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Spinning motion of a deformable self-propelled particle in two

dimensions

Mitsusuke Tarama and Takao Ohta

Department of Physics, Kyoto University, Kyoto, 606-8502, Japan

We investigate the dynamics of a single deformable self-propelled particle which

undergoes a spinning motion in a two-dimensional space. Equations of motion are

derived from the symmetry argument for three kinds of variables. One is a vector

which represents the velocity of the centre of mass. The second is a traceless sym-

metric tensor representing deformation. The third is an antisymmetric tensor for

spinning degree of freedom. By numerical simulations, we have obtained variety of

dynamical states due to interplay between the spinning motion and the deformation.

The bifurcations of these dynamical states are analyzed by the simplified equations

of motion.

I. INTRODUCTION

Dynamics of self-propelled particles have attracted much attention recently from the

view point of nonlinear science and non-equilibrium statistical physics. In non-biological

systems, experiments have been conducted, for example, for oily droplets [1–5] and Janus

particles [6, 7] which undergo chemical reactions with the molecules in the surrounding

media. Theoretical studies have also been carried out by computer simulations both for the

motion of an individual particle and for the dynamics of interacting particles [8–10]. Most

of the studies assume that the particles are rigid without shape deformation. However, it is

pointed out that, if a particle is soft, its shape is deformed when the migration velocity is

increased as has been observed experimentally [1] and analyzed theoretically [11, 12].

In biological systems such as living cells and micro-organisms, shape deformation plays

a central role. In fact, migration of biological objects is induced by shape deformation and

there are experimental investigations of the correlation of shape change and cell migration

[13–17]. Theoretical studies for cell migration have been developed [18–21]. Computer

simulations of self-propulsion driven by shape changes have also been available based on
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artificial deformable systems [22, 23].

Recently we have introduced a model system for deformable self-propelled particles and

have studied motion of individual particles and collective dynamics of interacting particles

[24–28]. Dynamics of a single particle under external forces have also been investigated [29].

This set of model equations has been derived, by an interfacial approach, from an excitable

reaction diffusion system both in two and three dimensions [30, 31].

In this paper, we extend our model system to take into account a spinning motion.

There are many experiments of spinning self-propulsion in both non-biological and biolog-

ical microscopic systems. (i) One is an oily droplet to whicha small piece of solid soap is

attached [32]. This causes a spinning motion as well as the ordinary translational motion of

a droplet. (ii) The second example is a bacterium Listeria monocytogenes which causes loco-

motion together with spinning (helical) motion by polymerization of actin filaments [33–36].

Flagellated bacteria such as Escherichia coli also exhibits a spinning motion by rotating

helical filaments [37, 38]. In these biological examples, the left-handed and right-handed

symmetry is broken because the filament has a specific rotating direction. (iii) The third is

an anisotropic doublet composed of paramagnetic colloid particles undergoes a translation

motion and rotation near a flat boundary under an oscillatory magnetic field [39]. The ro-

tating direction follows the rotation of the magnetic field. (iv) The fourth is a discovery of

spontaneous formation of spiral waves in a Dictyostelium cell, which is coupled with shape

deformation, migration and rotation of the cell [40].

In order to make our model as general as possible, we do not rely on any specific objects

but derive the model equations only from the symmetry argument in terms of the antisym-

metric tensor variable for spinning motion, the vector variable for the translational motion

and the traceless symmetric tensor for elongation of a circular particle. We keep the parity

symmetry but allow a spontaneous symmetry braking in our model. Numerical simulations

have been carried out in two dimensions to obtain variety of dynamical states caused by the

interplay between the deformation and the spinning motion. We have also analyzed theo-

retically the bifurcations of these dynamical states. The case (ii) above is not considered in

the present paper since the angular vector of filament rotation is parallel to the migration

velocity and hence the dynamics is essentially three-dimensional.

The organization of this paper is as follows; in the next section (Sec. II), we introduce the

model equations. The results of numerical simulations are described in Sec. III. The variety
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of the dynamical states are obtained as shown in the dynamical phase diagram. In Sec. IV,

the theoretical analysis is carried out to derive the bifurcations of these dynamical states.

Discussion for the results obtained is given in Sec. V.

II. TIME-EVOLUTION EQUATIONS

We consider a self-propelled particle which changes its shape depending on the migra-

tion velocity. The degree of freedom of spinning motion around the centre of mass is also

introduced. The basic dynamical variables are the velocity of the centre of mass vi, the

second-rank traceless symmetric tensor Sij for deformation and the antisymmetric tensor

Ωij for spinning motion. By considering possible couplings among these variables and re-

taining some relevant nonlinear terms, the set of time-evolution equations is given by

dvi
dt

= γvi − vkvkvi − a1Sijvj − a2Ωijvj, (1)

dSij
dt

= −κSij + b1(vivj −
vkvk
d
δij)

+b2(SikΩkj − ΩikSkj) + b3ΩikSklΩlj, (2)

dΩij

dt
= − ∂G

∂Ωij

+ c1(SikΩkj + ΩikSkj) + 4c2SikΩklSlj, (3)

where

G ≡ ζ

2
tr Ω2 +

1

4
tr Ω4, (4)

and a1, a2, b1, b2, b3, c1 and c2 are the coupling constants and d is the dimensionality of

space. Hereafter we will put d = 2. The repeated indices imply summation. The coefficient

γ takes either negative or positive values. Throughout the present paper, the parameters κ

and ζ are assumed to be positive. The second rank traceless symmetric tensor Sij, which

represents an elliptical deformation of a circular particle, is defined by

Sij =
s

2

 cos 2θ sin 2θ

sin 2θ − cos 2θ

 , (5)

where s > 0 is the magnitude of deformation and the angle θ represents the direction of

elongation. The antisymmetric traceless tensor is defined as

Ωij =

 0 ω

−ω 0

 (6)
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with ω a dynamical variable.

By putting (v1, v2) = v(cosφ, sinφ), Eqs. (1) - (3) are written as

dv

dt
= γv − v3 − a1

2
sv cos 2ψ, (7)

dφ

dt
= −a1

2
s sin 2ψ + a2ω, (8)

ds

dt
= −κs+ b1v

2 cos 2ψ + b3sω
2, (9)

dθ

dt
= − b1

2s
v2 sin 2ψ + b2ω, (10)

dω

dt
=
(
ζ − c2s

2
)
ω − ω3, (11)

where ψ = θ − φ. Note that the second term on the right hand side of Eq. (3) vanishes in

two dimensions. Because of the isotropy of space, only the relative angle ψ enters into the

set of equations as an independent variable. In fact, we have from Eqs. (8) and (10)

dψ

dt
= −(

b1
2s
v2 − a1

2
s) sin 2ψ + (b2 − a2)ω. (12)

If the anti-symmetric tensor Ω is not considered, the set of equations (1) and (2) has been

studied both in two and three dimensions [24–26]. Furthermore, those equations have been

derived from a reaction-diffusion system [30, 31]. See also Ref. [29] where dynamics of a

self-propelled soft particle under external fields have been investigated. When the spinning

degree of freedom is absent, i.e., a2 = b2 = b3 = 0, Eqs. (7) - (10) exhibit a bifurcation at

γ = γc where

γc =
κ

2

1 +B

B
(13)

with

B =
a1b1
2κ

. (14)

When γ < γc, a straight motion of a particle is stable. However, this motion becomes

unstable for γ > γc and a circular motion (orbital revolution) appears. It should be noted

that the coefficient in front of sin 2ψ in Eq. (12) vanishes at γ = γc. Another important

parameter is the coefficient b1 in Eq. (2). When b1 is positive, a particle tends to elongate

along the propagating direction whereas when it is negative, it deforms perpendicularly to

the translational velocity [24]. Actually we have found that b1 < 0 for the excitable reaction-

diffusion system [30, 31]. Throughout this paper, we will put b1 < 0 and a1 < 0 so that the
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constant B defined by Eq. (14) is positive provided that the relaxation rate of deformation

κ is positive.

Before closing this section, we summarize the meaning of other terms in the time-evolution

equations (1), (2) and (3). It is evident from Eq. (8) that the term with the coefficient a2

tends to curve the trajectory of migration. We choose a2 > 0 so that a particle spinning

to the counter-clockwise direction (viewed from the top) rotates to the left (viewed from

behind). This is similar to the Magnus force [41] which is proportional to the density of

the surrounding fluid and the cross section of a rigid cylinder and the volume of a rigid

sphere. The b2-term in Eq. (2) is the same as the convective term for the orientational

tensor in liquid crystals under rotational flow [42] so that we put b2 = 1. In other words,

the b2-term is not dissipative whereas all other terms on the right hand side of Eq. (2) are

dissipative. The last term in Eq. (2) with b3 > 0 represents that spinning motion enhances

deformation whereas the c2-term in Eq. (3) with c2 > 0 has an effect such that an elongated

particle prevents from spinning as can be seen from Eq. (11). The c1-term drops out in

two dimensions. The coefficient ζ in Eqs. (4) is chosen to be positive. This means that

the particle has an internal mechanism to keep spinning motion. Furthermore, the potential

G takes a form that both clockwise and counter-clockwise motions are equally possible. It

is noted that the coefficients in the v3 term in Eqs. (1) and the tr Ω4 term in (4) can be

eliminated, without loss of generality, by absorbing those in the definitions of vi and ω.

Quite recently, we have derived Eq. (1) with a1 = a2 = 0 in fluids taking into account the

Marangoni effect and the hydrodynamic interaction [43]. However, such a study for shape

deformation and spinning motion has not been available at present.

III. NUMERICAL RESULTS

In the preceding section, we have fixed the sign of the coefficients in the time-evolution

equations (1), (2) and (3) with (4) by considering the mechanisms of each term. However, it

is difficult to determine the magnitude of those coefficients within the present phenomeno-

logical approach. We are concerned with the effects of spinning on the self-propelled motion.

Therefore, we choose the coefficient γ in Eq. (1) as an important basic parameter since three

different kinds of solutions, motionless state, straight motion and circular motion, are re-

alized by changing γ in the absence of spinning. The other aspect to be considered is the
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FIG. 1: (color online) Dynamical phase diagram obtained by solving Eqs. (7) - (11) numerically.

The meaning of the symbols is given in the text. The bifurcation boundary from the motionless

state to the spinning state without migration is indicated by the broken line which is obtained

from Eq. (25). The thin solid line obtained from Eq. (29) represents the boundary between the

v = 0 and the v 6= 0 region. The dotted line given by Eq. (39) is the threshold at which the state

ω = 0 becomes unstable. The parameters are κ = 0.50, a1 = −1, a2 = 0.75, b1 = −0.5, b2 = 1,

ζ = 2, and c2 = 2. The bifurcation threshold γc defined by (13) is given by γc = 0.75.

coupling between spinning and deformation. In Eq. (2) for the deformation tensor, the

coefficient b2 has been uniquely put to be b2 = 1. Therefore the remaining coefficient b3

of the nonlinear coupling between S and Ω is chosen as another basic parameter. Other

remaining coefficients are set to be of the order of unity as κ = 0.5, a1 = −1, a2 = 0.75,

b1 = −0.5, b2 = 1, ζ = 2, and c2 = 2.

Figure 1 show the dynamical phase diagram obtained from Eqs. (7) - (11). In numerical

simulations, we have employed the fourth Runge-Kutta method with the time increment

δt = 10−4. The different symbols correspond to different dynamical states as explained in

detail below.

The state indicated by the crosses in Fig. 1 is the motionless state. In this state, v = 0

and s = 0 and the value of ω is finite. That is, the particle with a circular shape is spinning

and its centre of mass does not move. In the region indicated by the filled circles, the

variables s and ω take finite constant values while the magnitude of the velocity is zero,

v = 0. The angle of the elongated direction θ varies monotonically in time. Therefore,
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FIG. 2: (color online) Rotation and orbital revolution of a particle in the counter-clockwise direc-

tion. Trajectory in real space is displayed for (a) revolution I motion for γ = 1 and b3 = 0.5, (b)

revolution II motion for γ = 1 and b3 = 0.9, and (c) circular motion for γ = 3 and b3 = 0.5. The

particle size in (a) - (c) is reduced by the factor of 1/4 for the sake of clarity. (d) Radius of the

circular orbit in real space, (e) the relative angle ψ, and (f) the spinning variable ω as a function

of γ for b3 = 0.5.

the particle is elliptically deformed while the centre of mass does not move and undergoes

clockwise or counter-clockwise rotations depending on the initial condition. We call this

motion as a spinning motion throughout this article. The white square symbols and the plus

symbols mean two different circular motions, which we call the revolution I and revolution

II states, respectively. In both of these states, all of the variable ω, s, and v take finite

constant values and the angles φ and θ varies monotonically in time, keeping their difference

ψ = θ−φ constant in time. The trajectories of the revolution I and II motions in real space
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are displayed in Figs. 2(a) and (b), where some snapshots of the particle which undergoes

counter-clockwise rotation are shown. In both states, clockwise rotation can also appear

depending on the initial condition. It is noted in Fig. 1 that there is a region where the

revolution I and revolution II states coexist. The properties of the revolution I and II states

will be discussed in detail in Sec. IV.

There is another orbital revolution which appears for large values of γ in the region

indicated by the diamonds in Fig. 1. We call this state as a circular state where ω = 0

while the values of v and s are finite constants and the angle of the propagating direction φ

and the elongation direction θ varies monotonically with a fixed finite difference ψ = θ− φ.

The trajectory and the particle shape of a counter-clockwise circular motion in real space

are displayed in Fig. 2(c). Since no spinning motion occurs, this is nothing but the circular

motion obtained in Ref. [24].

The quantitative differences of these three motions are summarized in Figs. 2(d), (e) and

(f). In Fig. 2(d), the radius of the circular orbit in real space of the revolution I motion, the

revolution II motion, and the circular motion is plotted as a function of γ by the squares,

the circles, and the triangles respectively. In drawing a particle, the radius of an undeformed

circular particle is set to be r0 = 2 throughout the present paper. The radius of the revolution

I motion in a larger scale is also plotted by the open squares. Here, note that the radius

of the revolution I motion becomes extremely large around γ = 2.33. This will be analyzed

theoretically in section IV. In Figs. 2(e) and (f), the values of the variables ψ and ω are

plotted for ω ≥ 0, respectively. Note that ψ for the revolution I motion (the stars) is larger

than π/2 whereas ψ for the revolution II (the pluses) and circular (the crosses) motions is

less than π/2, which is consistent with the particle configuration in Fig. 2(a). The values

of ψ of the revolution II state smoothly connect with those of the circular state at around

γ = 2.3. There is no such a connection with that of the revolution I state. Similarly, in

Fig. 2(f), the values of ω of the revolution II state (the triangles) continuously connect with

those of the circular motion (the diamonds) at around γ = 2.3, but no such a connection

occurs with the revolution I state (the circles).

In the region of the white circles around γ = 1 and b3 = 0.75 in Fig. 1, a quasi-periodic I

state appears, whose trajectory of a counter-clockwise rotation is displayed in Fig. 3(a). In

Fig. 3(b), we show the return map of this motion, which is obtained at the Poincaré section

indicated by the horizontal line in Fig. 3(a). In this state, all of the variables v, φ, s, θ, and
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FIG. 3: (color online) (a) Trajectory and (b) return map of the quasi-periodic I motion for γ = 1

and b3 = 0.8 in the real space. The trajectory for a shorter time interval is indicated by the thick

solid line in (a). The return map is obtained at the Poincaré section indicated by the horizontal

line in (a).
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FIG. 4: (color online) (a) Trajectory and (b) return map of the quasi-periodic I motion for γ = 1

and b3 = 0.9 in the real space. The trajectory for a shorter time interval is shown by the thick

solid line in (a) together with the chronological order 1, 2, 3, and 4. The return map is obtained

at the Poincaré section indicated by the horizontal line in (a).

ω, as well as the difference ψ = θ − φ are time-dependent. There is another quasi-periodic

motion called a quasi-periodic II state in the region of the triangles in Fig. 1. One example

of the trajectory in real space is shown in Fig. 4(a) for γ = 1 and b3 = 0.9, where a particle

rotates in the counter-clockwise direction. Some parts of the trajectory are highlighted by

the thick solid line together with the number indicating the chronological order. In this

state, all of the variables ω and v and s are non-zero, and both of φ and θ as well as their
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FIG. 5: (color online) Attractors in the s-ψ plane for the revolution I and II states, the quasi-

periodic I and II states, the period-doubling state, and the chaotic state for positive values of ω

and for γ = 1 and (a) b3 = 0.3, (b) b3 = 0.5, (c) b3 = 0.8, (d) b3 = 0.82, (e) b3 = 0.844, and (f)

b3 = 0.9. The broken line is the nullcline for ds/dt = 0 and the dotted line is the nullcline for

dψ/dt = 0 obtained from the reduced equations (31) and (32). The double circle (white circle)

is the stable (unstable) fixed point corresponding to the revolution I state. The black square

indicates the saddle point and the filled circle indicates the stable fixed point corresponding to the

revolution II state. The limit cycles in (c) and (f) correspond to the quasi-periodic I and II states

respectively. The attractors in (d) and (e) correspond to the period-doubling state and the chaotic

state respectively.

difference ψ = θ − φ are time-dependent. In Fig. 4(b), we show the return map of the

quasi-periodic II motion, which is obtained at the Poincaré section at the horizontal line in

Fig. 4(a). Note that both the quasi-periodic I and II states coexist with the revolution II

state (plus symbols) in Fig. 1.

In order to elucidate further each motion described above, we consider the dynamics on

the s-ψ plane. Figure 5 shows the attractors for γ = 1 and for different values of b3. In

Figs. 5 (a) for b3 = 0.3 and (b) for b3 = 0.5, the stable fixed point indicated by the double

circle is the solution of the revolution I state. In Fig. 5(b) another stable fixed point of

the revolution II state indicated by the black circle appears as a saddle-node bifurcation.

In Fig. 5(c) for b3 = 0.8, the fixed point corresponding to the revolution I state becomes

unstable via a Hopf bifurcation and a limit cycle oscillation appears which represents the

quasi-periodic I state. Increasing b3, the simple limit cycle of the quasi-periodic I state

becomes unstable and a period-doubling occurs as shown in Fig. 5(d) for b3 = 0.82. By
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FIG. 6: (color online) Trajectory in the s-φ plane for (a) the quasi-periodic I state, (b) the period-

doubling state, (c) the chaotic state, and (d) the quasi-periodic II state. The thicker (dotted) lines

indicate the trajectories for a shorter (longer) time interval. The parameters are the same as those

in Fig. 5(c) - (f) respectively.

increasing b3 further, a chaotic state appears as shown in Fig. 5(e) for b3 = 0.844. When b3

is extremely large, it turns out that ψ varies from 0 to π as shown in Fig. 5(f) for b3 = 0.9,

which corresponds to the quasi-periodic II state. Figure 5 shows the case of positive values

of ω. The attractors and the nullclines for negative values of ω can be obtained by replacing

ψ by π − ψ.

Now a question arises. Why does a limit cycle oscillation in the s-ψ plane cause the

quasi-periodic I motion in the real space? Similar problems exist for the period-doubling

too. The origin can be traced back to the isotropy of space. In fact, the dynamics of the

system is governed by the set of Eqs. (7), (9), (11) and (12) whose solutions behave as shown

in Fig. 5. However, when we plot the trajectory of the particle in the real space, we have

to solve Eq. (8) for the angle φ of the velocity. The magnitude s of deformation is shown

in Fig. 6 as a function of φ for the parameters corresponding to those of Fig. 5(c) - (f). It

is evident from Figs. 5(a) and 6(a) that the trajectory on the s − ψ − φ space composes

a torus and hence a quasi-periodic I motion can appear. Other complex dynamics of the

period doubling, chaotic motion and quasi-periodic II motion can also be understood from

Figs. 6(b), (c) and (d), respectively.

As explained above, the limit cycle corresponding to the quasi-periodic I state becomes

unstable by increasing the values of b3 and the period-doubling bifurcation occurs as shown

in Fig. 5(d). The corresponding trajectory in the real space is displayed in Fig. 7(a). Further
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FIG. 7: (color online) Trajectory in the real space of (a) period-doubling state and (b) chaotic

state. The trajectory for a shorter time interval is shown by the thick solid line. The parameters

are chosen as γ = 1 and (a) b3 = 0.82 and (b) b3 = 0.844.
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FIG. 8: Bifurcation diagram near and in the chaotic regime obtained from Eqs. (7) - (11) with

γ = 1 imposing the conditions cos 2ψ = 0.7, sin 2ψ < 0, dψ/dt > 0, and ω > 0.

increase of b3 leads to a chaotic motion as shown in Fig. 7(b). This chaotic state eventually

disappears for larger values of b3 and, in turn, the quasi-periodic II state appears. This

series of the dynamical transitions from the quasi-periodic I state for b3 = 0.8 to the quasi-

periodic II state for b3 = 0.9 are not shown in Fig. 1 due to the size of the grid. However we

show, in Fig. 8, the bifurcation diagram in the vicinity of the chaotic regime is displayed,

which has been obtained numerically from Eqs. (7) - (11) with γ = 1 under the conditions

cos 2ψ = 0.7, sin 2ψ < 0, dψ/dt > 0, and ω > 0. This is a typical route to chaos via period-

doubling bifurcation well known in a logistic map [44]. Because of the choice dψ/dt > 0,

the quasi-periodic II state with ω > 0, where ψ decreases monotonically, does not appear in

Fig. 8.
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IV. ANALYSIS OF BIFURCATIONS

In this section, we analyze the bifurcations found numerically in Section III. However,

direct analysis of set of Eqs. (7) - (12) for the four independent variables seems impossible.

Therefore we have to introduce some approximations or simplification. Since our main

concern is the coupling between spinning motion and deformation, we retain the deformation

degrees of freedom S and eliminate the variables v and ω by putting dv/dt = d/ω/dt = 0

in Eqs. (7) and (11), respectively. The stability and bifurcations of the solutions to the set

of Eqs. (9) and (12) are investigated. It is emphasized that this approach is justified when

the particle is sufficiently soft and near the stability threshold where a rectilinear motion

becomes unstable in the absence of spinning, that is, for κ� 1 and γ ∼ γc where γc is given

by Eq. (13).

Numerical simulations in the preceding section have been carried out in the condition that

all the parameters are of the order of unity. Therefore the comparison with the predictions

obtained by the reduced set of Eqs. (9) and (12) is expected to be qualitative. Nevertheless,

it will be found that some of the phase boundaries in the dynamical phase diagram in Fig.

1 agree semi-quantitatively with the theoretical results.

By putting dv/dt = 0 in Eq. (7), the velocity v can be expressed as

v =

 0 when Γ ≤ 0

Γ1/2 when Γ > 0
, (15)

where

Γ = γ − a1

2
s cos 2ψ. (16)

Equation (11) with dω/dt = 0 gives us three stable solutions:

ω =

 0 for ζ − c2s
2 ≤ 0

±ω̃(s) for ζ − c2s
2 > 0

, (17)

where

ω̃(s) ≡
(
ζ − c2s

2
)1/2

. (18)

First, we consider the motionless state v = 0. In this case, the angle of the propagating

direction φ has no meaning. Therefore, Eqs. (9) and (10) become

ds

dt
= −κs+ b3sω

2, (19)

dθ

dt
= b2ω. (20)
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Since ω is given by Eq. (17), Eq. (19) is closed for s. Therefore, it is sufficient to analyze

the stability of the fixed point of Eq. (19). If ω = 0, Eq. (19) becomes,

ds

dt
= −κs. (21)

Since κ > 0, we have the solution s = 0. However, this gives rise to ζ − c2s
2 = ζ > 0, which

contradicts the condition ζ − c2s
2 < 0 for ω = 0 in Eq. (17). On the other hand, if ω = ±ω̃,

Eq. (19) becomes
ds

dt
= −b3c2

(
s2 −K

)
s, (22)

where we have defined

K =
ζ − κ̃

c2
, (23)

κ̃ =
κ

b3
. (24)

We obtain a stable solution s = 0 for K < 0, which loses its stability at K = 0 and a pair of

other stable solutions s = ±
√
K appears via a pitchfork bifurcation. The stability condition

ζ − c2s
2 > 0 of ω = ±ω̃ in Eq. (15) is satisfied for both of the stable solutions. The rotating

frequency ω is given from Eq. (18) by ±
√
ζ for s = 0 and ±

√
κ̃ for s = ±

√
K, respectively.

We identify these stable fixed points with the states with v = 0 obtained from the original

equations (7) - (11). First, note that, when s = 0, the circular particle is not deformed and

hence the angle of the longitudinal axis of the deformation θ loses its meaning. Therefore, the

solution (s, ω) = (0,±
√
ζ) corresponds to the motionless state. In the same way, the pair

of the solutions (
√
K,±

√
κ̃) corresponds to the counter-clockwise and clockwise spinning

motion. The pitchfork bifurcation mentioned above is a bifurcation from the motionless

state to the spinning state. The bifurcation threshold b3 = b∗3 is given by the condition

K = 0 as

b∗3 =
κ

ζ
. (25)

The bifurcation threshold (25) is indicated by the thick broken line in Fig. 1 in a good

agreement with the numerical results obtained from Eqs. (7) - (11).

The condition Γ ≤ 0 for v = 0 in Eq. (15) should be satisfied for both the motionless state

and the spinning state without migration. In the motionless state, which is represented by

the stable fixed point (s, ω) = (0,±
√
ζ), the condition becomes Γ = γ < 0. On the other

hand, the derivation of the condition for the spinning state in terms of the original parameters
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is more involved. As we have shown above, the variables are given by (s, ω) = (
√
K,±

√
κ̃)

in the spinning state. By substituting these variables into Eq. (16), the condition in Eq. (15)

is written as

Γ = γ − a1

2
K1/2 cos 2ψ < 0. (26)

Although the variable ψ loses its meaning when v = 0, we may define it around the bifurca-

tion from v = 0 to v 6= 0. In fact, from Eq. (12) with v = 0, we obtain

dψ

dt
=
a1

2
K1/2 sin 2ψ + χω (b2 − a2) κ̃

1/2, (27)

where χω is the sign of ω. The steady solution is given by

sin 2ψ = −2χω(b2 − a2)

a1

(
κ̃

K

)1/2

. (28)

Here, the stability condition of the solution (28) is given from Eq. (27) by a1 cos 2ψ < 0.

Then, by using Eq. (28), the condition (26) for v = 0 becomes γ < γ†, where

γ† =
a1

2

(
K − 4(b2 − a2)

2κ̃

a2
1

)1/2

. (29)

This expression is valid as long as Eq. (28) satisfies | sin 2ψ| ≤ 1 which imposes a constraint

for b3 as b3 ≥ b†3, where

b†3 =
κ

ζ

{
1 +

4c2(b2 − a2)
2

a2
1

}
. (30)

On the other hand, for b∗3 < b3 < b†3, Eq. (27) has no steady solution, and hence ψ varies

from 0 to π. Therefore, on the average of cos 2ψ, the condition for v = 0, given by Eq. (26),

becomes γ < 0. Consequently, the stability threshold of v = 0 in Eq. (15) is given by γ = 0

for 0 < b3 < b†3 and γ = γ† for b3 > b†3 where b†3 = 0.375. The bifurcation threshold from

v = 0 to a finite v obtained in this way is shown by the thin solid line in Fig. 1, which is

consistent with the numerical results of Eqs. (7) - (11).

Next, we derive the stability condition for the migrating states v 6= 0. The velocity is

given from Eq. (15) by v =
√

Γ with Γ given by Eq. (16). Then, from Eqs. (8) - (10), the

time-evolution equations become

ds

dt
= −κ(1 +B cos2 2ψ)s+ b1γ cos 2ψ + b3sω

2, (31)

dψ

dt
= −

(
b1γ

2s
− κ

2
B cos 2ψ − a1

2
s

)
sin 2ψ + (b2 − a2)ω, (32)
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where ω and B are given by Eq. (17) and Eq. (14), respectively. When ω = ±ω̃, there is a

constraint ζ − c2s
2 > 0 as well as s > 0 and Γ > 0. The linear stability matrix of Eqs. (31)

and (32) is defined by

L(s, ψ) =

 ∂s(ds/dt) ∂ψ(ds/dt)

∂s(dψ/dt) ∂ψ(dψ/dt)

 , (33)

where ∂s means the partial derivative with respect to s. The method we employ to obtain

the stability of the fixed points is as follows; first, we evaluate numerically the fixed point

of Eqs. (31) and (32) with ω = ±ω̃ under the constraints Γ > 0 and ζ − c2s
2 > 0. Then,

by using the determinant and the trace of the linear stability matrix (33), we can examine

the stability of the fixed point. Note that the reduced equations (31) and (32) are invariant

under the simultaneous transition ω → −ω and ψ → π − ψ. Therefore, we will consider

only the case of ω = +ω̃ hereafter.

The nullclines and the fixed points obtained from Eqs. (31) and (32) with ω = ω̃ are

plotted on the s-ψ plane as shown in Fig. 5, where the attractors obtained numerically from

Eqs. (7) - (11) are also superposed. The s- and ψ-nullclines are displayed by the broken

line and the dotted line respectively. The black squares and the white circles indicate the

saddle points and the unstable fixed points of Eqs. (31) and (32). The double circles and

the black circles are the attractors of the revolution I and II states respectively obtained

from Eqs. (7) - (11), which agree, within numerical accuracy, with the stable fixed points

obtained from Eqs. (31) and (32). The limit cycle orbit corresponding to the quasi-periodic

I state obtained from Eqs. (7) - (11) exists around the unstable fixed point. The stability

analysis of the fixed points of the reduced equations, Eqs. (31) and (32) with ω = ω̃, show

a good agreement with the bifurcation behavior obtained from the numerical simulations of

the original equations (7) - (11).

The stable and unstable blanches of the steady solution s for ω 6= 0 are displayed in

Fig. 9(a) for γ = 1 and by varying the value of b3. There are at most three fixed points;

One is plotted by the thick solid line, which corresponds to the stable revolution I state.

This fixed point loses its stability at around b3 = 0.66 by a Hopf bifurcation and becomes

an unstable fixed point, displayed by the thick dotted-broken line. At around b3 = 0.48, a

pair of another stable fixed point and a saddle point appears by a saddle node bifurcation,

which are displayed by the thin solid line and the broken line, respectively. This stable fixed

point corresponds to the revolution II state.
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FIG. 9: (color online) Bifurcation diagram varying (a) b3 for γ = 1 and (b) γ for b3 = 0.5. The

stationary value of s is obtained from the reduced equations (31) and (32) with ω given by Eq. (17).

The thick and thin solid lines indicate revolution I and II states respectively. The dotted broken

line and the dotted line indicate the unstable solutions. In Fig. (b), the stable solution with ω = 0,

which corresponds to the circular state, is also shown (the line indicated by “c”).

Finally, we investigate the dynamics around the region ω = 0. The fixed point of Eqs. (31)

and (32) with ω = 0 is given by

s =
b1γ cos 2ψ

κ (1 +B cos2 2ψ)
, (34)

and

tan 2ψ = 0 for γ ≤ γc, (35)

cos2 2ψ =
κ

2B(γ − κ/2)
for γ ≥ γc, (36)

where γc has been defined by Eq. (13). From Eq. (34), the requirement of the positivity of

v in Eq. (15) gives us

Γ = γ − Bγ cos2 2ψ

1 +B cos2 2ψ
=

γ

1 + B cos2 2ψ
> 0. (37)

Since B is positive from the definition (14), this requirement is satisfied as long as γ > 0.

These results are consistent with those in Ref. [24], where the spinning motion was not

considered. The condition ζ − c2s
2 ≤ 0 must be satisfied for ω = 0 in Eq. (17). From

Eqs. (34) and (36), this condition is written as

ζ − c2(b1γ)
2 cos2 2ψ

κ2(1 +B cos2 2ψ)2
= ζ − c2b

2
1(γ − κ/2)

2κB
≤ 0. (38)

This leads to γ ≥ γ∗ for c2 > 0 where the bifurcation threshold γ∗ is given by

γ∗ =
κ

2
+

2κBζ

b21c2
=
κ

2
+
a1ζ

b1c2
. (39)
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FIG. 10: (color online) Angular velocity dφ/dt, given by Eq. (8), of the revolution I state with

ω > 0 obtained numerically from Eqs. (7) - (11). Between γ = 2.33 and 2.34, the sign of dφ/dt

changes from positive to negative, where the radius of the circular trajectory in real space diverges

as shown in Fig. 2(d).

It is noted from Eqs. (13) and (39) that γc = 0.75 and γ∗ = 2.25.

These results are summarized in Fig. 9(b), where the fixed point values of s and its

stability are plotted for ω = 0 together with those for ω = ω̃ by changing the values of γ

for the fixed value of b3 = 0.5. For large values of γ, there is only one stable fixed point

with ω = 0 shown by the thin solid line in Fig. 9(b), which corresponds to the circular

state. Around γ = 2.427, another stable fixed point and an unstable saddle point with finite

ω appear by a saddle node bifurcation, which are shown by the thick solid line (re-I) and

by the thick broken line, respectively. By decreasing the value of γ, the stable fixed point,

which corresponds to the revolution I state, becomes unstable around γ = 0.8. On the

other hand, the line of the saddle point crosses with the line of the stable fixed point of the

circular state at around γ = γ∗. Then, the circular state loses its stability and the saddle

point become stable by a transcritical bifurcation. This stable fixed point indicated by the

solid line (re-II) corresponds to the revolution II state.

It is mentioned that the anomalous behavior of the radius in the revolution I motion at

γ ≈ 2.33 shown in Fig. 2(d) is reproduced by the reduced set of equations (31) and (32)

with Eq. (8). In Fig. 10, we have plotted dφ/dt as a function of γ substituting the stationary

values of the revolution I state. It is found that the angular velocity changes its sign around

γ ≈ 2.33 from positive to negative by increasing γ. This causes an anomalously large radius

of the circular trajectory in the real space and the change of rotating direction.
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In summary, the reduced equations (31) and (32) for s and ψ, and the time-evolution

equation (8) for φ together with v =
√

Γ and ω = ±ω̃ reproduce all of the revolution I and

II states, the circular state and the quasi-periodic I and II states. However, they do not

reproduce the periodic-doubling state and the chaotic state.

V. DISCUSSION

In this paper, we have investigated in two dimensions the dynamics of a deformable self-

propelled particle having a spinning degree of freedom. By numerical simulations of Eqs.

(1) - (3), we have obtained a dynamical phase diagram as shown in Fig. 1 for κ = 0.5,

which displays a rich variety of dynamical states. Apart from the motionless state, there

are the spinning state, three types of revolution states and two quasi-periodic states. The

trajectories in the real space of the latter five states are displayed in Fig. 2, Fig. 3(a) and

Fig. 4(a). The period-doubling and chaotic motions, as shown in Fig. 7, are also obtained

between the quasi-periodic I and II states.

Theoretical analysis has been developed for the bifurcations between these dynamical

states based on the two-variable equations (19) and (20) for v = 0, and Eqs. (31) and

(32) for finite values of v. This simplified set of equations succeeds in reproducing all

the bifurcations except for the chaotic behavior between the quasi-periodic I and II states.

Although not described here, we have verified that all of the dynamics can be reproduced if

we employ the three-variable system in terms of s, ψ, and ω. However, another set of three

variables s, ψ, and v is unable to realize the chaotic state.

We have found numerically an anomalous increase of the radius in the revolution I state

as shown in Fig. 2(d). This anomaly originates from the existence of zero in dφ/dt as a

function of γ in the revolution I state as shown in Fig. 10. This is obtained numerically

from the original equations (7) - (11) for b3 = 0.5 with ω > 0. The angular velocity dφ/dt

is positive for γ <∼ 2.33 while is becomes negative for γ >∼ 2.34. Therefore, a particle in the

revolution I state with ω > 0 undergoes a counter-clockwise orbital rotation for γ <∼ 2.33,

whereas it rotates to the clockwise direction for γ >∼ 2.34. This implies that if a noise term

is added in Eq. (8), a particle changes randomly the rotation direction in the vicinity of the

anomalous point.

Our representation of the basic set of equations (1) - (4) is independent of the dimen-



20

sionality. Therefore, the present study of spinning motion of a soft particle can be readily

extended to three dimensions. It is of particular interest to investigate the case that the spin-

ning axis is parallel to the migration velocity. This corresponds to the motion of flagellated

bacteria [37, 38]. We will return to this problem somewhere in the near future.
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