserved quantity H(u, n . )(t), controls the norm || Tu(t)|| g1 +
| In, (t)||z> with the help of the L? conservation. Therefore, we need the local well-
posedness of (2) with the existence time written in terms of ||[Tug|| g1 + ||[InyollL2-
For this purpose we upgrade the bilinear estimates given in Lemma 2.4 to the
following.

Lemma 4.3. Let1 > s> % Then, we have
TP L IR LN PO
[ () ., <% Yol ;%,l(é)>|fuzuxﬁ,1(5,

Proof. Since ||u||X%1 <|I uHXL%,l, the second estimate immediately follows from
S S
(7). For the first estimate, we decompose v into two parts. For the low frequency

part, supp u C {|k| < N}, the claim follows from I < 1 and (6) with s = 1. For
high frequency supp u C {|k| = N}, we observe that

m(ky) (k1) ™ SN~ mik) (ko)

for |ke| 2 N, where k; and ko denote the frequency variables for niu and w,
respectively. Then the estimate follows from (6). O

The standard iteration argument using Lemma 4.3 and (3) yields the modified
local well-posedness adapted to the I-method.
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Proposition 3. Let1 > s > % Then, for any (ug,nio) € H® x L2, there erists a

1 1
unique solution to (2), (u,ny) € X;’Q’l(é) X X‘(,){/i’l(d), with the existence time

8~ ([[Tuoll g1 + llvoll2) 7
such that the following estimate holds:

70l g+ ot S a0l + nsol o

l,
(s W

In particular, we have

_;ggﬁ(HIu@)HHl*‘Hn+(@HL2)fSHIUOHHl%-Hn+0HLT

We are now in a position to prove the main theorem.

Proof of Theorem 1.1. Let (ug,noy) € H* x L? be an initial datum with |lug||z: <
|Qll 2 (r2). The datum then satisfies

[Tuoll s + [nsolle S N'°, uollzz < fluollrz < @l L2(e2),
and its modified energy obeys
H(Iug,ni9) < CoN*U=2),

Since H(Iu,n)(t) and the (a priori bounded) L? norm of Tu(t) control ||Tu(t)| g1 +
[ln4(t)|l2, we see from Proposition 3 that the solution to the initial value problem
on [0, %] can be extended up to t = to + ¢ with a uniform time § ~ N =215~ and
satisfies

Hlu(._to)HX ,%,1(5)+ ||n+(._t0)HX < N1-s,

1 0,11
. w2 o)

as long as
H(Iu,ny)(ty) < 20,N2(1=9),
If we could iterate the local theory M times, then Propositions 1 and 2 imply that
the increment of the modified energy would be bounded by
|H(Tu,ny )(M6) — H(Tu,n.)(0)]
<|H(Tu,ny )(M6) — H(u,ny ) (M) + Y |H(u,ny ) (G + 1)6) — H(u,ny)(j6)|
+ [H(u,n4)(0) = H(Tu,ny)(0)] 77"
< N—1+(N1—3)3
+ M{N*H(s%*(Nl*S)?’ 4 (N2 4 N—iHsE 4 N*1+51*)(N1*5)4}
N {N—s+ i M(N‘H n N%—%s+)}N2(1—s)7

which means that we can repeat O(N min{1, %S*i}*) times, obtaining the solution
1

up to some time ~ N™in{l 3s—1}—  ymin{2s—1 s—3}—  Hence, we can solve the
equation up to the arbitrarily large given time T by setting a large parameter N to
be ~ Tmax{ 2= 14;179}+, whenever s > %.
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Moreover, we have
s (WOl + e @) S swp (1] + 0] )

4(1—s)

< NI=s o Tmax{%7 e

Going back to the original Zakharov system (1), we obtain the a priori estimate

s 4(1—s)

g (@] + @l + 1917 0n(@)]],.) S Tota= 10,

concluding the proof of Theorem 1.1. O

5. Global solutions for the nonperiodic case. In this section we treat the
R? case and also put the operator I on the wave equation. An adaptation of the
argument for periodic problem easily implies the following almost conservation law.

Proposition 4 (Almost conservation law). Let 1 > s > %, 0>r>s—1 be such
that 7 > 1—2s and r > —4s. Let 0 < 6 < 1 and (u,ny) be a smooth solution to
(2) on (t,z) € [0,0] x R%. Then, we have

77 e —14ci— 2

A 1n)(0) = A n ) OL SN0l g el 10
+ (N2 N7itgi— 4 N~

o (g N g +
+

Proof. We follow the proof of Proposition 2 and only indicate the difference from
it. We have to consider the following three terms:

2 [ e @ ialite i) (21)
(2 1o = 0 (€0, €2)) 4 (1,60) — (21 = 0- (€, €2)) - (1,60))
”/ /E a(t, & )u(t, &) (g +7-) (£, &) (25)
% (04 (€10 €2) 0 (60,€20) 0 (8, 60) + (0 (19, €2) =0 (61, E20)) - (1. €0) ) d,
| 16y 02 (€0, &) 6 €2l ) € (26)

Estimate of (24). We bound the multiplier by 1 as in the periodic case. We
should consider

Z Z No N1 2(1 s)((N) r+1>

Ny~N22ZN N0<N1

1 In 1, .
+ ;’2’ (6))

ol

H%MMMMW%WMNHMme
S

1,
1
Wy

instead of (16). This is bounded by N~ 1Jr(5§*||]u||2

L1 1||I”+||Xo,%,1 in the same

W
manner, provided 2(1 — s) —r < 1.
Estimate of (25). We can obtain simpler estimate

lunll e, < lell gaeg il o

—e,1

1
' 2
e
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instead of (19) by using Lemma 2.7 instead of Lemma 2.6.
Case 1 (Ny 2 Ny).
(i) N1 2 N. In this case we need to consider the quantity

YDRED SIS DG Rl R (G (G B

N1,N2ZN N3<Ni3 NaSN2

(VP o L o) (V3 [ s nall o ).

2 2

Considering the worst case N < N7 < N3 ~ Ny ~ N3, we can bound the above by
N~ Tu||? 17%’1||In_~_\|2 0.3 provided 1 —s —2r < 1.
XS XW+

(ii) Ny < N. Make the same decomposition as (20). When Lgy = L1234, We use
Lemma 2.7 instead of Lemma 2.6 to obtain the following bound,

Ny 1—s/, N N, _
> Y GT(E T (G T )
N N N
N1<N Ny>N N3, Ns<Ny

. Hfuluxé,%,l||qur|X;%,1||fn3||X3éf,1|lfn4\rxﬁl-
Even the worst case No ~ N3 ~ Ny 2 N can be estimated with decay factor N~
whenever 1 — s — 2r < 2. When Lis = Ligss > L34, we follow the argument for
periodic case precisely to encounter the quantity

M VD DRC R (CORER [(CO NSRS

N1<N Ny>N N3,Ny<N,

><HIu1||X; 1HIuQHX; 1HIn::,HXSV,g,l||In4HXo,g,1.

Wi

1 1
so 15

This can be treated appropriately if 1 —s—2r < %. The decay N —%+61 is obtained.
Case 2 (Ny < Ny).
(i) Ny 2 N. With a modification of the argument for periodic case similar to
Case 1 (i), we estimate

Y OY Y <§V;>1 (ED T+ ) (D +1)

N1ZN NaZN N3<N, Na<Ny
x (&)
N NN,

< (N3] gl ).

'2
Wi

(V|| a1l o)
wi

The worst case is N < Ny <« Ny < N3 ~ Ny, which is controlled if 1 — s — 2r < 1.
We obtain the decay N 27 in this case.
(i) N1 < N. If N2 < Ny, then we have

ISP IID DD DI (G R [C MG

Ni<N Ny N N3~Na n, < N1/2

IU1 1,04,1 IUQ 1,04,1 Ing Ll I?”L4 1
il goral vl o1l gyl -
which is estimated with decay N~'T§'~ whenever (1 —s) —2r < 1. If N§ > Ny,
we can employ the same argument as Case 1 (ii) and obtain the decay N-i+51-
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Estimate of (26). This is identical with the periodic case, because (26) includes
no ny. We have the bound (N2 + N=1F§17) || Tu||* | O
XS

1.
L

We also obtain the following bilinear estimates as a counterpart to Lemma 4.3.

Lemma 5.1. Let1 > s > %, 0>r>s—1. Then, we have

IZs(2 ] 1 ) S 875 g el oy 2D

2w (91 30, S 05 Nl g Wl g 29

Proof. (28) follows easily from (7), I’ < 1, and ||u||X;,%,1 < ||1u||X;,%,1 We thus
focus on (27). First of all, we show

[Zstral gy 55l g sl (29

Use (o, (1, (2 for the Fourier variables of ny, nyu, u, respectively (thus (o = (1 —(2).
(i) The case |&1] < [&2]. Since s > r+ 3, (29) is reduced to

||Is(niU)H +%%1(6) SJ(;IJZFT*HUH

" r+d.la ||n:|:||
x5 X

A
X575 w2 o)

It is not difficult to obtain this by interpolation between (8) and (6) with s = 1.
(ii) The case |£1] > |€2|. An interpolation between Lemmas 2.8 and 2.10 implies

//CO_M_Q F(C0)g1(C1)g2(Cz)

,SLI%naX(LmedLmin) 1ZTJF]\/vzl-‘rr_]Vl_l||fHL2 ||gl||L2 ||92HL2

for f,g1,92 € Lg(R x R2) satisfying (9) with N; > Ny. (We can choose 1+7r— > %
because r > —%. Note that Lpax 2 N12 is required for nonzero contribution under
this assumption.) To apply this, we have to decompose Zg(niu) as

Z Z Z Z ISPJL\qfl,Ll(PJEZ%LO”iPﬁg/Q,LQU)-

N12>1 N2<N1 No~Ni Lo,L1,L2>1

If Ly = Lpax (similar for the case Ly = Lyax), we use the above estimate and
Lemma 2.3 to obtain

HPN1IS(PN0ni : U)HX;%’I((;)
SEETNT Y || P (Pagnas s Payu) | 0,- 157~ 00
N2 <Ny Xs
SETINTINGT D0 N s Pvul| e [ Pron ] g
N2 Ny s vE
S8l Pl

where at the last inequality we have used the assumption 1 4+ r — s > 0. Squaring
and summing up the above in N; we obtain (29) (note that Ny ~ Ni). In the case
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L1 = Lyax, a similar argument yields

HF)NVIIS(P)]\/V(Jni ' U')HX;%J((;)

SNISZL;% > HPEH,Ll(wSPNon:I:'wﬁpNQU)HL?z
Ly ’

NNy

SNITINGT Y (LoLa) T YT Ny N3 [[s PR, |
Lo,L1,L2 Ny <Ny W, -
X NSHWPNfLoniHLg@'

We can carry out the sum in L; using the fact L; ~ max{Lg2, N7}, and have the
same bound as the previous case. This completes the proof of (29).
To upgrade (29) to (27), we only have to show

mi—s N (E)ENT Sma—s N (&) (€)1 mor v (€0) (&) T

for &g, &1, &, such that &g = & — &. This is true for the case || < |&2| or the case
&2| 2 N, because if ¢ > 0 we have mg,n (§)(§)? > 1, mqg,n(£1)(§1)7 S mq,n (§2)(€2)7
for [€1] < [€2], and mq v (E)(€)7 ~ mq w(€)IE[? = N for J¢] > 2N.

In the remaining case, |{2] < |&1] and |€2] < N, we have [£o| ~ [€1] and then

mi—s,N(€1) ~ mi—s,n(§2)mi—s,n (o) S ma—s,n(&2)m—r,N (&0),
since 1 — s > —r. This and (6) with s = 1 imply (27). O

By a standard argument, we can deduce from Lemma 5.1 the following local
well-posedness.

Proposition 5. Let1>s> %, 0>r > s—1. Then, for any (uo,nio) € H* x H",

1 1
there exists a unique solution to (2) on R?, (u,ny) € X;’2’1(5) X X;[’,i’l(é), with
the existence time

2

0~ ([[Tuol| 2 + [ Inol| o) ™77
such that the following estimate holds:

]

In particular, we have

—sgg)gé (Hlu(t)HHl + ||In+(t)||L2) S ||[u0||H1 + HInJ"OHL?'

gy e o S s+ Ensoll

1,
S

0,%,1(
Wi

We remark that our local existence time § ~ ||data|\7ﬁ* is longer than that

obtained in [13], which was § ~ ||data|\7ﬁ7. In fact, a longer local existence time
will lead to the global well-posedness for a lower regularity.

Proof of Theorem 1.2. Here we assume
1>s>1, 0>r>s—1, (30)
r>1-—2s, r>—1s. (31)

Let (uo,no4) € H® x H" be an initial datum with [uolz2 < [|Q[/z2®2). The
modified energy H (Iu,In,)(t), satisfying the initial bound

H(Iug, Inyo) < C(N?U79) 4 N727) < CuN2U—9),
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controls |[Tu(t)|| gr + ||[In4(t)]|z2. Proposition 5 shows that the solution on [0, o]

2(1—s)
can be extended up to t = tg + ¢ with a uniform time 6 ~ N~ "1+ ~ and satisfies

||Iu( - tO)HX 1(5) + an_;,_(' - tO)HXO, ’1(6) ,S Nlis,

\4%

[N

1,1,
S

+

as long as H(ITu,ny)(tg) < 2CoN?1=%). If we could iterate the local theory M
times, then from Propositions 1 and 4,

|H(Iu,ny) (M6) — H(Iu,n)(0)]
SN_1+(N1_S)3
+ M{N**(S%*(NI*S)S (N2 4 N N*1+51*)(N1*5)4}

~ {N—5+ - MN“"O(S”’H}NQ“_S), ag(s,r) = min{ s, SA=Srelabre ),

Thus, we can repeat the local procedure O(N®~) times to reach some time ~
IN™ ~ N7,

—142s+rs —9—3r+14s+8rs }
147 ’ 4(14r) .

a1(s,r) := min{

The required conditions for global well-posedness are
—1+2s+7rs>0, (32)
—9 —3r 4 14s+ 8rs > 0. (33)

It turns out that (31) and (32) are automatically satisfied under the assumptions
(30) and (33). Moreover, we have

g (0l + [ @) S N0 TS T

(1—s)(147) 4(1—s)(14r) }

a2 (S’ T) = max{ —142s+rs? —9—3r+14s+8rs

We obtain the same a priori estimate for solutions to the original equation (1),
concluding the proof of Theorem 1.2. O
Appendix A. Proof of Lemma 2.13. Here we shall give a proof of the following
bilinear estimate.
Proposition 6. We have
3 .3

fuvlly € AN fullyy ol

foru,v e L*(R x Z), Z =T2 or R?, such that supp 4, supp o C Py N wi.

Lemma 2.13 then follows by letting v = u. The standard argument reduces the
problem to the following; for details, see e.g. the proof of Lemma 2.5 in [11].

Proposition 7. Let N,L > 1. Then, for any k € R? and A > |k|, the set
{K eR?||K| <N, |k—K|<N,|K|+k—FK|e[A A+ L]}
is covered with at most O(N2L2) squares of unit size.

We begin with preparing the following lemma.
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Lemma A.1. Let a > b> 1. Define

2 2
E<::{(x,y)€R2{%+%§1},
2

2
— 2 x Y >
B> = {(my) eR g 1002)2 (bt 100)2 = L

Then, there exists no unit square in R? intersecting with both E. and E~. The
same holds for

2 2

B = R? > Y <1
c={@y R (a—1002)2 * (b—100)% = )

v

/ 2 262
E>:{(x,y)€R ’ﬁ—’_bQ

>1}
instead of B~ , E.

Proof. We only prove the first half of the claim. The second half will be shown by
a similar argument.

Assume for contradiction that there existed such a square of side length 1. Then,
it would hold for some (z,y) € E< and (2/,y’) € E~ that

(=2 +y-y) <2 (34)
1172 2 I/Z 12
ZtE s (@ 1009 " (b +y100)2' (35)
Note that
z? e 2?2 1 1
CERT i b -k remr s
'+ z? 200 100
= (' —z) — W(T (7)2)7
T S ikl (Lo L)
b+ 1002 52 b2 b2~ (b+ 100)2

v +y y'"? 200 100
V20 a0y
b b+ 1002\ b b
From these estimates and the fact (z/,y’) € FE~,
2 2 2 2
@ LY oy

(a+1002)2 " (b+100)2 a2 b2

2’ + | v+l 200 100,
< el S vl = (S ),

which is, from (34) and (z,y) € E,

2 2 2 2 2
< \xlatxfﬁ+ Iylbt\f\/i_%

S0 10 200 180
a b b — b ’

This contradicts (35). O
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Proof of Proposition 6. We may assume |k| < 2N, otherwise the set is empty. Treat
several cases separately.

(i) L 2 N. In this case, we use the condition |k’| < N to estimate the number
of squares by N2 < NiLz.

(ii) L < N, |k| < 1. In this case we have |k'| < N and A—C < 2|k'| < A+ L+C.
It is easy to see that such a region, which is a disk of radius L or the intersection
of a disk of radius N and an annulus of width L, can be covered with < NL unit
squares. L < N implies the claim.

(iii) L « N, A < |k| 4+ 10L. We have

K|+ |k — K| < k[ +11L,

which shows that k& is inside an ellipse of distance between foci |k|, length of long
axis

|k| +11L < N,
and length of short axis

V(|k| +11L0)2 — |k|]2 = \/22|k|L + 121L2 < VNL.

Therefore, we can cover this region with < N x v/ N L unit squares.
We remark that &’ is confined to the region

R:={K eR*||K|+k—K|c[A, A+ L]}

between two ellipses with common foci 0, k, longer axis A and A + L, respectively.
(iv) L < N, A > 10N. In this case the region is close to an annulus. In fact,

2a = A, 2b = /A2 — [k[]2 > \/A2 — (A/5)2 > 2 - 2a,
20/ = A+ L, 20 =+/(A+L)2— |k?

with 2a,2a’ (resp. 2b,2b") the length of the long (resp. short) axes of inner and
outer ellipses. We first change the scale in the direction of short axis to make the
inner ellipse a circle. Then, the new region R’ is included in an annulus of width
max{a’ —a, (0’ —b)}. We see a’ —a = L and

C(VA+DZ - [k — VAT~ [k])

2AL + L? 1 AL
bVAFLE R+ /A
Hence, the intersection of any ball of radius 2N and R’ is covered with < N L unit
squares, which shows that the intersection of any ball of radius N and the original
R is also covered with the same number of unit squares.

(v) LK N, |k| > 1, and |k| +10L < A < 10N. By translation and rotation, we
may consider the covering of

250 ¥) =

@\@
e o

=1L

2 2
Y
el gt

with 2a = A, 20’ = A+ L, 2b = /A% — |k]2, 20/ = /(A + L)? — |k|?. Note also

that

R:={(z,y) €R ’ﬁ'ﬁ‘

a>3lk>1,  b=3/A2— k2> 5/([k[+10L)% — k]2 > /|k[L > 1.
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From Lemma A.1, we see that the smallest (axis-aligned) lattice polygon including
the inside of outer boundary of R is included in the inside of an ellipse with long
axis 2(a/ +100% ) and short axis 2(b' +100). In the same manner, the biggest (axis-
aligned) lattice polygon included in the inside of inner boundary of R includes an
ellipse with long axis 2(a — 100%) and short axis 2(b — 100). Therefore, the number
of needed unit squares is estimated by

(" +100%; )(b’ +100) - (a— 1007 )(b ~ 100)

((a —a) +100(% ))(b’ +100) + (a - 100%) (b’ — b+ 200).

b b
We find ' +100 S N, |a —1003| SN, a' —a S L, and
a A 1 1 1
b:\/A2|k|2:\/1_|k|2<\/1_(|k|)2<\/1_(21\1)2
(F) [R[+10Z IN+10L
2N +10L

V2N +10L)% — (2N)? F L

We also see o’/ < 4/N/L in the same manner. Finally,

2AL + L?
200" —b) = (A+ L)? — |k]? — /A% — |k|? =
W =) = AT I = AP = e s
< A < /Y-t
VAZ — |k]? L
With all of them together, we reach the bound < N2 Lz, O

Acknowledgments. The author thanks Takamori Kato for reading an earlier ver-
sion of the manuscript and giving a shorter proof.
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