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Hawking-Moss instanton in nonlinear massive gravity
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Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
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As a first step toward understanding a lanscape of vacua in a theory of non-linear massive gravity,
we consider a landscape of a single scalar field and study tunneling between a pair of adjacent
vacua. We study the Hawking-Moss (HM) instanton that sits at a local maximum of the potential,
and evaluate the dependence of the tunneling rate on the parameters of the theory. It is found
that provided with the same physical HM Hubble parameter HHM , depending on the values of
parameters α3 and α4 in the action (2.2), the corresponding tunneling rate can be either enhanced
or suppressed when compared to the one in the context of General Relativity (GR). Furthermore,
we find the constraint on the ratio of the physical Hubble parameter to the fiducial one, which
constrains the form of potential. This result is in sharp contrast to GR where there is no bound on
the minimum value of the potential.

I. INTRODUCTION

It is of great interest to promote Einstein’s gravity theory to a massive one [1]. However, it has been shown that
Lorentz-invariant massive gravity theories would suffer from the Boulware-Deser (BD) ghost instability [2, 3]
(For a review, see e.g. Ref. [4, 5]). Recently, a non-linear construction of a Lorentz-invariant massive gravity
theory has been proposed in Refs. [6–8], where the nonlinear terms are designed so that the BD ghost is removed
by using the constraint equations [9, 10]. Many researches have been made to explore its physical consequences
since this breakthrough.
One of the most interesting results among these explorations is that such a massive gravity theory allows

self-accelerating solutions (e.g. for Minkowski fiducial metric, see [11–16]; for deSitter fiducial metric, see [17];
for a more general case where fiducial metric respects only isotropy, see [18]). While cosmological solutions in
usual massive gravity theories are known to suffer from appearance of a ghost within 5 degrees of freedom of
the massive graviton [19–21], it has been proved that perturbations on the solution found in Ref. [12] do not
have massive degrees of freedom and evade the ghost instability at linear order [22]. 1

Though the mass of graviton may successfully explain the current acceleration, it is still to be explained
why the cosmological constant is so small while large quantum corrections are expected. 2 In spite of many
attempts, this problem, so called “the cosmological constant problem” [26, 27], has not been solved yet.
A possible resolution to this problem is the anthropic selection of the cosmological constant in the landscape

of vacua [26–28]. In the landscape of vacua, a vacuum can be unstable with respect to tunneling to other vacua.
The main interest of this paper is to investigate how the stability of a vacuum is determined in the non-linear
massive gravity theory. We investigate how the tunneling rate in general relativity (GR) is modified by the
graviton mass terms and clarify dependence on the model parameters. Moreover, an interesting possibility
will arise if the graviton mass depends on a value of a scalar field [29–31], e.g., the tunneling field. In this
case, the effective cosmological constant of a vacuum can be larger than the other while its potential energy is
smaller because of the contributions from the mass terms. It will be interesting to see how the tunneling process
proceeds in this case.
In this paper, we consider the Hawking-Moss (HM) solution [32] for a scalar field with minimal coupling to

gravity to understand the tunneling process in non-linear massive gravity. We set up the model and found a
bounce solution corresponding to a HM solution. Based on this solution, we evaluate the HM action and the
contributions from the graviton mass terms. We find they may either enhance or suppress the tunneling rate
compared to that in GR.
This paper is organized as follows. In Sec. II, we setup the Lagrangian for our model. In Sec. III, we

formulate the equations of motion (EOM) and solve the constraint equation. In Sec. IV, the HM solution is

∗ E-mail address: yingli@yukawa.kyoto-u.ac.jp
† E-mail address: rsaito@yukawa.kyoto-u.ac.jp
‡ E-mail address: misao@yukawa.kyoto-u.ac.jp
1 See also the recent discussion on the ghost instability at nonlinear level [23–25].
2 Note that the graviton mass does not receive a large quantum correction because the other parts, where the general coordinate
invariance symmetry is respected, do not induce a correction to the mass terms.
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FIG. 1: Illustration of the potential V (σ) with two local minima σF and σT , which correspond to the false and true
vacuum respectively. Here the σtop labels its local maximum value.

studied. To analyze the effect of the graviton mass terms in details, we consider several specific combinations
of the parameters.
Throughout the paper, the Lorentzian metric signature is set to be (−,+,+,+).

II. SETUP

We study a tunneling of a minimally coupled scalar field σ between two vacua in non-linear massive gravity.
It is described by a 4-dimensional metric gµν , a fiducial metric Gab, and the Stückelberg fields φa. 3 The action
is given by 4

S = Ig + Im, (2.1)

Ig ≡
∫

d4x
√−g

[

R

2
+m2

g(L2 + α3L3 + α4L4)

]

, (2.2)

Im ≡ −
∫

d4x
√−g

[

1

2
(∂σ)2 + V (σ)

]

, (2.3)

where

L2 =
1

2

(

[K]
2 −

[

K2
]

)

,

L3 =
1

6

(

[K]3 − 3 [K]
[

K2
]

+ 2
[

K3
]

)

,

L4 =
1

24

(

[K]4 − 6 [K]2
[

K2
]

+ 3
[

K2
]2

+ 8 [K]
[

K3
]

− 6
[

K4
]

)

, (2.4)

and

Kµ
ν ≡ δµν −

√

gµσGab(φ)∂νφa∂σφb. (2.5)

In this paper we assume Gab is non-dynamical as discussed below. The potential V (σ) is assumed to have two
local minima σF and σT , where the former corresponds to the false vacuum, and a local maximum between
them, σ = σtop (see Fig. 1).

3 We use Greek letters µ, ν, ... for the spacetime indices and the Latin letters i, j, ... for the space indices, while the Latin indices
a, b, ... for the internal space (Lorentz frame) indices. Repeated indices are understood to be summed over unless otherwise
stated.

4 We use the natural units throughout this paper.
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Provided the action (2.1), the Euclidean action can be obtained by SE = iS[x0 → ix0
E ]. Then, in the

semiclassical limit, the tunneling rate per unit time per unit volume is given in terms of the Euclidean action as

Γ/V = Ae−B ; B = SE [ḡµν,B, φ̄B ]− SE [ḡµν,F , φ̄F ] , (2.6)

where {ḡµν,B, φ̄B} is the so-called bounce solution, or an instanton, a solution of the Euclidean equations of
motion with appropriate boundary conditions, and {ḡµν,F , φ̄F } is the solution staying at the false vacuum [33].
Among the bounce solutions, the one that gives the least action dominates the tunneling.
Conventionally a bounce solution {ḡµν,B, φ̄B} is explored assuming O(4)-symmetry. This is because it was

proved that an O(4)-symmetric solution gives the lowest action for a wide class of scalar-field theories [35]. It
is therefore reasonable to assume the same even in the presence of gravity [33]. Hence the metric would take
the form,

gµνdx
µdxν = N(ξ)2dξ2 + a(ξ)2Ωijdx

idxj , (2.7)

where the second term Ωijdx
idxj is the metric on a three-sphere (K > 0),

Ωij ≡ δij +
Kδilδjmxlxm

1−Kδlmxlxm
. (2.8)

However, in massive gravity, this may not be always true if the fiducial metricGab does not respect the symmetry.
In this paper, to avoid possible complications due to the nature of the fiducial metric, we assume that it is

given by the de Sitter metric with the “Hubble parameter” F , namely,

Gab(φ)dφ
adφb ≡ −(dφ0)2 + b(φ0)2Ωijdφ

idφj , (2.9)

where

b(φ0) ≡ F−1
√
K cosh(Fφ0) . (2.10)

Then an O(4)-symmetric solution can be obtained by setting

φ0 = f(ξ) , φi = xi . (2.11)

The absence of the BD ghost has been proved for a general fiducial metric in [10] and the de Sitter fiducial
metric has been recently investigated in [17]. In contrast to the Minkowski fiducial metric, the de Sitter metric
is shown to lead to a wider range of cosmological solutions [17].
At this level, the origin of the fiducial metric is unclear: It may be a non-dynamical metric of the Stückelberg

field space or one of the two dynamical metrics in bimetric gravity [36–38]. In the later case, it may be natural to
use the Euclidean signature also for the fiducial metric, which can be accomplished by making the replacement,
φ0 → iφ0

E (f → ifE), in Eq. (2.11). In this case, the O(4)-symmetric solutions would exist also in the case that
the fiducial metric is given by the Minkowski metric and the bounce solution could be found in a similar way
by setting b(φ0) ≡

√
Kφ0.

Here, we stick to the Lorentzian signature for the fiducial metric because it is non-dynamical in our case.
Nevertheless, thanks to the assumption of the de Sitter fiducial metric, we may adopt the O(4)-ansatz.

III. BASIC EQUATIONS

Here we derive basic equations. First we write down the Euclidean version of the action (2.1). Inserting the
O(4)-ansatz (2.7) and (2.11) into the Euclidean version of (2.5), we find

K0
0 = 1−

√

−ḟ2

N
, Ki

j =

(

1− b

a

)

δij , Ki
0 = 0, K0

i = 0 , (3.1)
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where the dot means a derivative with respect to the radial coordinate, ˙ ≡ d/dξ. This gives

[K] =



1−

√

−ḟ2

N



+ 3

(

1− b

a

)

, (3.2)

[K2] =



1−

√

−ḟ2

N





2

+ 3

(

1− b

a

)2

, (3.3)

[K3] =



1−

√

−ḟ2

N





3

+ 3

(

1− b

a

)3

, (3.4)

[K4] =



1−

√

−ḟ2

N





4

+ 3

(

1− b

a

)4

. (3.5)

Then the gravity action is reduced to

IgE =

∫

d4xE

√
Ω

[

−3KNa− 3ȧ2a

N
−m2

g (L2E + α3L3E + α4L4E)

]

, (3.6)

where

L2E = 3a(a− b)

(

2Na−
√

−ḟ2a−Nb

)

, (3.7a)

L3E = (a− b)2
(

4Na− 3

√

−ḟ2a−Nb

)

, (3.7b)

L4E = (a− b)3
(

N −
√

−ḟ2

)

, (3.7c)

and the action for the tunneling field is reduced to

ImE =

∫

d4x a3
√
Ω

[

1

2N
σ̇2 +NV (σ)

]

, (3.8)

which coincides with the Euclidean version of the action (2.8) in Ref. [12] if we replace f by b(f).

A. Constraint equation from the Stückelberg field

The introduction of the Stückelberg field gives rise to an additional constrait equation. Variation of the action
(3.6) with respect to f gives

(iȧ+Nb,f)

[

(

3− 2b

a

)

+ α3

(

1− b

a

)(

3− b

a

)

+ α4

(

1− b

a

)2
]

= 0 , (3.9)

where

b,f ≡ db

df
=

√
K sinh(Ff) . (3.10)

Note that the derivation of the above equation does not depends on the choice of a branch of

√

−ḟ2.

Solving Eq. (3.9), we obtain two branches:

- Branch I

Nb,f = −iȧ . (3.11)



5

- Branch II

(

3− 2b

a

)

+ α3

(

1− b

a

)(

3− b

a

)

+ α4

(

1− b

a

)2

= 0 . (3.12)

The solution to this equation is given by

b = X±a , X± ≡ 1 + 2α3 + α4 ±
√

1 + α3 + α2
3 − α4

α3 + α4
. (3.13)

Hereafter, we call the choice X+ as Branch II+ and X− as Branch II−. In Appendix A, it is shown that
Branch I is equivalent to Branch II with a different set of parameters in the case of the HM solution. Hence,
we concentrate on the Branch II solutions hereafter.

B. Euclidean equations of motion

Variation of the action (3.6) and (3.8) with respect to N gives

3

(

ȧ

Na

)2

− 3K

a2
=

1

2N2
σ̇2 − V (σ)− ρg , (3.14)

where

ρg ≡ −m2
g

(

1− b

a

)

[

3

(

2− b

a

)

+ α3

(

1− b

a

)(

4− b

a

)

+ α4

(

1− b

a

)2
]

. (3.15)

Inserting the solution (3.13) into the above, ρg reduces to a cosmological constant,

ρg(b/a = X±) = Λ± ≡ −
m2

g

(α3 + α4)
2

[

(1 + α3)
(

2 + α3 + 2α2
3 − 3α4

)

± 2
(

1 + α3 + α2
3 − α4

)3/2
]

. (3.16)

Variation of the action (3.8) with respect to σ gives

1

Na3

(

a3σ̇

N

)·

− V,σ = 0 . (3.17)

Introducing the proper radial coordinate τ ≡
∫

Ndξ, the equations are rewritten as

3

a2

(

da

dτ

)2

− 3K

a2
=

1

2

(

dσ

dτ

)2

− V (σ) − Λ± , (3.18)

d2σ

dτ2
+ 3

(

da

dτ

)

dσ

dτ
− V,σ(σ) = 0 . (3.19)

As explained in the previous section, the tunneling rate (2.6) is given by the Euclidean action evaluated for a
solution of Eqs. (3.18) and (3.19). In the following, we construct a HM solution and then evaluate the action
for it.

IV. HAWKING-MOSS SOLUTION

A. Evaluation of the tunneling rate

A HM solution can be found by setting the tunneling field to the local maximum value, σ(ξ) = σtop. Then
the equation of motion (3.19) is trivially satisfied and the Euclidean Friedmann equation (3.18) reduces to

3

a2

(

da

dτ

)2

− 3K

a2
= −V (σtop)− Λ± ≡ −Λ±,eff . (4.1)
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Setting the boundary condition as aHM(HHMτ = ±π/2) = 0 and assuming Λ±,eff > 0, the HM solution is
obtained as

aHM(τ) = H−1
HM

√
K cos (HHMτ) . (4.2)

Here, we have introduced the Hubble parameter of the physical metric by

HHM ≡
√

Λ±,eff

3
=

√

V (σtop) + Λ±

3
. (4.3)

Inserting Eq. (4.1) into the Euclidian action given by Eqs. (3.6) and (3.8), and using N−1ḟ = df/dτ , the total
action can be expressed as

SE [aHM, σtop] =

∫

d3x
√
Ω

∫ π/2HHM

−π/2HHM

dτ a3HM



2Λ±,eff − 6K

a2HM

+m2
gY±

√

−
(

dfHM

dτ

)2


 , (4.4)

where, for brevity, we have introduced the parameter Y± in terms of X± as

Y± ≡ 3(1−X±) + 3α3(1−X±)
2 + α4(1 −X±)

3 . (4.5)

We also need the solution for the Stückelberg field f to evaluate the action. It is given in terms of aHM as in
Eq. (3.13),

bHM = F−1
√
K cosh(FfHM) = X±aHM . (4.6)

This can be solved for f as

fHM(τ) =
1

F
ln

[

αHM cos(HHMτ) ±
√

α2
HM cos2(HHMτ) − 1

]

, (4.7)

where the parameter α is defined as

αHM ≡ X±

F

HHM
. (4.8)

As clear from the above definition, the parameter αHM represents the ratio of the Hubble parameter of the
fiducial metric and that of the physical metric. Since X± should be positive for the constraint (3.13) to be
satisfied, αHM is also positive.
Finally, we evaluate the derivative of f since the action (4.4) depends on the Stückelberg field only through

df/dτ . Taking a derivative of Eq. (4.6) with respect to τ , one obtains

dfHM

dτ
= − X± sin(HHMτ)

sinh(FfHM (τ))
, (4.9)

where sinh(FfHM ) can be calculated from Eq. (4.6) as

sinh(FfHM ) = ±
√

α2
HM cos2(HHMτ)− 1 . (4.10)

Though we have obtained “±” branches for df/dτ here, the sign is irrelevant because the action (4.4) depends
only on its square,

(

dfHM

dτ

)2

=
X2

± sin2(HHMτ)

α2
HM cos2(HHMτ)− 1

. (4.11)

Here we note that we can evaluate dfE/dτ (fE = −if) in a similar way for the Minkowski fiducial metric by

setting bHM =
√
KfE in Eq. (4.6). Taking a derivative with respect to τ , one obtains

dfE,HM

dτ
= −X± sin(HHMτ) . (4.12)
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The square of this equation coincides with Eq. (4.11) with αHM = 0 after making the replacement fE = −if .
Hence, the analysis below includes the results for the Minkowski fiducial metric.
Note that the solution for φ0

HM = fHM does not diverge in the limit mg → 0. Hence, our results continuously
reduce to the results in GR. This is consistent with the observations that there is no vDVZ discontinuity in the
self-accelerating branch [15, 22, 23].
It should also be noted that the induced metric Gab∂µφ

a∂νφ
b in the case of αHM > 1 has a “singularity”,

where ḟ becomes infinite, and becomes neither pure imaginary nor pure real. The singularity would also appear
even if we had started from the Euclidean signature for the fiducial metric. In this case, the four sphere for the
fiducial metric would crunch before the physical one does. For this reason, we concentrate on the case where
αHM ≤ 1.
As easily seen from the solution (4.7), the Stückelberg field becomes complex in general. However, as we will

see, the action turns out to be real for αHM ≤ 1. We also note that if we start from the Euclidean fiducial
metric, fHM and dfHM/dτ become real for αHM ≤ 1.

1. Action for the case α ≤ 1

In the action (3.6), the only non-trivial term is the one that depends on df/dτ . Hence, we first evaluate this
part. Substituting the solution (4.11), we find

m2
gY±

∫ π/2HHM

−π/2HHM

dτ a3HM

√

−
(

dfHM

dτ

)2

=
2m2

gY±X±

H4
HM

K
3

2

∫ π/2

0

d(HHMτ)
cos3(HHMτ) sin(HHMτ)
√

1− α2
HM cos2(HHMτ)

=
2m2

gY±X±

3α4
HMH4

HM

K
3

2

√

1− z2(2 + z2)|0αHM
, (z ≡ αHM cos(HHMτ))

=
2m2

gY±X±

3α4
HMH4

HM

K
3

2

[

2−
√

1− α2
HM(2 + α2

HM)

]

. (4.13)

As claimed, the action is real.

2. Hawking-Moss action

From the result of the previous subsection, we obtain the Euclidean action as

SHM ≡ SE [aHM, σtop] = − 8π2

H2
HM

[

1− Y±X±

6α4
HM

(

mg

HHM

)2 (

2−
√

1− α2
HM(2 + α2

HM)

)

]

= − 8π2

H2
HM

[

1− Y±X±

6

(

mg

HHM

)2

A(αHM)

]

; A(α) ≡ 2−
√
1− α2(2 + α2)

α4
, (4.14)

where
∫

d3x
√
Ω = 2π2K−3/2 has been used. As previously explained, we consider only the case αHM ≤ 1 since a

singularity would appear otherwise. In addition to the standard first term determined by the Hubble parameter
HHM (which nevertheless contains a contribution of the mass term Λ±), there apprears a mass-dependent term.
The presence of this second term may be regarded as the genuine effect of the graviton mass. We also note here
that the function A(α) is regular at α = 0, which corresponds to the case of the Minkowski fiducial metric.
As given by Eq. (2.6), the tunneling rate is determined by the difference between the HM action SHM given

by Eq. (4.14) and the false vacuum action SF = SE(ḡµν,F , φ̄F ). The latter is given similarly as Eq. (4.14) by
replacing the Hubble parameter by

HF ≡
√

V (σF ) + Λ±

3
, (4.15)

and α by its false vacuum value, αF ≡ X±F/HF. We note that αF should not exceed unity either. Since the
potential energy at the false vacuum is always smaller that at the maximum, V (σF ) < V (σtop), we have

αF > αHM ≡ X±F

HHM
. (4.16)



8

Hence the constraint αF ≤ 1 gives a tighter constraint on the potential energy than that from αHM ≤ 1.
Conversely, if the false vacuum exists without a singularity in the Stückelberg field, a regular HM solution
always exists.
To see the effect of the second term, let us compare the current result with the HM action in GR with the

same value of the Hubble parameter, B(GR) ≡ 8π2(−H−2
HM +H−2

F ). We have

∆B ≡ B −B(GR) =
4π2

3
Y±X±

(

A(αHM)

H4
HM

− A(αF)

H4
F

)

m2
g . (4.17)

Note that the function A(α) is positive and a monotonically increasing function of α for 0 < α ≤ 1. Hence
0 < A(αHM) < A(αF). Since H

−1
HM < H−1

F , this means the sign of ∆B is determined by the sign of Y±. Namely,
for Y± > 0 (< 0), we have ∆B < 0 (> 0), and hence the tunneling rate is enhanced (suppressed) relative to the
case of GR.

B. Parameter dependence of the tunneling rate

In the above, we have seen the effect of the graviton mass on the tunneling rate is determined by the sign
of Y±. In this subsetion, we analyze the dependence of the tunneling rate on the parameters α3 and α4 by
examining the sign of Y±.

1. General case with mg 6= 0

As shown in the previous subsection, the change in the tunneling rate is determined by the sign of Y±, which
is given in terms of X± as given by Eq. (4.5). Let us recapitulate it here:

X± =
1 + 2α3 + α4 ±

√

1 + α3 + α2
3 − α4

α3 + α4
,

Y± = 3(1−X±) + 3α3(1−X±)
2 + α4(1−X±)

3 . (4.18)

In Fig. 2, we show the sign of Y± in the parameter space (α3, α4) for Branch II+ (left panel) and Branch II−
(right panel) solutions. As seen from the figure, the tunneling rate is enhanced (suppressed) for Branch II+
(Branch II−) in a large region of the parameter space. It should be noted again that αF ≤ 1 gives rise to a
constraint on V (σF).
Next, we focus on some limiting cases and analytically investigate the parameter dependence of the tunneling

rate.

2. α3 = 0

In this case, from Eq. (4.18)

X± =
1

α4

(

1 + α4 ±
√
1− α4

)

, Y± = (1−X±)
(

2 + α4(1 −X±)
2
)

, (4.19)

and from Eq. (3.16),

Λ± = −
m2

g

α2
4

[

2− 3α4 ± 2(1− α4)
3

2

]

. (4.20)

Note that the parameter α4 should satisfy α4 ≤ 1 for X± to be real. In the following, we evaluate the HM
action for Branch II+ and Branch II− separately.

• Branch II+

In this branch, we have

X+ =
1

α4

(

1 + α4 +
√
1− α4

)

, Y+ = − 2

α2
4

(1 +
√
1− α4)(1 + α4 +

√
1− α4) , (4.21)
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FIG. 2: The sign of Y± is shown for Branch II+ (left panel) and Branch II− (right panel) solutions. The white and yellow
regions corresponds to 1 + α3 + α2

3 − α4 < 0 and X± < 0 respectively, which should be excluded since the cosmological
solution does not exist in these regions [12, 22]. The green regions correspond to Y± > 0, which implies that the HM
tunneling rate is enhanced in comparison to the GR case for the same Hubble parameter HHM, while the pink regions
correspond to Y± < 0, which implies that the HM tunneling rate is suppressed. Along the solid lines (defining the
boundary between green and pink regions), X± = 1 and hence Y± = 0. Hence the HM solution (4.14) reduces to that in
GR. The dotted lines denote X± = 0 where the solution ceases to exist. Along the dashed lines, X± diverges and thus
defines another boundary of the solution space.

and

Λ+ = −
m2

g

α2
4

[

2− 3α4 + 2(1− α4)
3

2

]

. (4.22)

From the expression above, one immediately finds that α4 = 0 can be a singular point for Branch II+. To
study this case, we set α3 = α4 = ǫ ≪ 1 and take the limit ǫ → 0. Then one obtains

Λ+(α3 = α4 = 0) = −
m2

g

2ǫ2

[

2 +
3ǫ2

2
+O(ǫ3)

]

, (4.23)

which leads to

lim
ǫ→0

Λ+(α3 = α4 = 0) = −∞ . (4.24)

So α3 = α4 = 0 is singular in this branch, which should be excluded in the analysis. From the condition αF ≤ 1,
we obtain the constraint on V (σF) by using Eqs. (4.8) and (4.21):

V (σF) ≥
(

2γ3
4 + 3γ2

4 − 1
)

m2
g + 3

(

γ2
4 − γ4 − 2

)2
F 2

(1− γ2
4)

2
=

(2γ4 − 1)m2
g + 3(γ4 − 2)2F 2

(γ4 − 1)2
, (4.25)

where

γ4 ≡
√
1− α4 (≥ 0) . (4.26)

An interesting consequence of this constraint is the absence of a (meta-)stable vacuum state below this bound.
For example, even if there is a potential minimum below this bound, tunneling to such a state may be prohibited.
In terms of γ4, Eqs. (4.21) can be re-expressed as

X+ =
γ4 − 2

γ4 − 1
, Y+ = 2

γ4 − 2

(γ4 − 1)2
. (4.27)

Thus the condition X+ > 0 requires either γ4 > 2 (α4 < −3) for which we have Y+ > 0, or 0 ≤ γ4 < 1
(1 ≥ α4 > 0) for which Y+ < 0. Therefore the tunneling rate is enhanced for α4 < −3 and suppressed for
0 < α4 ≤ 1. The range −3 < α4 < 0 is excluded because a solution ceases to exist there.
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In order for the solution to be a four-sphere, the effective cosmological constant must be positive definite,
Λ+,eff > 0. We find this is always satisfied, since

Λ+,eff ≥ V (σF) + Λ+ ≥ 3F 2X2
± > 0 . (4.28)

We again note that γ4 = 1 (α4 = 0) is a singular point, which coincides with the conclusion that Branch II+
does not exist for α3 = α4 = 0.

• Branch II−

In this branch, we have

X− =
1

α4

(

1 + α4 −
√
1− α4

)

=
γ4 + 2

γ4 + 1
,

Y− =
2

α2
4

(−2 + 2
√
1− α4 + α4

√
1− α4) = −2

γ4 + 2

(γ4 + 1)2
, (4.29)

and

Λ− = −
m2

g

α2
4

[

2− 3α4 − 2(1− α4)
3

2

]

=
2γ4 + 1

(γ4 + 1)2
m2

g , (4.30)

where, as before, γ4 =
√
1− α4 and the parameter α4 should not exceed unity. We note that in contrast with

Branch II+, here α3 = α4 = 0 is regular, which implies a finite Λ+(α3 = α4 = 0) = 3m2
g/4.

Similar to the case of Branch II+, we find a constraint on V (σF ) on Branch II− from the condition α4 ≤ 1 as

V (σF ) ≥
(

−2γ3
4 + 3γ2

4 − 1
)

m2
g + 3(γ2

4 + γ4 − 2)2F 2

(1− γ2
4)

2
=

−(2γ4 + 1)m2
g + 3(γ4 + 2)2F 2

(γ4 + 1)2
. (4.31)

It is clear that the limit γ4 → 1 (α4 → 0) is regular in this case of Branch II−, which is consistent with the case
α3 = α4 = 0 studied previously. We note that there is no restriction on the range of α4 except for the condition
that α4 ≤ 1.
From Eqs. (4.29), we see that Y− is always negative. Therefore, the tunneling rate is always suppressed in

this case.

3. Vanishing L2 term

In this subsection, we consider a special case when L2 vanishes but L3 and L4 are non-vanishing. To achieve
this, we take the limit m2

g → 0, while keeping A3 ≡ m2
gα3 and A4 ≡ m2

gα4 finite. Substituting A3 and A4 for

α3 and α4 in Eq. (3.16) and taking m2
g → 0, Λ± is calculated as

Λ± = − 2A3
3

(A3 +A4)2
[1± sgn(A3)] , (4.32)

where sgn(A3) ≡ |A3|/A3 denotes the sign of the parameter A3. The sign function appears due to the presence
of the square root in Eq. (3.16). Similarly, from Eq. (3.13), X± can be obtained as

X± = 1 +
A3

A3 +A4
[1± sgn(A3)] . (4.33)

Without loss of generality, we assume A3 > 0 since the flip of sign only exchanges the roles of Branch II+ and
Branch II−.

• Branch II+

In this branch, from Eqs. (4.32) and (4.33), we have

Λ+ = − 4A3
3

(A3 +A4)2
< 0 , X+ = 1 +

2A3

A3 +A4
, (4.34)
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and

m2
gY+ = 3A3(1−X+)

2 +A4(1−X+)
3

= (1−X+)
2X+A3 . (4.35)

Thus m2
gY− is always positive provided X− > 0. From Eq. (4.34), this is guaranteed if the parameter A4 is

either in the range A4 < −3A3 or −A3 < A4. The tunneling rate is always enhanced in this case.
Next let us consider the condition αF < 1. From Eq. (4.34), we find

α2
F =

3F 2(3A3 +A4)
2

(A3 +A4)2V (σF)− 4A3
3

≤ 1 . (4.36)

Hence the constraint on V (σF) is found as

V (σF) ≥
3F 2(3A3 +A4)

2 + 4A3
3

(A3 +A4)2
. (4.37)

Again the positivity of the effective cosmological constant, Λ+,eff > 0, is guaranteed because

Λ+,eff ≥ V (σF) + Λ+ ≥ 3F 2X2
+ > 0 . (4.38)

• Branch II−

In this branch, from Eqs. (4.32) and (4.33), we find

Λ− = 0 , X− = 1 , m2
gY− = 0 . (4.39)

This implies that the action in this case reduces to that of GR. There is no difference from GR in this branch.
From Eq. (4.39), the condition αF ≤ 1 is expressed as

α2
F =

3F 2

V (σF)
≤ 1 , (4.40)

which leads to the constraint on V (σF) as

V (σF) ≥ 3F 2 . (4.41)

V. SUMMARY AND DISCUSSION

In this paper, we investigated the stability of a vacuum in the landscape of vacua in a theory of non-linear
massive gravity. For this purpose, we derived the Hawking-Moss (HM) solution in a simple case where a
tunneling scalar field is minimally coupled with gravity and evaluated its Euclidean action. We obtained three
branches of the solution, which we labeled as Branch I and Branch II±, where Branch II± corresponds to
the self-accelerating branch in Ref. [12, 22]. We analyzed the contribution of the graviton mass terms to the
Euclidean action, hence to the tunneling rate. We focused on Branch-II± HM solutions because a Branch-I HM
solution is shown to be equivalent to a Branch-II solution with a different set of the model parameters.
The Euclidean action of the HM instanton is found to have two distinct terms. In addition to the standard

contribution determined by the Hubble parameter of the HM solution, we obtained a mass-dependent non-
standard term. To study the effect of this latter non-standard contributions, we compared the tunneling rate
to that in GR for the same value of the Hubble parameter.
For Branch II±, the enhancement or suppression of the tunneling rate relative to GR is determined by the

sign of a quantity, denoted by Y±, and it depends on the model parameters α3 and α4. We found that in a wide
area of the parameter space the tunneling rate is enhanced for Branch II+ and suppressed for Branch II−.
We also found that the solution can exist only if the Hubble parameter of the ratio of the physical metric to

the fiducial one is greater than X±. As a result, the form of the potential is constrained. This seems to imply
that tunneling from or to a vacuum whose energy density is less than a critical value is prohibited. This result
is in sharp contrast to GR for which there is no bound on the minimum value of the potential.
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As tunneling mediated by a HM instanton is considered to be equivalent to stochastic process of going over
the barrier due to large vacuum fluctuations intrinsic to light scalar fields in de Sitter space [42], it is interesting
to understand the role of the graviton mass terms in the context of stochastic dynamics.
We found that the tunneling rate can be enhanced or suppressed depending on the model parameters for a

simple case of a tunneling field minimally couples with gravity. Though we discussed this simple case as a first
step, it will be interesting to see how the tunneling process proceeds when the model parameters such as the
graviton mass depend on the tunneling field. In this case, the effective cosmological constant of a vacuum can
be larger than the other while its potential energy is smaller because of the tunneling field dependence of the
graviton mass.
Finally, let us comment on the limitation of our analysis. Since massive gravity exhibits the strong coupling

at high energy scales, it requires UV completion above its cutoff scale. Namely, our analysis cannot apply to
an arbitrarily small size instanton nor to the potential of an arbitrarily high energy scale, though the limitation
depends on how massive gravity is UV completed. The cutoff scale of massive gravity is determined by the
graviton mass and it is very low if the graviton mass is of the order of the present Hubble parameter to explain
the current accelerated expansion of the universe. However, as mentioned above, the graviton mass may depend
on the tunneling field and may have a larger value in the early universe. In this case, our analysis can be applied
to the tunneling process at high energy scales.

Appendix A: HM solution for Branch I

In the text, we focused on HM solutions based on Branch II constraint (3.9). Here, we show that the HM
solution in Branch I is equivalent to the one in Branch II with a different set of the model parameters.
Inserting Eq. (2.10) into Eq. (3.11), we obtain

F 2b2 + a′2 = K . (A1)

Hence

b =

√
K − a′2

F
. (A2)

Inserting this into Eq. (3.14) and setting σ ≡ σtop, we obtain an algebraic equation,

3F 2θ2 − V (σtop)− ρg = 0 , (A3)

where

ρg ≡ −m2
g (1− θ)

[

3 (2− θ) + α3 (1− θ) (4− θ) + α4 (1− θ)
2
]

, θ ≡
√
K − a′2

Fa
=

b

a
. (A4)

Hence, θ = b/a becomes constant. The HM solution in Branch I is obtained as

aIHM(τ) = (θF )−1
√
K cos (θFτ) . (A5)

Comparing this with Eqs. (3.13) and (4.2), we see that the form of the solutions are the same except that X±

and HHM are replaced by θ and θF , respectively. We note that the quantity corresponding to α ≡ X±F/HHM

in Branch I is unity.
Thus, we conclude that the analysis of the HM solutions for Branch II can be directly applied to those for

Branch I if we make the replacement X± → θ and HHM → θF . Note that θ depends on F , mg, and V (σtop),
as well as α3 and α4. Hence, the dependence on the model parameters becomes more complicated in Branch I
than in Branch II.

Appendix B: List of symbols

Throughout the paper, there appear many parameters which are denoted by various symbols. For convenience,
we list some of them who play important roles in the table I.
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TABLE I: List of symbols

Symbols Definition First appearance

X± See Eq. (3.13) (3.13)

Λ± See Eq. (3.16) (3.16)

Λ±,eff V (σtop) + Λ± (4.1)

Y± See Eq. (4.5) (4.5)

HHM

√

Λ±,eff/3 (4.3)

αHM FX±/HHM (4.8)

HF

√

(V (σF ) + Λ±)/3 (4.15)

αF FX±/HF Below (4.15)
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