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The research on virion infectivity factor (Vif) protein had started in late 1980s right after
HIV-1 was cloned, and the function of Vif had been a mystery for a long time. However,
the research on Vif has finally lead to the identification of APOBEC3G, which opens up
a new era in the research field of host restriction factors in HIV-1 infection followed by
TRIM5α, Tetherin/BST-2, and SAMHD1. This suggests that continuation of basic research
on fundamental questions is quite important. We still have many questions on Vif and
APOBEC3 and should continue to work on these proteins in the future in order to better
regulate HIV-1. We will discuss not only the history but also recent advances in Vif research.
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INTRODUCTION
HIV-1 virion infectivity factor (Vif) was identified as an accessory
gene right after the HIV-1 genome was sequenced. It is well con-
served among lentiviruses except in equine infectious virus and
plays a crucial role in the viral life cycle to facilitate viral infectivity
as its name indicates (Desrosiers et al., 1998). In the early reports,
Strebel and collegues described that the mutant virus deficient in
the vif gene produces virion particles normally; however, the par-
ticles are ∼1000 times less infectious than the wild type (Fisher
et al., 1987; Strebel et al., 1987). The underlying mechanism of Vif
function had been unsolved and a mystery for a long time.

EARLY OBSERVATIONS OF Vif FUNCTION LEAD TO
IDENTIFICATION OF APOBEC3G
Virion infectivity factor exerts its function in a cell-type-specific
manner. Vif is dispensable for producing infectious viral particles
in permissive cells such as all known adherent cells (e.g., HeLa and
293T cells) and some T cell lines (e.g., CEM-SS and SupT1 cells); in
contrast, Vif is indispensable in non-permissive cells such as phys-
iologically relevant CD4+ T cells and macrophages, and other
T cell lines (e.g., CEM and H9 cells; Gabuzda et al., 1992; Sakai
et al., 1993; Simon et al., 1998b). These findings raise two possi-
bilities; one is that permissive cells have a vif-like cellular factor
which facilitates virion infectivity, another is that non-permissive
cells possess an anti-HIV-1 host factor which is antagonized by
Vif. Later studies using heterokaryon experiments have shown the
latter possibility (Madani and Kabat, 1998; Simon et al., 1998a).
In 2002, Malim’s group identified this factor using very sophisti-
cated subtraction cloning methods between non-permissive CEM
cells and its derivative subclone permissive CEM-SS cells, which
was first called as CEM15 and is now known as APOBEC3G
(Sheehy et al., 2002). Details of functions of APOBEC3G and other
APOBEC3 family members are described and discussed in many

reviews and other chapters of this issue (Goila-Gaur and Strebel,
2008; Wissing et al., 2010; Kitamura et al., 2011).

In addition to the above described main function, early studies
also revealed several important Vif functions including dimeriza-
tion (Yang et al., 2001), virion incorporation (Camaur and Trono,
1996; Simon et al., 1997), and phosphorylation (Yang et al., 1996;
Yang and Gabuzda, 1998); however, the significances of these
functions are not discussed much recently. Recently, a novel Vif
function on cell cycle has been reported, which is discussed in
more detail later.

Vif ANTAGONIZES APOBEC3G
As described above, the main function of Vif is to antagonize
APOBEC3G. Right after identification of APOBEC3G, many stud-
ies have shown that Vif inhibits the virion incorporation of
APOBEC3G, which is mainly attributable to degradation of cellu-
lar APOBEC3G via the proteasomal pathway (Marin et al., 2003;
Sheehy et al., 2003; Stopak et al., 2003; Mehle et al., 2004b). How-
ever, some studies have also shown that Vif directly inhibits the
virion incorporation of APOBEC3G (Opi et al., 2007) or that Vif
inhibits translation of APOBEC3G (Mariani et al., 2003; Stopak
et al., 2003).

Yu et al. (2003) have independently shown that Vif forms E3 lig-
ase complexes with cellular proteins including Cullin 5, Elongin B,
and C (Vif–Cul5–EloB/C complex) using mass-spectrometry tech-
niques. They and others have also shown that this complex works
as the E3 ligase for APOBEC3G to induce polyubiquitination of
APOBEC3G and direct it to the 26S proteasome for degrada-
tion (Mehle et al., 2004a; Yu et al., 2004; Kobayashi et al., 2005).
Iwatani et al. (2009) have identified four critical lysine residues
(K297, K301, K303, and K334) in APOBEC3G which are required
for Vif-mediated degradation, although others have reported
that Vif can ubiquitinate and degrade a lysine-free APOBEC3G
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(Shao et al., 2010). Vif also antagonizes other APOBEC3 proteins
from APOBEC3C to H by the same E3 ligase complex (Shirakawa
et al., 2006).

Virion infectivity factor binds to the E3 ligase complex through
two interaction sites; it binds to Elongin C through its sup-
pressors of cytokine signaling (SOCS) box motif (Mehle et al.,
2004a; Yu et al., 2004), S144LQYLA149, and to Cullin 5 through
a zinc-binding motif (Luo et al., 2005; Mehle et al., 2006),
H108x5Cx17−18Cx3−5H139 (Figure 1). The SOCS box motif is well
conserved among Vif proteins, indicating that this motif is crucial
for Vif function, and mutation of S144, a presumed phosphoryla-
tion site in Vif, affects binding of Vif to Elongin C (Mehle et al.,
2004a). The zinc-binding motif is also important for Vif function
to form the E3 ligase complex. Therefore, a zinc chelating agent
can inhibit Vif function in infectivity assays (Xiao et al., 2007).

THE INTERACTION OF Vif WITH APOBEC3 PROTEINS
It is quite important to reveal the interaction sites between Vif
and APOBEC3 proteins, because the regulation of this interaction
may lead to the development of novel therapeutic strategies for
HIV-1 infection. However, their structural information is not fully
elucidated yet, because it is quite difficult to produce these proteins
as soluble forms. Thus, the information described below is mainly
obtained by many studies using site-directed mutagenesis, which
sometimes shows different results.

First of all, the most important and confirmed evidence is
that the interaction between Vif and APOBEC3G is critically
dependent on D128PD130 in APOBEC3G (Huthoff and Malim,
2007). Many groups have simultaneously reported this evi-
dence by comparing human and African green monkey (agm)

APOBEC3G (Bogerd et al., 2004; Mangeat et al., 2004; Schrofel-
bauer et al., 2004; Xu et al., 2004). In detail, HIV-1 Vif binds and
antagonizes human APOBEC3G, but not agm APOBEC3G. In
contrast, SIVagmVif antagonizes agm APOBEC3G,but not human
APOBEC3G. By comparing amino acids residues and preparing
chimeric APOBEC3G between human and agm APOBEC3G, they
identified D128 as the determinant of the species-specific bind-
ing of Vif to APOBEC3G (Bogerd et al., 2004; Mangeat et al.,
2004; Schrofelbauer et al., 2004; Xu et al., 2004). On the other
hand, SIVmac and HIV-2 Vif can antagonize both human and
agm APOBEC3G, indicating that the interaction between Vif and
APOBEC3G is not restricted by D128, in other words, D128 is
not the sole determinant for species-specific target by Vif (Gaur
and Strebel, 2012). Furthermore, the interaction between Vif and
APOBEC3G is regulated by phosphorylation of APOBEC3G at T32

by protein kinase A (Shirakawa et al., 2008).
The interaction sites in Vif are reported by many groups

and are much more complicated. The binding site only for
APOBEC3G is Y40RHHY44 (Russell and Pathak, 2007), while that
only for APOBEC3F is D14RMR17 (Russell and Pathak, 2007),
and T74GERxW79 (He et al., 2008). The binding sites for both
APOBEC3G and F are W21KSLVK26 (Chen et al., 2009; Dang et al.,
2009), V55xIPLx4−5LxΦx2YWxL72 (He et al., 2008), and Y69xxL72

(Pery et al., 2009; Figure 1). To identify the real interaction sites,
we have to wait a little longer until we will get the structural
information of these complexes.

Vif AND CBFβ
Recent mass-spectrometry screening of Vif-binding proteins has
identified a T cell transcription factor, core-binding factor subunit

FIGURE 1 | Schematic figure of the virion infectivity factor (Vif) protein

and amino acid motifs for binding to Vif-interacting proteins. Pink
indicates binding motifs for A3G; light blue indicates binding motifs for A3F;

light green indicates binding motifs for Cul5; yellow indicates binding motifs
for EloC; light pink indicates motifs for dimerization. Vif binds to p53 and CBFβ

in its N-terminal regions, but binding motifs were not elucidated yet.
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beta (CBFβ), as an important Vif-binding protein (Jager et al.,
2012; Zhang et al., 2012). CBFβ directly binds to Vif and plays a
crucial role in forming a stable Vif–Cul5–EloB/C E3 ligase com-
plex. Without CBFβ, the Vif–Cul5–EloB/C E3 ligase complex is not
stable enough to polyubiquitinate APOBEC3G and its function is
severely impaired. The binding sites of Vif with CBFβ are identified
as W21 and W38 (Figure 1). However, the mechanisms by which
CBFβ regulates the E3 ligase complex are still under investigation.
Furthermore, since CBFβ is an important T cell transcription fac-
tor, it would be very interesting to determine whether Vif affects T
cell differentiation.

Vif IS ALSO UBIQUITINATED
Fujita et al. (2004) have reported that expression of the Vif protein
in virus-producing cells is maintained at very low levels, which is
regulated by the ubiquitin–proteasome pathway. It is because its
high expression inhibits viral infectivity by affecting proteolytic
processing of Gag protein (Akari et al., 2004). We have identi-
fied the E3 ligase for Vif as mouse double minute 2 homolog
(MDM2; Izumi et al., 2009; Figure 2). Since Vif is a compo-
nent of a Cul5–EloB/C complex, one report showed that this
complex ubiquitinated Vif (Mehle et al., 2004a). Another report
showed that other E3 ligases such as neural precursor cell expressed
developmentally down-regulated protein 4 (Nedd4) and atrophin-
interacting protein 4 (AIP4) bound to Vif, however, it didn’t show
the direct evidence of Vif ubiquitination by these ligases (Dus-
sart et al., 2004). The identification of the E3 ligase has lead to
elucidation of the mechanisms of Vif-induced G2 cell cycle arrest
described below.

A NOVEL Vif FUNCTION: G2 CELL CYCLE ARREST
In early 1990s, viral protein R (Vpr) had been shown to induce
G2 cell cycle arrest in HIV-1-infected cells (He et al., 1995; Re
et al., 1995; Roshal et al., 2003; Nakai-Murakami et al., 2006).
Many groups have extensively worked on Vpr-induced G2 arrest
in terms of its molecular mechanisms and published many papers.
Although only one paper reported the virological significance of
G2 arrest induced by Vpr (Goh et al., 1998), the basic and funda-
mental questions of why the virus needs to induce G2 arrest still
remain unsolved. More than 10 years had passed since then, and
two recent reports came out, describing that Vif as well as Vpr-
induce G2 arrest in HIV-1-infected cells (Sakai et al., 2006; Wang
et al., 2007). We have recently shown the molecular mechanisms
by which Vif induces G2 arrest (Izumi et al., 2010; Figure 2). Vif
activates p53, which is well known as a tumor suppressor gene
and the regulator of cell cycle as “a guardian of the genome.”
Vif binds and activates p53 by stabilizing and sequestering it
to the nucleus. Activation of p53 induces its downstream cas-
cade such as activation of p21 and inactivation of Cdc2/CyclinB,
resulting in G2 arrest. Furthermore, we identified the amino acid
residues in Vif responsible for its interaction with p53 and a Vif
mutant which does not induce G2 arrest. Using a mutant virus
which possesses the vif mutant, we have demonstrated that Vif-
induced G2 arrest facilitates viral replication (Izumi et al., 2010;
Figure 2). Thus, HIV-1 needs to have G2 cell cycle arrest to
efficiently replicate so that it possesses two accessory genes such
as vif and vpr. Vif induces G2 arrest in a p53-dependent man-
ner, while Vpr accomplishes the same goal in a p53-independent
manner.

FIGURE 2 |The mechanisms how Vif is ubiquitinated and degraded and

how Vif induces G2 cell cycle arrest. Vif is ubiquitinated and degraded by
MDM2. On the contrary, Vif inhibits ubiquitination of p53 by MDM2 to induce
activation and nuclear import of p53. Activated p53 induces transcription of

several genes including MDM2 and p21. Enhanced expression of MDM2
may lead to more Vif ubiquitination and degradation, which forms the
autoregulatory circuit of Vif expression. On the other hand, activation of p21
leads to G2 cell cycle arrest, resulting in more HIV-1 replication.
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CONCLUSION
HIV Vif is an intriguing viral protein, not only because it opens
up a new era in the research field of host restriction factors, but
also because it has a variety of functions for the viral life cycle by
interacting several cellular proteins. It suggests that it might be a
good target for control of HIV-1 infection.
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