

Title	Seasonal and site-specific variability in terrigenous particulate organic carbon concentration in near-shore waters of Lake Biwa, Japan
Author(s)	Sakai, Yoichiro; Karube, Zin'ichi; Takeyama, Tomohiro; Kohzu, Ayato; Yoshimizu, Chikage; Nagata, Toshi; Tayasu, Ichiro; Okuda, Noboru
Citation	Limnology (2013), 14(2): 167-177
Issue Date	2013-04
URL	http://hdl.handle.net/2433/173518
Right	The final publication is available at link.springer.com
Туре	Journal Article
Textversion	author

2	Seasonal and site-specific variability in terrigenous particulate organic carbon
3	concentration in near-shore waters of Lake Biwa, Japan
4	
5	Authors
6	¹ Sakai Y, ² Karube Z, ³ Takeyama T, ² Kohzu A, ¹ Yoshimizu C, ⁴ Nagata T, ¹ Tayasu I and
7	¹ Okuda N
8	
9	¹ Center for Ecological Research, Kyoto University, 509-3, 2-chome, Hirano, Otsu,
10	Shiga 520-2113, Japan
11	² National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba-City, Ibaraki,
12	305-8506, Japan
13	³ Department of Biology and Geosciences, Osaka City University, 3-3-138 Sugimoto,
14	Sumiyoshi, Osaka, 558-8585, Japan
15	⁴ Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba,
16	277-8564, Japan
17	
18	Correspondence: Yoichiro SAKAI

- 19 Center for Ecological Research, Kyoto University, 509-3, 2-chome, Hirano, Otsu, Shiga
- 20 520-2113, Japan.
- 21 Tel: 077-549-8020
- 22 Fax: 077-549-8201
- 23 E-mail: <u>biwaensis.2002@gmail.com</u>
- 24

26 Abstract

27	Identifying sources of particulate organic matter (POM) is important for
28	clarifying fundamental mechanisms by which lake food webs are sustained. We
29	determined carbon and nitrogen stable isotope ratios of POM in near-shore waters of
30	Lake Biwa, a large, meso-eutrophic lake in Japan, to estimate relative contributions of
31	terrigenous particulate organic carbon (T-POC), plankton-derived POC (P-POC), and
32	epilithon-derived POC (E-POC) to POC in near-shore waters. Samples were collected
33	during different months (November, February, May and July) at 29sites located near the
34	mouth of tributary rivers with different discharge and catchment land use. The data
35	revealed that POC mainly consisted of P-POC and T-POC, with relative contributions
36	varying widely over season and among locations. E-POC generally contributed little to
37	the near-shore POC. Path analyses revealed that concentration of riverine POC whose
38	isotopic signatures were similar to those of rice straws increased with a larger %paddy
39	field area in the catchment of tributary rivers, which subsequently enhanced T-POC
40	inputs to near-shore waters through riverine transportation. Furthermore, our results
41	suggested that T-POC contribution was influenced, with a time lag, by wave-driven
42	turbulence and shore topography, which appear to affect sedimentation and resuspension
43	of T-POC.

45 Keywords

46 Allochthonous input, Isotope mixing model, Land use, Path analysis, Terrigenous POM

49 Introduction

50	Particulate organic matter (POM) is a fundamental energy source for food webs
51	in lake ecosystems. POM in lake waters consists of diverse organic compounds with
52	different origins, including phytoplankton-derived POM (P-POM), epilithon-derived
53	POM (E-POM) and terrigenous POM (T-POM). Although P-POM is generally
54	considered to be a major energy source for planktonic food webs in pelagic
55	environments (Dodson 2005), E-POM and T-POM may also play an important role as
56	food resources for suspension feeders. In fact, in small to medium-sized lakes in North
57	America, some studies have revealed that terrigenous particulate organic carbon
58	(T-POC) derived from tributary rivers can subsidize pelagic food webs (Cole et al.
59	2006; Pace et al. 2007; Cole et al. 2011). Other studies, however, have suggested that
60	zooplankton growth and reproduction is slowed by the inputs of T-POM, which have
61	high C/N ratios and area low-quality food (Karlsson 2007; Brett et al. 2009). In other
62	systems, it has been reported that pelagic food webs were subsidized by benthic algal
63	products (Rautio and Vincent 2007; Karlsson and Sawstrom 2009). For aquatic
64	consumers, reliance on each of POM originated from different sources appears to vary
65	widely among lakes, depending on lake size, depth and trophic status (Chandra et al.
66	2005; Doi 2009; Vander Zanden et al. 2011). The relative contribution of POM with

67	different origins may also vary among different locations of a single lake, especially in
68	near-shore waters. For example, allochthonous input of T-POM might be large in
69	near-shore environments adjacent to river mouths, although the extent and nature of this
70	"river effect" may depend on river discharge, T-POM concentrations in river waters, and
71	physical settings of the locations (shore topography and turbulence that affect
72	sedimentation and resuspension of T-POM). Spatial and temporal variability in
73	contributions of POM with different origins within a single lake has important
74	implications for understanding mechanisms by which lake food webs are differentially
75	organized in the same species pool. Indeed, a previous work has reported that
76	allochthonous organic matter inputs to Lake Biwa from tributary catchments led to
77	spatial heterogeneity in trophic pathways within coastal macro-invertebrate
78	communities (Karube et al. 2010). However, data are highly limited to elucidate
79	mechanisms underlying spatio-temporal variability in relative contributions of P-POM,
80	T-POM and E-POM to total POM in near-shore environments.
81	Here, we measured carbon (δ^{13} C) and nitrogen (δ^{15} N) stable isotope ratios of
82	POM in near-shore water samples collected during four seasons at different locations set
83	along the shore-line of Lake Biwa. In general, C3 terrestrial plants (T-POM) have
84	markedly different δ^{13} C (-27‰) from that of aquatic microalgae (P-POM and E-POM;

85	Marshall et al. 2007). Moreover, among aquatic primary producers, phytoplankton and
86	epilithic algae have different δ^{13} C, due to the CO ₂ diffusion limitation within the
87	boundary layer surrounding algal cells (Phytoplankton: -32 \pm 2 (SD) ‰, epilithic algae:
88	-17 ± 2 (SD) ‰; Fry and Sherr 1984; France 1995). In addition, $\delta^{15}N$ of aquatic primary
89	producers may be variable among aquatic environments depending on the extent of
90	anthropogenic nitrogen inputs (McClelland and Valiela 1998; Kohzu et al. 2008; Karube
91	et al. 2010). The above differences in isotope signatures of POM with different origins
92	are useful for estimating the relative contribution of P-POM, E-POM and T-POM by
93	means of stable isotope mixing models (Fry 2006).
94	Lake Biwa, the largest lake in Japan, consists of two basins: the large (616
95	km^2), deep (average depth 41 m), mesotrophic northern basin and the small (58 km^2),
96	shallow (average depth 4 m), eutrophic southern basin (Rossiter 2000; Somiya 2000).
97	The lake receives water from 121 major tributary rivers and hundreds of other small
98	creeks. The catchments of the major rivers show a wide range of land use patterns,
99	including those prevailed by agricultural field, forest, or residence area (Somiya 2000).
100	The 29 sampling sites of the present study covered a range of situations with variable
101	influences of rivers that have different land use patterns in their catchments. We
109	hypothesize that the quantity and composition of the near-shore POM can vary on a

103	within-lake scale, depending on land use patterns in tributary catchments as well as on
104	coastal physical characteristics. Assuming that POM with different origins, i.e., P-POM,
105	E-POM and T-POM, have different stable isotopic signatures, we aim to examine what
106	factors determine within-lake variability in relative contributions of these potential
107	organic sources to the near-shore POM, using an isotope mixing model and a path
108	analysis.
109	
110	Materials and Methods
111	Sample collections
112	We collected POM samples at 29 sites along the shoreline of Lake Biwa in
113	November2005 and February 2006, May 2006, and July 2006 (Fig. 1). These sites were
114	located near the mouth of tributary rivers, which have widely variable land use patterns
115	(Appendix A). In most cases, the sampling sites were set within 100 m of the river
116	mouth. For some sites, however, our research boat could not get access to the target
117	location because these sites have a gentle coastal slope and/or are luxuriated by
118	submerged plants. In such cases, the sampling site was set on the position of 5 m-depth
119	contour where the distance between the site and river mouth was shortest. We measured
120	pH and electric conductivity using a multiprofiler at each sampling site (U-22,

121 HORIBA).

122	At each sampling site, we used a water pump to collect water samples at the
123	depth of 2 m. The water samples were first filtered through a 150 μ m-mesh net to
124	remove coarse particles and then filtered through precombusted (450°C for 2 h) glass
125	fiber filters (GF/F, 0.7 μ m, Whatman). The particle size of 0.7-150 μ m covers the most
126	size range of phytoplankton found in Lake Biwa (Tsuda et al. 1992). The POMs
127	collected on the glass fiber filters were used for stable isotope analysis (see below). We
128	extracted Chlorophyll a from these POM samples in 90% acetone solution and
129	measured its concentration with a fluorometer (Turner Designs, 10-AU), according to
130	Wetzel and Linkens (2000). The Chlorophyll <i>a</i> concentration was used as an indicator
131	of local productivity in near-shore waters.
132	We assumed three end members (plankton, epilithon and terrigenous organic
133	matter) as primary organic sources for the near-shore POM. First, to determine isotopic
134	values of plankton-derived POM (P-POM), we collected water samples from the depth
135	of 2 m at an offshore site (Station 30, see Fig. 1) in the same months as POM sampling
136	in near-shore waters. The P-POM was filtered on precombusted GF/F filters after
137	screening with a 150 μ m-mesh net. The P-POM collected at this site was assumed to
138	have isotope signatures typical for phytoplankton-derived organic matter in the lake

139	because previous work has found that δ^{13} C values of POM collected there were identical
140	to those of chlorophyll a extracted from offshore phytoplankton after the correction of
141	isotope fractionation (Maki et al. 2010).
142	Second, to determine isotopic values of epilithon-derived POM (E-POM),
143	epilithon samples were collected at all the sites except for some sites where boulders of
144	appropriate size were not found (Fig. 1). At each site, epilithic organic matter scraped
145	off, with a brush, from five boulders of moderate size (30-40 cm) which have a surface
146	area of more than 36cm ² on the upper side were mixed, filtered through precombusted
147	GF/F filters, and served for the stable isotope analyses.
148	Third, we collected riverine particulate organic matter(R-POM) as a proxy of
149	terrigenous POM (T-POM) at sites 0.5-4 km upstream from the mouth, in the same
150	months as the near-shore sampling but in the previous year (i.e., July 2004, November
151	2004, February 2005 and May 2005: see Kohzu et al. 2009 for details). In general,
152	R-POM is composed of T-POM and fluvial E-POM (Kohzu et al. 2009). In our study
153	rivers, however, δ^{13} Cof R-POM was significantly different from that of fluvial E-POM
154	in all four months (Tukey's post-hoc test, R-POM vs. fluvial E-POM, Nov: p<0.001,
155	Feb: p<0.01, May: p<0.01, Jul.: p<0.001) but not fromC3 terrestrial plant detritus, i.e.,
156	rice straw collected from paddy fields in any months (Tukey's post-hoc test, R-POM vs.

T-POM, Nov: p=0.82, Feb: p=0.65, May: p=0.79, Jul.: p=0.91), suggesting that R-POM
is dominated by T-POM in tributary rivers of Lake Biwa.

159	One may expect that submerged macrophytes can be a dominant source for the
160	near-shore POM. However, we did not incorporate them as an end member of our
161	mixing model for the following reasons. First, live macrophytes cannot contribute to the
162	POM pool in near-shore waters during summer growing season. It may be true that their
163	detritus contribute to the near-shore POM during decomposition process in winter,
164	especially at sampling sites in shallow south basin where macrophytes luxuriate
165	vigorously (Haga et al. 2007). However, we have little knowledge on stable isotopic
166	fractionation during their decomposition and have technical difficulty in separate their
167	detritus from a mixture of POM with different origins in the near-shore waters for the
168	stable isotope analysis. If macrophyte contribution is not much great for near-shore
169	waters of whole lake basin, we have a disadvantage to incorporate additional end
170	member into our mixing model, which will lead to low estimation accuracy for major
171	organic sources. Therefore, we did not regard submerged macrophytes as primary
172	organic sources in the near-shore water.
173	That is why we used the dominant three end members, P-POM, E-POM and
174	R-POM representative of T-POM, for our isotopic mixing model to estimate

176	GF/F filters were exposed to 0.1 M HCl to eliminate carbonates, rinsed with distilled
177	water, and then stored at -20° C until the stable isotope analysis.
178	
179	Stable isotope analysis
180	The GF/F filters were dried at 60°C for 24 h, and then the residues were
181	scraped off from the surface of filters. Carbon and nitrogen stable isotope ratios of the
182	residues were determined using continuous-flow isotope ratio mass spectrometers
183	(CF/IRMS; Conflo II and Delta S, Finnigan MAT, Germany and Conflo III, delta plus
184	XP, Thermo Fisher, Germany)and their carbon content was measured using elemental
185	analyzers (EA1108, Fisons, Italy and EA1112, Thermo Fisher, Germany). The isotope
186	ratios were expressed as the per mil deviation from standards as follows:
187	δ^{13} C or δ^{15} N = (R _{sample} / R _{standard} - 1) × 1000 (‰),
188	where $R = {}^{13}C/{}^{12}C$ or ${}^{15}N/{}^{14}N$. Vienna Pee Dee belemnite (VPDB) and atmospheric
189	nitrogen were used as standards for carbon and nitrogen, respectively. The analytical
190	precision based on working standards (Tayasu et al. 2011) was \pm 0.3‰ for both $\delta^{13}C$
191	and δ^{15} N.

composition of near-shore POM. All these POM samples collected on precombusted

193 Isotope mixing model

194	Relative contributions of three potential organic sources (i.e., P-POM, E-POM
195	and T-POM) to POM collected at each near-shore site were estimated using an isotope
196	mixing model with δ^{13} C and δ^{15} N (IsoSource Program; Phillips and Gregg 2003). This
197	model enabled us to estimate all possible combinations of each source contribution
198	(0-100%) in 1% increments to create a set of predicted sources. The initial tolerance
199	was set at 0.1‰. If the estimated values were outliers (i.e., $<0\%$ or $>100\%$), the
200	tolerance was increased in 0.1‰ steps to 2‰. The model outputs are expressed as the
201	mean value and range (minimum-maximum) for each source. From the estimated mean
202	contribution of each organic carbon source to POC concentration (mgL ⁻¹) at each
203	near-shore site, we calculated the concentrations of P-POC, E-POC and T-POC
204	according to the following equation.
205	$P\text{-}POC (mgL^{-1}) = POC (mgL^{-1}) \times f_p$
206	E-POC (mgL ⁻¹) = POC (mgL ⁻¹) $\times f_e$
207	T-POC (mgL ⁻¹) = POC (mgL ⁻¹) $\times f_t$
208	where f_p , f_e and f_t are the fraction of P-POC, E-POC and T-POC relative to the
209	near-shore POC (i.e., $f_p + f_e + f_t = 1$).

210 At some sites, we could not estimate each source contribution for the lack of

211	E-POC data or because the estimated contribution remained outlier for either of the
212	three sources under the above criteria for our isotopic mixing model. In the present
213	study, we present results of simulation model only for carbon source estimation but
214	analytical results on nitrogen sources were qualitatively same as the carbon source
215	estimation model.
216	
217	Land use pattern and physical environments
218	Human population density (HPD in population km^{-2}) and proportions (%) of
219	paddy field, forest, and residential areas of tributary catchment were calculated using a
220	geographical information system (GIS: Appendix A). We assumed that these indices
221	reflect the loading of terrigenous organic matter with different origins: e.g., the HPD
222	or %residential area is an indicator of organic matter derived from sewage, the %paddy
223	field area is an indicator of that from agricultural wastewater, and the % forest area an
224	indicator of that from leaf litter transported through upper streams.
225	Because there is a strong positive correlation between river discharge and
226	catchment area, we estimated the river discharge, based on the following regression for
227	tributary rivers for which discharge data are available (Shiga Prefecture1992-2002):
228	River discharge (m ³ S ⁻¹) = $0.0284 \times \text{catchment area}^{0.9502}$ (R ² =0.846, p<0.01)

229	where the river discharge is the average for February, May, July, and November during
230	the recent 10 years (1992-2002). Although the river discharge shows daily variation
231	depending on weather condition, its monitoring date never accorded with our sampling
232	date. Considering this variation, the inter-annual average can be a better indicator for
233	river discharge compared to single monitoring data corresponding to our sampling
234	months.
235	As physical characteristics of coastal environments, we used wave height (m),
236	wave energy flux (kg m day ⁻¹ m ⁻¹), shore energy flux (kg m day ⁻¹ m ⁻¹ , see Nakatsuji et al.
237	2006), and coastal slope (1 d^{-1} ; d = horizontal distance from the shoreline to the point
238	with a depth of 2 m). These data are available at
239	http://www.biwakokasen.go.jp/others/kankyoujyouhou/index.html (Kinki Regional
240	Development Bureau, Ministry of Land, Infrastructure, Transport and Tourism).
241	The GIS and coastal physical characteristics data are summarized in Appendix A and B.
242	
243	Statistical analysis
244	We performed a nested analysis of variance (ANOVA) to test the temporal
245	variation in POC concentrations, incorporating sampling sites as a random factor into
246	the model (the nlme package of R Statistics; Pinheiro et al. 2010), which assumes that

247	error term distribution accords to gaussian distribution. If the data distribution did not
248	show normality and homoscedasticity, the dependent variable (POC concentration) was
249	log(x+0.5)-transformed satisfy the criteria for the ANOVA (Yamamura 1999). Then we
250	performed a post-hoc test for multiple comparisons using the Tukey method (the
251	multcomp package of R Statistics; Hothorn et al. 2008) to compare POC concentrations
252	among seasons. Furthermore, we performed ANOVA to compare the carbon
253	concentrations among the three organic sources (P-POC, E-POC, and T-POC) in each
254	season. All analyses were conducted using the statistical package R ver. 2.13.1 (R
255	Development Core Team 2011).
256	We performed a path analysis to examine how the land use patterns in the
257	tributary catchments and the physico-chemical characteristics of the sampling sites may
258	affect spatiotemporal variation in measured and estimated values of R-POC and T-POC
259	concentrations, respectively, incorporating GIS and environmental variables into the
260	model (see Appendix A and B). First, we screened the explanatory variables because
261	models with too many variables generate redundant information. We checked the
262	correlations among variables to remove multicollinearity and then selected the variables
263	that best accounted for the variation in R-POC and T-POC concentrations. For instance,
964	we calcuted wave baight from among the three wave according durichles and HDD but

265	not % residential area. Because forest and paddy field are the most dominant land use
266	types in the Lake Biwa Watershed, it is a matter of course that there is a strong negative
267	correlation between their proportional data (R^2 =0.93, p<0.001). We performed two
268	preliminary models to test effects on the R-POC for each of these two land use types.
269	First, when we used % forest area solely as a GIS variable, instead of % paddy field area,
270	we found that the former showed significantly negative but not positive effects (Path
271	coefficients, Nov.: -0.44, Feb.: -0.53, May: -0.83, Jul.: -0.64, p<0.01). Second, when we
272	incorporated residuals of the % forest area regressed against the % paddy field area into
273	the preliminary model, we did not find any significantly positive effect of % forest area
274	on R-POC concentration, suggesting that forests cannot be a primary source of R-POC
275	loadings in catchment areas. Based on results of these preliminary analyses, therefore,
276	we excluded % forest area from a final version of our <i>a priori</i> model to reduce the
277	redundancy and the multicollinearity between potentially correlated GIS variables.
278	After screening the variables, we constructed the basic framework of an a
279	priori model consisting of two components (Fig. 3). The model was separated because
280	the data distributions were needed to be $log(x+0.5)$ -transformed for some of explanatory
281	variables in component 2 to ensure normality and homoscedasticity for statistical
282	criteria. Component 1 was a sub-model that accounts for the variation in measured

283	values of R-POC (upper panel in Fig. 3). Assuming that human sewage and agricultural
284	wastewater have strong effects on R-POC, we incorporated HPD (Path 1 in Fig. 2) and
285	the %paddy field area (Path 2) into the model. We also assumed that the HPD
286	and %paddy field areas have a positive interactive effect because agricultural activities
287	are usually high in areas with a high population density and vice versa (Path 3).
288	Component 2 was constructed to examine which physical characteristics of
289	coastal environments explain the site-specific variation in estimated values of T-POC
290	concentration in near-shore waters, assuming that T-POC concentration can be affected
291	by a dilution effect due to river discharge (Path 5), resuspension due to wave-driven
292	turbulence (Path 6), and the potential for resuspension, which is intensified in sites with
293	a gentle coastal slope (Path 7). These paths were assumed to have an additive effect on
294	T-POC concentration.
295	The model analysis consisted of two steps. First, we conducted a simultaneous
296	analysis of several groups, considering the four seasons as different groups. This
297	allowed us to test for significant differences in the causal mechanisms of the seasonal
298	dynamics of R-POC and T-POC concentrations and provided more accurate model
299	estimation than what would have been obtained from separate analyses of each of the
300	four groups (Arbuckle 2007). Then we selected the best-fit model, setting equality

301	constraints as a null hypothesis that the coefficient of each path is not significantly
302	different among the four seasons (Tabei 2001; Arbuckle 2007). In the initial condition,
303	the level of significance was set at 0.05 for the seasonal difference in each path
304	coefficient and was then increased up to 0.6 in intervals of 0.05. In this way, we
305	constructed a total of 12 models and compared them using the Akaike information
306	criterion (AIC). We selected the best-fit model based on the minimum AIC. The best-fit
307	model was tested using the chi-square goodness-of-fit. We also evaluated its
308	goodness-of-fit based on the root mean square error of approximation (RMSEA;
309	criterion RMSEA< 0.05: good, RMSEA > 0.08: mediocre, RMSER > 0.1: not accepted,
310	Browne and Cudeck 1993). The path analysis was performed using the statistical
311	package AMOS (ver. 16, IBM-SPSS, Tokyo).
312	
313	Results
314	Spatiotemporal variation in POC concentration and composition
315	Using carbon and nitrogen isotope mixing model with three end members,
316	P-POM, E-POM and R-POM, we estimated the relative contributions of three organic
317	sources (P-POC, E-POC, and T-POC) to POC at each near-shore site (Appendices
318	C&D). As indicated by a narrow range of estimated values, our isotope mixing model

319	showed high estimation accuracy (Appendix D), except for some sites (e.g., site no. 3,
320	10, 11, 13, 20 in November, 2005), in which P-POM and R-POM had similar isotopic
321	signatures (Appendix C). Based on the relative contribution of these sources, we
322	calculated the concentration of P-POC, E-POC, and T-POC (Table 1 & Fig. 4). The
323	near-shore POC concentrations differed among sites (Fig. 4) and seasons ($F_{3, 83} = 13.56$,
324	Jul. > May = Feb. > Nov., $p < 0.05$). P-POC and T-POC were the dominant organic
325	sources of the near-shore POC, whereas E-POC concentration was consistently low (Fig.
326	5). In July, the concentration of P-POC was generally higher than that T-POC (Fig. 5).
327	T-POC concentrations tended to be high at the sites located along southern and eastern
328	shores, especially in February and May (Fig. 4).
329	
330	Possible factors that influences the spatiotemporal dynamics of T-POC
331	T-POC concentrations in near-shore waters showed marked spatiotemporal
332	variation at sampling sites (Fig. 4). In our path analysis, a sub-model of component 1
333	gave the best fit when the significance level for the equality constraints was set at 0.6
334	(χ^2 =0.721, df=7, RMSEA=0.000, AIC=58.721). The total effect of human land use on
335	R-POC concentration showed great seasonal variation (Fig. 6). Tributary rivers with a
336	larger % paddy field area had a consistently high R-POC concentration year-round (Path

337 2). In contrast, HPD did not have significantly positive effects on R-POC concentration338 (Path 1).

339	Similarly, component 2 of our path model was the best fit when the
340	significance level was set at 0.3 (χ^2 =0.488, df=42, RMSEA=0.057, AIC=140.288). The
341	total effect of proximate physical factors on T-POC showed great seasonal variation (Fig
342	6). The allochthonous input of R-POC had a significantly positive effect on the
343	near-shore T-POC concentration only in May (Path 4), whereas river discharge had a
344	negative effect on the near-shore T-POC concentration in July (Path 5). Wave height
345	always had a significantly positive effect on the near-shore T-POC concentration (Path
346	6), and the near-shore T-POC concentration was higher for sites with a gentle coastal
347	slope in February and May (Path 7).
348	
349	Discussion
350	Our data demonstrated that near-shore T-POC concentrations varied widely
351	among sites and over season. The results of path analysis suggested that agricultural
352	wastewater from the paddy fields was the primary driver affecting the near-shore T-POC
353	concentration via increased inputs of R-POC. Especially in May, we detected a
354	significant, robust path in that the %paddy field area had a positive effect on the

355	near-shore T-POC concentration via R-POC inputs (Path 2 & 4). Large contribution of
356	T-POC in May could be related to agricultural practices in this season. Previous work
357	has reported that a large quantity of paddy-derived wastewater flows into the lake basin
358	at the onset of the rice irrigation period between late April and early May (Fujii et al.
359	2002; Haga and Ohtsuka 2003; Ohkubo and Azuma 2005; Hama et al. 2010). The
360	results of the present study support the notion that agricultural activities, especially
361	paddy irrigation, can be a significant factor that affects T-POC concentrations in
362	near-shore environments of Lake Biwa. It is also interesting to note that %paddy field
363	area had a positive effect on R-POC concentration even in February when paddy field
364	activities are considered to be minimal. This suggests the possibility that organic-rich
365	soils can be eroded from paddy fields even in winter, due to snowing and melting.
366	Although the underlying mechanisms have not yet been poorly understood, they remain
367	to be investigated in the future.
368	The results of path analysis also suggested that physical characteristics of
369	coastal environment, including coastal slope and wave height, have significant effects
370	on T-POC concentration in near-shore waters. We speculate that waves and gentle
371	coastal slopes might synergistically enhance the resuspension of sedimentary T-POC,
372	resulting in increased terrestrial contribution to the near-shore POC. This notion is

373	partly supported by findings of Murase and Sakamoto (2000) who reported that the
374	near-shore sediments of Lake Biwa contained a large quantity of terrigenous organic
375	matter. Intriguingly, in the present study, although R-POC had a positive effect on
376	amount of near-shore T-POC only in May (Path 4), the wave effects were strongest in
377	November, after rice field irrigation season (Fig. 6). These results suggest that
378	agricultural wastewater loading had a time lag effect on the T-POC concentration via
379	sedimentation and wave-driven resuspension in near-shore waters.
380	One might expect allochthonous inputs of R-POC to be magnified by river
381	discharge, as well as by its concentration. However, our analysis did not support this
382	prediction and revealed that river discharge had strongly negative effects on the
383	near-shore T-POC concentrations in July with high precipitation. In general, flooding
384	has the potential to increase concentration of suspended organic matter in river water
385	and consequently organic matter loadings on near-shore waters. However, we avoided
386	field samplings during flooding events because our interest was in land use effects on
387	allochthonous inputs but not in physical transportation mechanisms under ordinary flow
388	conditions. During the rainy season, discharge of larger rivers which receive larger
389	quantity of rain waters in their larger catchment areas might have a greater dilution
390	effect on near-shore POC.

391	In near-shore waters of Lake Biwa, POC was composed mainly of P-POC and
392	T-POC, whereas E-POC contributed little to POC regardless of the season and site. In
393	some shallow and oligotrophic lakes, it has been reported that epilithic-derived trophic
394	energy flows dominate in coastal food webs (Rautio and Vincent 2007; Karlsson and
395	Sawstrom 2009). There are two possible mechanisms in which relative contribution of
396	E-POC was low in Lake Biwa basins. One is associated with lake morphological
397	features: Lake Biwa has a deep structure with a steep slope, especially for large north
398	basin, in which the proportional area of shallow waters to the whole basin was
399	considerably small (Sakamoto 2000), suggesting that habitats are limited for epilithic
400	growth. Another mechanism is that an increase in P-POM and T-POM decreases light
401	penetration to the lake bottom, which has negative effects on epilithic growth
402	(Vadeboncoeur et al. 2001, 2003). Consistent with our observation, previous studies
403	have reported that filter-feeding macrozoobenthos and zooplankton in near-shore
404	environments of Lake Biwa relied mainly on P-POC and T-POC rather than on E-POC
405	(Karube et al. 2010). Their production reliance is also trophically transferred to that of
406	predatory fishes, characterizing food web configuration of whole communities (Okuda
407	et al. 2012).

In the present study, we did not consider contribution of detrital macrophytes to

409	the near-shore POM for the following two reasons. First, in Lake Biwa, especially in
410	deep north basin, the area of shallow habitats available to macrophytes is
411	disproportionately small relative to that of the whole basin, so that their total primary
412	production is much lower than that of phytoplankton and of even epilithon whose
413	euphotic zone is deeper than the macrophytes (Sakamoto 2000). Second, we have
414	technical difficulty in separating macrophyte detrital fraction from a mixture of POM
415	with different origins in the near-shore water for the stable isotope analysis and thus in
416	characterizing isotopic alteration during their decomposition in nature. To evaluate their
417	contribution, one of promising approaches is polyunsaturated fatty acid (PUFA) analysis
418	which can quantify each of organic sources by characterizing the composition of
419	primary producer-specific polyunsaturated fatty acids (Kelly and Scheibling2012). In
420	floodplain lakes of the central Brazilian Amazon basin, for instance, the technique
421	revealed that macrophyte detritus is a primary component of suspended POM during
422	low water season (Mortillaro et al. 2011). The application of PUFA analysis, even if it is
423	beyond our scope in the present study, will be a future challenge for better
424	understanding of seasonal changes inorganic matter flows in Lake Biwa, especially in
425	shallow south basin where submerged plants have recently luxuriated.
426	Using stable isotope approaches, we demonstrated that allochthonous inputs of

427	T-POC to near-shore waters were affected not only by the land use pattern in tributary
428	catchment areas, but also by the physical characteristics of local coastal environments.
429	This suggests that the spatiotemporal heterogeneity of food quality and quantity for
430	aquatic consumers will create a dynamic pattern of coastal food webs, altering the
431	relative importance of autochthonous grazing food chain and allochthonous microbial
432	loop in lake ecosystems.
433	
434	Acknowledgments
435	We are grateful to Dr. T. Koitabashi and Dr. Y. Goda for field assistance. We
436	also thank to Dr. E. Nakajima for useful comments on the manuscript. Dr. T. Ohtsuka
437	provided technical advice on statistics. This study was supported by the JSPS Grant-in
438	Aid (No.23657019 and No.24370010), the CREST project, JST and The Environment
439	Research and Technology Development Fund (D-1102 and S-9) of the Ministry of the
440	Environment, Japan. This study was partly supported by the Research Project 3-1 of The
441	Research Institute for Humanity and Nature. YS, ZK and NO were also supported by
442	Global COE Program A06 "Formation of a strategic base for biodiversity and
443	evolutionary research: from genome to ecosystem" from the MEXT, Japan.

446 Reference 447Arbuckle JL (2007) Amos 16.0 User's Guide. Amos Development Corporation, Spring 448 House Brett MT, Kainz MJ, Taipale SJ, Seshan H (2009) Phytoplankton, not allochthonous carbon, sustains herbivorous zooplankton production. Proceedings of the National Academy of Sciences 106:21197-21201 Browne M W, and Cudeck R(1993) Alternative ways of assessing model fit. In:Bollen KA and Long JS (ed.) Testing structural equation models, Sage Publications, Newbury Park, pp136–162. Chandra S, Vander Zanden MJ, Heyvaert AC, Richards BC, Allen BC, Goldman CR (2005) The effects of cultural eutrophication on the coupling between pelagic primary producers and benthic consumers. Limnology and Oceanography 50:1368-1376 Cole JJ, Carpenter SR, Kitchell J, Pace ML, Solomon CT, Weidel B (2011) Strong carbon, nitrogen, and hydrogen. Proceedings of the National Academy of Sciences of

Cole JJ, Carpenter SR, Pace ML, Van de Bogert MC, Kitchell JL, Hodgson JR (2006) 462

- 449
- 450
- 451
- 452
- 453
- 454
- 455
- 456
- 457
- 458
- evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of 459
- 460
- 461 the United States of America 108:1975-1980

- 463 Differential support of lake food webs by three types of terrestrial organic carbon.
- 464 Ecology Letters 9:558-568
- 465 Dodson S. I. (2005) Introduction to Limnology 1st ed, McGraw-Hill Companies Inc.
- 466 New York.
- 467 Doi H (2009) Spatial patterns of autochthonous and allochthonous resources in aquatic
- 468 food webs. PopulEcol 51:57-64
- 469 France RL (1995) Carbon 13 enrichment in benthic compared to planktonic algae -
- 470 foodweb implications. Marine Ecology-Progress Series 124:307-312
- 471 Fry B (2006) Stable Isotope Ecology. Springer, New York
- 472 Fry B, Sherr EB (1984) δ^{13} C measurements as indicators of carbon flow in marine and
- 473 fresh-water ecosystems. Contributions in Marine Science 27:13-47
- 474 Fujii S, Tanaka H, Somiya I (2002) Quantitative comparison of forests and other areas
- 475 with dry weather input loading in the Lake Biwa catchment area. Water Science and
- 476 Technology 45:183-193
- 477 Haga H, Ohtsuka T (2003) Changes in transparency (Secchi disk reading) of the pelagic
- zone of the main basin of Lake Biwa over a span of 73 years (in Japanese). Japanese
- 479 Journal of Limnology 64:133-139
- 480 Haga H, Ohtsuka T, Matsuda M, Ashiya M (2007) Echosounding observations of

- 481 coverage, height, PVI, and biomass of submerged macrophytes in the southern basin of
- 482 Lake Biwa, Japan. Limnology 8:95-102
- 483 Hama T, Nakamura K, Kawashima S (2010) Effectiveness of cyclic irrigation in
- 484 reducing suspended solids load from a paddy-field district. Agricultural Water
- 485 Management 97:483-489
- 486 Hothorn. T, Bretz. F, Westfall. P (2008) Simultaneous Inference in General Parametric
- 487 Models. Biometrical Journal 50:346-363
- 488 Karlsson J (2007) Different carbon support for respiration and secondary production in
- 489 unproductive lakes. Oikos 116:1691-1696
- 490 Karlsson J, Sawstrom C (2009) Benthic algae support zooplankton growth during
- 491 winter in a clear-water lake. Oikos 118:539-544
- 492 Karube Z, Sakai Y, Takeyama T, Okuda N, Kohzu A, Yoshimizu C, Nagata T, Tayasu I
- 493 (2010) Carbon and nitrogen stable isotope ratios of macroinvertebrates in the littoral
- 494 zone of Lake Biwa as indicators of anthropogenic activities in the watershed. Ecological
- 495 Research 25:847-855
- 496 Kelly JR, Scheibling RE (2012) Fatty acids as dietary tracers in benthic food webs.
- 497 Marine Ecology Progress Series 446:1-22
- 498 Kohzu A, Miyajima T, Tayasu I, Yoshimizu C, Hyodo F, Matsui K, Nakano T, Wada E,

- 499 Fujita N, Nagata T (2008) Use of Stable Nitrogen Isotope Signatures of Riparian
- 500 Macrophytes As an Indicator of Anthropogenic N Inputs to River Ecosystems.
- 501 Environmental Science & Technology 42:7837-7841
- 502 Kohzu A, Tayasu I, Yoshimizu C, Maruyama A, Kohmatsu Y, Hyodo F, Onoda Y, Igeta
- 503 A, Matsui K, Nakano T, Wada E, Nagata T, Takemon Y (2009) Nitrogen-stable isotopic
- signatures of basal food items, primary consumers and omnivores in rivers with
- different levels of human impact. Ecological Research 24:127-136
- 506 Maki K, Kim C, Yoshimizu C, Tayasu I, Miyajima T, Nagata T (2010) Autochthonous
- 507 origin of semi-labile dissolved organic carbon in a large monomictic lake (Lake Biwa):
- 508 carbon stable isotopic evidence. Limnology 11:143-153
- 509 Marshall JD, Brooks JR, Lajtha K (2007) Sources of variation in the stable isotopic
- 510 composition of plants. In Michener R. and Lajtha K. (ed) Stable isotopes in Ecology and
- 511 Environmental Science, 2nd ed., Blackwell, Malden, pp 22-60
- 512 Tsuda R, Kumagai M, Kakui Y (1992) Spatial changes of phytoplanktonic size spectra
- in Lake Biwa. Hydrobiologia 243-244:137-140
- 514 McClelland JW, Valiela I (1998) Linking nitrogen in estuarine producers to land-derived
- sources. Limnology and Oceanography 43:577-585
- 516 Mortillaro JM, Abril G, Moreira-Turcq P, Sobrinho RL, Perez M, Meziane T (2011)

517	Fatty acid and stable isotope (delta C-13, delta N-15) signatures of particulate organic
518	matter in the lower Amazon River: Seasonal contrasts and connectivity between
519	floodplain lakes and the mainstem. Organic Geochemistry 42:1159-1168
520	Murase J, Sakamoto M (2000) Horizontal distribution of carbon and nitrogen and their
521	isotopic compositions in the surface sediment of Lake Biwa. Limnology 1:177-184
522	Nakatsuji T, Nakamura K, Amano K (2006) Effects of wave and geomorphology on
523	growth and distribution of lakeshore vegetation (in Japanese). Journal of Japan Society
524	of Civil Engineers, Ser. G 62:135-140
525	Ohkubo T, Azuma Y (2005) Load of turbid from the watershed of Lake Biwa and its
526	effect on the lake water quality. Memorial volume of the Lake Biwa Research Institute
527	(in Japanese) Lake Biwa Research Institute, Otsu, Shiga, Japan:55–72
528	Okuda N, Takeyama T, Komiya T, Kato Y, Okuzaki Y, Karube Z, Sakai Y, Hori M,
529	Tayasu I, Nagata T (2012) A food web and its long-term dynamics in Lake Biwa: a
530	stable isotope approach. In: KawanabeH. et al. (ed) Lake Biwa: Interactions between
531	nature and people. Springer Academic, Amsterdam, pp205-210
532	Pace ML, Carpenter SR, Cole JJ, Coloso JJ, Kitchell JF, Hodgson JR, Middelburg JJ,
533	PrestonND, Solomon CT, WeidelBC (2007) Does terrestrial organic carbon subsidize
534	the planktonic food web in a clear-water lake? Limnology and Oceanography

535 52:2177-2189

- 536 Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: coping with too
- 537 many sources. Oecologia 136:261-269
- 538 Pinheiro. J, Bates. D, DebRoy. S, Sarkar. D, R Development Core Team (2010) nlme:
- 539 Linear and Nonlinear Mixed Effects Models. R package version 3.1-102.
- 540 Rautio M, F. Vincent W (2007) Isotopic analysis of the sources of organic carbon for
- zooplankton in shallow subarctic and arctic waters. Ecography 30:77-87
- 542 R Development Core Team (2011) R: a Language and Environment for Statistical
- 543 Computing. R Foundation for Statistical Computing, Vienna, Austria.
- Rossiter A (2000) Lake Biwa as a topical ancient lake In: Rossiter A, Kawanabe H (ed)
- 545 Ancient Lakes: Biodiversity, Ecology and Evolution. Advances in Ecological Research
- 546 31: 571-598, Academic Press, London
- 547 Sakamoto M (2000) Organisms in Lake Biwa. In: Somiya I (ed) Lake Biwa:
- environment and water quality formation (in Japanese), Gihodoshuppan, Tokyo, pp
- 549 187-246
- 550 Shiga prefecture (1992-2002) White paper on the environment of Shiga Prefecture (in
- 551 Japanese). Shiga Prefecture, Japan
- 552 Somiya I (ed) (2000) Lake Biwa: environment and water quality formation (in

- 553 Japanese). Gihodoshuppan, Tokyo
- Tabei A (2001) Perfect master of SPSS: Questionnaire data analysis using covariance
- 555 structure analysis (AMOS) (in Japanese). Tokyotosyoshuppan, Tokyo
- 556 Tayasu I, Hirasawa R, Ogawa N. O, Ohkouchi N, Yamada K (2011) New organic
- 557 reference materials for carbon- and nitrogen-stable isotope ratio measurements provided
- by Center for Ecological Research, Kyoto University, and Institute of Biogeosciences,
- 559 Japan Agency for Marine-Earth Science and Technology. Limnology 1-6
- 560 Tsuda R, Kumagai M, Kakui Y (1992) Spatial changes of phytoplanktonic size spectra
- in Lake Biwa. Hydrobiologia 243-244:137-140
- 562 Vadeboncoeur Y, Jeppesen E, Vander Zanden MJ, Schierup HH, Christoffersen K,
- 563 Lodge DM (2003) From Greenland to green lakes: Cultural eutrophication and the loss
- of benthic pathways in lakes. Limnology and Oceanography 48:1408-1418
- 565 Vadeboncoeur Y, Lodge DM, Carpenter SR (2001) Whole-lake fertilization effects on
- 566 distribution of primary production between benthic and pelagic habitats. Ecology
- 567 82:1065-1077
- 568 Vander Zanden MJ, Vadeboncoeur Y, Chandra S (2011) Fish Reliance on littoral-benthic
- resources and the distribution of primary production in lakes. Ecosystems 14:894-903
- 570 Wetzel RG, Likens GE (2000) Limnological analysis, 3rd edn. Springer Verlag, Berlin

- 571 Yamamura K (1999) Transformation using (x+0.5) to stabilize the variance of
- 572 populations. Research on Population Ecology 41:229-234

575	
576	Figure and Table Legends
577	Fig. 1
578	A map of POC sampling sites (no. 1-30) in the near-shore waters of Lake Biwa.
579	No. 30 is the reference site for P-POM. See Appendix A and B for details of site
580	information.
581	
582	Fig. 2
583	Carbon and nitrogen isotopic signatures of near-shore POM and their potential organic
584	sources (P-POM, E-POM and R-POM). Each plot represents mean from all sampling
585	sites, and vertical and horizontal bars indicate range (also see Appendix C). Note that
586	P-POM data are derived from only a pelagic site.
587	
588	Fig. 3
589	An a priori path model to explain the variation in T-POC concentrations in the
590	near-shore waters of Lake Biwa. The model consists of two components. Unidirectional
591	arrows indicate a causal effect and double headed arrows interactive effect.
592	

93 **Fig. 4**

594	Spatiotemporal variations in the concentrations of three components, P-POC, E-POC
595	and T-POC, of POC in the near-shore waters of Lake Biwa. The size of each circle is
596	proportional to the POC concentration. Transparent circles represent sites where the
597	relative contributions of three potential organic sources could not be estimated (see
598	Materials and Methods).
599	
600	Fig. 5
601	Seasonal changes in the composition of three potential organic sources of POC in the
602	near-shore waters of Lake Biwa. Vertical bars are the standard deviation.
603	
604	Fig. 6
605	The path model based on the simultaneous analysis of multiple populations with
606	structured means. The basic framework is the same as that in Figure 2. Dark and light
607	arrows are significant (p < 0.05) and not significant (p > 0.05) paths, respectively.
608	Values with arrows are path coefficients. The subscripts of R-POC and log (T-POC)
609	indicate the total effect on these variables.
610	

Table 1

- 613 Measured POC concentration and estimated P-POC, E-POC and T-POC concentrations
- $614 \quad (mgL^{-1})$ at each coastal site in Lake Biwa.

618	Appendix A
619	Geographic information system (GIS) data and riverine organic matter for each tributary
620	catchment area. Land use pattern is expressed as the proportional area.
621	
622	Appendix B
623	The major environmental data and the physical characteristics of the corresponding
624	coastal site.
625	
626	Appendix C
627	Carbon and nitrogen stable isotope ratios (‰) of POM and its three potential sources
628	(P-POM, E-POM, and R-POM) at each coastal site.
629	
630	Appendix D
631	The relative contribution (%) of the three potential sources (P-POM, E-POM and
632	T-POM) to POM at each coastal site.
633	

Fig. 2

Fig. 3

Fig. 5

Table 1

 $Measured \ POC \ concentration \ and \ estimated \ P-POC, \ E-POC \ and \ T-POC \ concentrations \ (mg \ L^{-1}) \ at \ each \ coastal \ site \ in \ Lake \ Biwa.$

Site no	Name of		Nov.	2005			Feb.	2006			May	2006			Jul. 2006					
Site no	tributary rivers	POC	P-POC	E-POC	T-POC	POC	P-POC	E-POC	T-POC	POC	P-POC	E-POC	T-POC	POC	P-POC	E-POC	T-POC			
1	Kamo River	1.614	1.473	0.077	0.061	3.346	3.286	0.013	0.047	3.897	1.489	0.596	1.812	3.421	3.281	0.109	0.031			
2	Ado R.	1.493				1.226	1.060	0.147	0.020	1.724	0.655	0.360	0.708	4.256	3.349	0.145	0.757			
3	Ishida R.	1.446	0.450	0.139	0.857	0.981	0.801	0.061	0.120	1.796				6.145	5.408	0.277	0.461			
4	Momose R.	2.300	1.851	0.007	0.442	1.242	1.226	0.009	0.009	2.531				5.720	3.318	0.686	1.722			
5	Oura R.	1.222	1.213	0.004	0.004	2.274	1.569	0.000	0.705	0.921				7.029	5.286	0.056	1.687			
6	Shiotsu-o R.	1.249	1.225	0.014	0.009	2.310	1.400	0.284	0.626	4.259				5.567	0.167	0.484	4.916			
7	Chonoki R.	1.709	1.355	0.048	0.306	1.771	1.593	0.000	0.177	4.395	1.481	0.040	2.875	8.603	4.069	0.792	3.742			
8	Ta R.	1.713	1.358	0.048	0.307	1.391				4.586	0.000	0.000	0.000	7.001						
9	Ane R.	1.963	1.580	0.075	0.308	1.862	1.178	0.013	0.670	2.595				6.974	6.939	0.035	0.000			
10	Yone R.	1.607	0.754	0.212	0.640	2.953	1.603	0.009	1.343	3.291	0.000	0.000	0.000	10.145						
11	Amano R.	1.711	0.707	0.147	0.857	6.035	2.124	0.024	3.886	4.758				8.501	7.337	0.867	0.298			
12	Seri R.	2.166	1.967	0.022	0.178	4.101	2.215	0.021	1.866	3.021	0.000	0.000	0.000	6.820	5.524	0.184	1.112			
13	Inukami R.	1.866	0.507	0.140	1.216	8.151	3.831	0.000	4.320	4.348	1.991	0.009	2.348	6.617	6.432	0.119	0.066			
14	Ajiki R.	2.116	0.224	0.421	1.473	9.595	2.178	0.384	7.024	3.378	0.000	0.000	0.000	6.102	5.504	0.531	0.073			
15	Uso R.	4.483	4.339	0.031	0.112	6.672	3.303	0.000	3.369	4.984	3.908	0.030	1.052	6.047	5.654	0.181	0.212			
16	Bunroku R.	2.601				2.533	1.824	0.000	0.709	4.699	0.000	0.000	0.000	5.470	5.054	0.284	0.137			
17	Nomazu R.	2.794				3.336	2.605	0.400	0.327	6.483	3.468	0.000	3.015	9.929	9.055	0.109	0.764			
18	Echi R.	3.920	3.175	0.008	0.737	2.327	1.682	0.016	0.628	3.701				12.012						
19	Nagaso R.	5.833	0.117	2.187	3.529	12.609				7.392	6.099	0.022	1.271	6.220	5.847	0.000	0.373			
20	Hayama R.	6.262	1.828	0.645	3.782	21.669	1.517	1.408	18.744	8.838	0.168	2.121	6.549	9.259	9.027	0.000	0.231			
21	Shin-moriyama R.	3.095	0.025	1.711	1.362	34.982	5.527	8.046	21.409	14.337	5.448	0.115	8.774	12.896	0.064	0.000	12.831			
22	Yasu R.	6.179				3.684				6.571				11.995						
23	Yanomune R.	11.544				3.388	2.101	0.000	1.287	3.883	1.091	0.043	2.753	11.108	9.742	0.022	1.344			
24	Hino R.	3.567	0.235	1.384	1.948	5.953	3.661	0.000	2.292	3.339	0.053	0.013	3.273	9.522	8.665	0.809	0.048			
25	UR.	2.136	1.816	0.000	0.320	2.263	1.878	0.373	0.011	3.161	2.580	0.095	0.487	3.545	0.025	0.982	2.542			
26	Wani R.	1.117	0.978	0.003	0.136	3.539	2.902	0.000	0.637	2.741	2.119	0.005	0.617	4.516	1.165	0.379	2.972			
27	Mano R.	2.322	2.220	0.063	0.039	2.585	1.383	0.000	1.202	4.185	3.955	0.230	0.000	3.694	3.380	0.314	0.000			
28	Tenjin R.	3.431	3.431	0.000	0.000	5.342	3.776	0.118	1.448	4.860	3.377	0.967	0.510	5.831	4.869	0.000	0.962			
29	Fujinoki R.	2.081	0.010	2.071	0.000	8.922	3.953	0.625	4.345	6.095	2.206	3.870	0.018	6.197	4.709	0.000	1.487			
Offsho	ore reference site																			
30	Ie-1	2.38				2.22				3.01				4.73						

Appendix A

Geographic information system (GIS) data and riverine organic matter for each tributary catchment area. Land use pattern is expressed as the proportional area.

Station No. Station Name	Human population	Human population density	Catchment area	% Paddy field	% Other crop land area	% Forest area	% Waste land area	% Residential area	% Traffic area	% Liver and Lake area	% Other area	Riverin Par	ticulate Or	ganic Nutri	ent (PON)	Riverin Pa	Riverin Particulate Organic Carbon (POC)						
	(ind)	(ind. km ⁻²)	(km ⁻²)										(µ mo	1 L ⁻¹)			(µ mo	L ⁻¹)					
												Nov. 2005	Feb. 2006	May 2006	Jul. 2006	Nov. 2005	Feb. 2006	May 2006	Jul. 2006				
1 Kamo River	4149	89.16	46.531	18.13	0.48	74.80	1.67	1.20	0.09	2.05	1.58	1.014	2.779	2.722	2.331	9.872	29.989	22.935	20.056				
2 Ado R.	8185	26.74	306.123	3.11	0.54	91.45	1.42	0.71	0.01	1.76	0.80	0.979	0.331	1.842	1.280	7.518	2.459	11.818	10.687				
3 Ishida R.	5023	83.83	59.926	9.58	0.93	81.11	4.13	1.96	0.02	0.86	1.42	0.666	0.696	2.450	1.190	5.820	7.297	16.998	11.342				
4 Momose R.	851	64.74	13.142	4.02	0.34	87.69	1.23	0.56	0.00	3.07	3.10	0.731	0.818	3.508	2.757	5.797	7.669	31.119	27.666				
5 Oura R.	3828	97.62	39.209	11.28	1.61	78.52	2.19	2.67	0.16	0.94	2.63	7.627	9.810	4.809	4.032	96.905	136.730	45.918	46.646				
6 Shiotsu-o R.	1111	55.03	20.242	6.66	0.38	86.85	1.29	1.57	1.34	1.38	0.51	11.435	9.279	2.485	1.822	143.682	148.315	21.167	19.257				
7 Chonoki R.	4219	412.28	10.234	76.29	3.61	0.09	0.08	13.52	0.01	5.13	1.27	5.815	31.818	9.420	2.305	51.361	264.691	69.923	21.837				
8 Ta R.	10853	301.33	36.016	46.68	2.08	37.10	0.25	9.59	1.39	1.93	0.99	11.907	12.720	5.298	9.858	118.184	133.328	44.291	120.706				
9 Ane R.	22516	60.57	372.261	5.91	1.08	88.16	0.81	1.70	0.06	1.63	0.65	2.926	6.996	1.618	1.064	28.161	90.280	12.117	10.066				
10 Yone R.	31047	2047.40	15.164	54.84	1.27	0.76	0.00	34.54	1.82	1.50	5.27	2.825	2.312	1.858	3.281	23.010	25.849	17.330	34.578				
11 Amano R.	24994	225.70	110.935	18.48	2.48	66.31	1.49	5.82	1.44	1.97	2.01	21.215	1.770	2.883	1.538	160.075	18.646	24.513	14.668				
12 Seri R.	34039	462.06	73.859	6.96	0.91	75.20	2.20	8.09	1.32	2.36	2.60	5.529	1.807	1.467	2.036	37.959	20.657	11.392	17.104				
13 Inukami R.	11066	109.47	101.626	6.74	0.86	82.16	3.30	2.79	0.41	3.14	0.59	7.760	2.186	0.820	0.802	45.100	24.647	7.002	7.234				
14 Ajiki R.	14870	1001.57	14.847	70.24	0.68	1.06	0.14	20.11	1.25	1.80	4.72	24.544	4.425	5.132	4.172	185.768	40.110	36.507	47.858				
15 Uso R.	34452	411.42	83.740	51.72	0.97	28.60	1.22	11.05	1.58	2.41	2.45	39.132	7.403	3.870	3.420	312.742	81.385	30.546	27.136				
16 Bunroku R.	8323	595.25	13.981	66.79	1.22	15.68	0.90	11.69	0.00	2.35	1.35	21.247	4.018	6.447	5.407	170.537	39.113	55.116	60.821				
17 Nomazu R.	5465	757.58	7.214	65.99	0.71	3.58	0.00	20.17	1.13	2.21	6.22	14.473	2.336	4.710	4.045	119.538	24.225	38.565	36.029				
18 Echi R.	22957	109.59	211.139	10.41	0.72	77.97	2.85	2.54	0.10	4.79	0.61	8.799	0.936	2.579	0.997	64.881	7.945	22.102	9.721				
19 Nagaso R.	11728	3174.29	3.695	18.35	2.40	20.63	1.09	31.40	7.95	5.86	12.32	17.375	4.968	4.116	1.917	138.208	53.009	34.308	46.767				
20 Hayama R.	68910	2047.95	33.648	43.70	0.59	7.52	1.19	29.70	3.18	3.53	8.75	14.215	2.556	9.411	2.274	120.184	27.370	69.935	22.470				
21 Shin-moriyama R.	14426	2539.60	5.680	54.53	0.19	1.16	0.37	33.73	0.10	0.59	9.34	16.716	4.585	7.420	3.444	134.247	36.162	62.000	29.964				
22 Yasu R.	126122	324.12	391.183	19.96	2.51	57.67	2.16	6.50	0.40	5.58	3.11	12.572	2.348	3.311	2.595	92.455	19.354	23.234	20.113				
23 Yanomune R.	35935	858.81	41.842	52.27	1.38	19.47	2.18	15.72	0.99	3.91	4.07	22.867	3.154	7.158	4.218	179.294	27.223	61.422	43.261				
24 Hino R.	76360	338.11	225.846	31.26	2.14	44.32	2.02	8.42	0.43	4.89	4.41	13.271	3.116	6.309	3.253	82.902	25.800	45.762	29.626				
25 U R.	465	66.15	7.028	5.96	0.00	89.06	0.45	0.81	0.32	0.78	2.62	12.367	0.278	1.063	0.917	158.484	2.551	10.894	12.313				
26 Wani R.	3203	186.48	17.174	15.96	0.12	65.86	4.66	5.42	1.89	0.93	2.67	8.895	3.876	2.124	1.292	75.623	29.538	16.125	11.239				
27 Mano R.	24305	1048.33	23.184	28.45	0.33	42.77	6.63	15.60	1.96	1.13	2.99	9.137	2.074	3.458	2.101	69.424	22.013	24.245	16.789				
28 Tenjin R.	5268	539.33	9.768	27.48	0.95	54.70	4.15	7.31	2.79	0.86	1.76	11.925	1.573	5.300	2.673	87.948	14.400	34.817	28.289				
29 Fujinoki R.	7116	1804.68	3.943	16.19	0.53	49.08	0.28	20.76	3.49	0.27	9.39	16.805	1.161	0.896	1.596	169.476	10.000	6.440	21.301				

Appendix B

The major environmental data and the physical characteristics of the corresponding coastal site.

Site no.	Name of tributary rivers	Samplin	g location	Wave hight	Wave energyflux	Lake shore energy flux	Coastal slope	Sand beach width	Reed grassfield width	Chl.a of near-shore POM					Conduc	tivity	рН				
		Latitude	Longitude	(m)	(kg m day ⁻¹ m ⁻¹)	(kg m day ⁻¹ m ⁻¹)	(1 distance	(m)	(m)		(µgl	L ⁻¹)			(mS n	n ⁻¹)					
										Nov. 2005	Feb. 2006	May 2006	Jul. 2006	Nov. 2005	Feb. 2006	May 2006	Jul. 2006	Nov. 2005	Feb. 2006	May 2006	Jul. 2006
1	Kamo River	35°17.921'	136°02.645'	0.08	-93.08	15.82	10.72	19	0	2.145	1.168	1.565	1.872	14	14	13	13	8.040	7.340	7.900	7.170
2	Ado R.	35°19.186'	136°04.947'	0.09	15.07	14.42	8.12	8	0	1.333	0.752	1.275	1.872	13	13	13	13	7.440	7.360	6.800	7.620
3	Ishida R.	35°24.185'	136°03.058'	0.08	183.11	33.68	9.37	20	0	1.971	0.752	1.275	3.188	13	14	13	13	7.310	7.660	7.500	7.830
4	Momose R.	35°26.660'	136°03.776'	0.08	109.58	11.76	7.00	18	0	1.739	0.869	2.027	3.237	13	21	12	13	8.050	7.650	6.500	7.600
5	Oura R.	35°28.851'	136°07.307'	-	-	-	8.61	-	-	1.913	0.788	1.722	4.943	13	14	13	12	8.090	7.560	8.800	8.010
6	Shiotsu-o R.	35°30.046'	136°10.137'	-	-	-	5.33	-	-	1.101	1.217	3.980	3.237	13	18	10	13	7.260	7.360	7.700	6.810
7	Chonoki R.	35°24.611'	136°11.902'	0.14	351.31	9.86	25.82	0	13	4.931	1.333	7.948	4.895	15	15	12	14	7.520	7.180	7.100	6.790
8	Ta R.	35°24.025'	136°12.716'	0.15	430.07	11.11	32.61	0	25	5.569	1.043	5.105	5.090	15	15	13	14	7.820	7.290	6.400	6.670
9	Ane R.	35°22.969'	136°13.387'	0.08	11.51	22.08	7.69	28	0	3.016	1.558	3.480	5.821	13	13	13	14	8.160	7.310	7.100	6.650
10	Yone R.	35°21.802'	136°16.010'	0.10	23.17	4.90	25.99	0	35	3.828	1.071	3.538	7.235	25	18	18	17	8.430	8.410	7.400	6.650
11	Amano R.	35°19.405'	136°16.057'	0.23	1214.29	58.72	7.44	23	0	4.292	2.951	2.900	5.382	15	20	15	16	8.210	8.720	8.400	7.250
12	Seri R.	35°16.322'	136°14.039'	0.22	1076.3	76.30	9.07	0	0	4.640	2.900	3.248	5.723	13	17	16	15	7.990		8.200	7.330
13	Inukami R.	35°15.663'	136°12.860'	0.22	950.15	69.40	6.50	10	0	4.350	3.341	4.329	4.212	19	15	15	14	8.050	7.770	8.400	7.430
14	Ajiki R.	35°15.094'	136°12.230'	0.21	830.06	72.24	7.47	11	0	3.654	3.944	3.527	4.309	28	16	17	15	7.360	7.590	7.500	6.920
15	Uso R.	35°14.939'	136°11.881'	0.21	722.72	43.03	32.79	22	0	5.743	3.654	2.935	4.992	15	15	15	14	7.880	7.690	8.000	6.640
16	Bunroku R.	35°14.275'	136°10.378'	0.20	597.17	23.28	6.99	7	0	4.002	2.241	5.105	4.846	16	18	16	14	7.760	7.440	7.500	6.890
17	Nomazu R.	35°13.496'	136°09.118'	0.20	494.56	9.07	23.71	9	0	4.118	3.132	3.538	8.308	16	23	18	18	7.630	7.250	7.000	6.120
18	Echi R.	35°12.803'	136°06.509'	0.18	598.94	40.55	2.06	0	0	2.551	2.319	4.582	5.675	15	13	14	14	7.900	7.790	8.000	5.520
19	Nagaso R.	34°59.772'	135°54.043'	-	-	-	0.82	-	-	1.913	7.716	7.600	3.237	24	17	14	16	7.340	7.650	6.500	6.520
20	Hayama R.	35°02.765'	135°54.453'	0.14	289.63	2.68	6.79	0	21	3.248	14.390	4.060	2.457	22	19	14	14	7.200	7.670	6.800	6.510
21	Shin-moriyama R.	35°04.737'	135°56.542'	0.15	-72.41	6.06	5.20	0	0	1.797	18.887	11.720	6.016	26	26	15	17	6.990	7.810	6.700	6.670
22	Yasu R.	35°07.495'	135°58.443'	0.16	185.82	26.01	15.14	0	0	3.596	3.016	4.234	3.627	29	25	14	18	6.760	6.580	7.200	6.370
23	Yanomune R.	35°08.261'	136°00.800'	0.19	527.06	11.72	7.01	5	0	5.458	3.422	2.881	6.796	21	20	14	17	6.850	6.650	7.000	6.500
24	Hino R.	35°08.908'	136°01.725'	0.20	-881.45	9.74	12.39	105	0	6.572	2.842	4.646	6.601	16	19	14	15	8.300	6.990	7.100	6.680
25	UR.	35°15.685'	135°59.845'	0.08	-68.06	14.17	14.91	14	0	1.449	0.869		2.067	13	13	13	13	8.320	7.720	7.300	7.150
26	Wani R.	35°09.254'	135°56.317'	0.10	-104.75	1.64	20.17	38	0	2.319	2.721	1.913	2.749	14	13	15	13	8.570	7.820	7.100	7.000
27	Mano R.	35°07.434'	135°56.109'	0.07	-65.63	2.89	22.29	11	0	4.060	2.839	5.105	2.310	14	13	13	13	8.560	7.600	7.700	6.170
28	Tenjin R.	35°05.971'	135°55.531'	0.05	55.79	2.57	10.83	0	16	3.016	1.333	3.712	2.993	16	15	13	14	8.290	7.910	7.000	5.580
29	Fujinoki R.	35°03.353'	135°53.729'	0.06	-25.88	14.80	4.56	0	31	1.449	4.733	7.403	2.944	17	16	15	14	7.920	8.050	6.300	7.300
Offsho	re reference site																				
30	Ie-1	35°12.970'	135°59.959'							3.654	0.869	1.449	4.114								

Appendix C

Carbon and nitrogen stable isotope ratios (‰) of POM and its three potential sources (P-POM, E-POM, and R-POM) at each coastal site.

				Nov.	2005			Feb. 2006							May 2006							Jul. 2006					
Site no	Name of tributary rivers	Р	OM	E-l	E-POM		R-POM		POM		POM	R-l	POM	PO	ОМ	E-H	POM	R-POM		POM		E-POM		R-I	POM		
		$\delta^{15}N$	$\delta^{13}C$																								
1	Kamo River	5.47	-24.13	5.23	-11.35	3.52	-28.06	12.26	-29.92	4.90	-21.97	4.15	-25.56	5.47	-25.35	6.25	-17.36	3.76	-28.78	4.42	-24.05	6.73	-9.60	6.63	-30.19		
2	Ado R.	5.14	-24.73			6.30	-23.37	11.67	-28.54	3.78	-22.93	3.58	-25.18	6.90	-24.69	4.51	-25.90	7.68	-24.19	4.96	-24.57	5.96	-12.44	4.56	-24.91		
3	Ishida R.	5.23	-24.96	7.99	-15.99	4.64	-26.58	11.14	-28.27	5.86	-18.68	1.96	-25.18	6.26	-29.69	4.14	-13.02	3.93	-23.23	4.83	-24.39	4.56	-10.35	2.72	-25.58		
4	Momose R.	5.48	-25.66	5.00	-9.40	6.69	-29.05	13.21	-28.99	5.15	-14.19	4.27	-27.59	6.39	-30.18	3.76	-15.23	4.97	-27.62	5.36	-24.60	4.79	-12.44	6.26	-28.66		
5	Oura R.	6.11	-25.10	4.18	-10.05	3.01	-28.60	9.37	-29.10	4.44	-14.00	2.21	-26.93	5.89	-28.22	4.84	-13.81	2.24	-26.85	4.75	-25.38	5.23	-12.16	3.86	-26.98		
6	Shiotsu-o R.	5.99	-24.91	6.49	-12.82	2.27	-28.55	9.21	-28.05	5.40	-21.71	2.73	-27.81	4.87	-28.70	4.10	-20.21	3.25	-26.48	4.67	-26.01	5.22	-11.37	4.71	-27.51		
7	Chonoki R.	5.20	-24.84	5.95	-18.71	3.56	-26.62	11.90	-29.34	5.07	-20.79	3.93	-26.84	5.01	-27.43	3.89	-22.50	3.68	-28.91	4.55	-25.07	4.00	-16.19	4.16	-27.01		
8	Ta R.	5.21	-24.69	5.63	-15.90	3.64	-27.18	9.32	-27.61			3.24	-27.18	5.05	-26.68			2.80	-27.18	4.99	-24.54			3.84	-27.88		
9	Ane R.	5.26	-24.31	5.33	-6.76	3.79	-26.88	9.32	-28.42	6.19	-13.93	3.08	-26.90	6.27	-27.41	6.18	-15.28	4.27	-23.34	4.75	-24.70	7.26	-10.83	5.95	-25.73		
10	Yone R.	5.47	-24.00	4.96	-14.46	5.57	-26.40	9.61	-27.54	4.78	-15.07	5.76	-25.26	5.72	-27.23			6.67	-26.91	4.86	-26.35			6.71	-26.40		
11	Amano R.	5.09	-24.14	4.50	-12.72	5.55	-25.57	6.77	-27.78	6.60	-17.69	5.96	-24.39	5.76	-26.87	5.72	-15.40	5.33	-22.77	4.79	-23.77	7.96	-18.08	6.18	-24.77		
12	Seri R.	5.60	-24.66	7.71	-16.22	6.25	-25.79	7.53	-28.44	8.29	-20.71	4.61	-23.89	7.20	-25.43			7.26	-21.16	5.98	-24.55	7.36	-16.70	10.48	-23.63		
13	Inukami R.	5.30	-24.42	6.76	-11.27	5.28	-25.87	7.49	-28.59	7.88	-18.01	5.29	-25.23	7.05	-25.71	5.92	-13.49	5.45	-25.34	5.03	-24.84	6.56	-14.89	7.90	-27.51		
14	Ajiki R.	5.64	-25.59	7.44	-16.52	4.87	-28.10	6.90	-28.04	9.65	-27.87	4.90	-27.53	6.71	-25.74			6.13	-28.57	5.34	-24.27	9.13	-16.42	6.61	-27.88		
15	Uso R.	6.51	-25.40	7.19	-6.52	4.63	-26.69	7.75	-28.76	8.51	-13.68	5.10	-25.56	7.47	-25.33	7.07	-15.29	6.92	-28.27	5.19	-24.60	7.01	-11.62	8.50	-25.30		
16	Bunroku R.	6.27	-25.26			5.78	-27.44	9.46	-29.53	8.52	-16.31	3.89	-26.28	4.99	-26.31			5.63	-28.54	5.25	-24.52	9.27	-15.09	6.79	-26.56		
17	Nomazu R.	6.07	-25.25			5.12	-29.29	9.57	-30.68	7.96	-26.82	4.39	-25.42	6.35	-26.04	9.03	-15.71	4.10	-26.67	4.74	-25.05	9.07	-21.16	4.10	-28.22		
18	Echi R.	5.73	-25.72	5.18	-13.37	4.01	-28.08	9.41	-29.67	4.75	-21.91	4.75	-25.78	6.38	-26.72	4.33	-21.25	4.61	-19.26	2.95	-26.50	7.36	-16.36	7.22	-20.52		
19	Nagaso R.	7.50	-25.64	8.78	-17.14	6.35	-30.83	5.16	-26.91	11.30	-19.23	8.28	-28.66	6.95	-25.13	7.88	-15.45	4.61	-28.14	4.83	-25.42	9.57	-17.95	6.42	-27.90		
20	Hayama R.	4.16	-25.30	9.09	-15.93	3.94	-28.46	7.12	-26.29	8.44	-15.76	6.55	-26.84	5.12	-23.91	6.68	-14.32	5.18	-27.21	4.90	-25.17	8.64	-19.10	6.49	-26.02		
21	Shin-moriyama R.	8.95	-26.15	10.20	-22.62	4.98	-28.20	7.82	-25.86	8.43	-18.18	6.29	-27.83	7.13	-26.69	7.94	-20.44	6.24	-27.43	5.91	-27.89	9.04	-21.21	5.52	-26.11		
22	Yasu R.	5.88	-25.31			4.47	-28.36	8.70	-29.72			5.21	-25.12	5.49	-25.56			9.52	-24.68	3.86	-26.97			7.69	-29.62		
23	Yanomune R.	7.27	-24.99			4.26	-27.63	8.38	-29.81	7.17	-17.88	4.48	-26.62	6.32	-26.19	7.04	-21.39	5.30	-26.34	4.81	-25.54	7.28	-21.01	6.25	-26.59		
24	Hino R.	7.13	-24.27	8.42	-17.74	6.41	-28.86	8.75	-29.48	8.87	-19.08	6.44	-25.20	6.73	-26.95	7.47	-21.06	7.23	-26.24	5.22	-24.51	9.11	-21.45	10.12	-23.40		
25	U R.	5.64	-26.07	3.90	-11.95	1.64	-29.62	11.65	-27.67	4.77	-19.70	3.84	-27.47	7.21	-24.45	5.07	-14.35	7.26	-26.81	4.02	-24.07	4.22	-13.70	4.06	-28.06		
26	Wani R.	5.56	-25.32	4.58	-9.58	3.75	-29.33	9.85	-30.83	4.63	-16.30	6.54	-26.38	6.45	-24.98	5.31	-15.74	4.15	-24.28	4.51	-24.26	5.93	-11.09	4.12	-25.65		
27	Mano R.	6.66	-24.64	4.63	-8.73	4.09	-29.87	7.74	-28.66	5.00	-14.21	3.94	-25.52	7.22	-23.82	5.55	-14.86	2.69	-28.75	4.95	-24.12	6.36	-15.59	8.82	-28.99		
28	Tenjin R.	6.24	-24.74	4.48	-17.52	4.41	-25.91	9.48	-28.64	6.33	-23.14	3.75	-23.91	7.13	-23.38	6.58	-18.69	6.93	-25.70	5.14	-25.69	6.46	-13.85	8.83	-25.63		
29	Fujinoki R.	8.29	-22.09	7.10	-23.78	5.02	-28.48	8.77	-26.95	7.76	-18.85	5.16	-25.83	6.82	-19.98	5.52	-18.34	5.87	-29.71	6.14	-25.90	8.60	-13.86	10.12	-28.07		
Offsh	ore reference site																										
30	Ie-1 (offshore reference)	5.54	-24.65					12.90	-29.44					7.25	-24.38					5.02	-25.00						

Appendix D

The relative contribution (%) of the three potential sources (P-POM, E-POM and T-POM) to POM at each coastal site.

				Nov	. 2005					Feb	. 2006					May	/ 2006		Jul. 2006						
0.1	Name of	P-	РОМ	E-l	РОМ	T-l	РОМ	P-I	POM	E-l	РОМ	T-l	POM	P-]	POM	E-l	POM	T-	РОМ	P-]	РОМ	E-l	РОМ	T-I	POM
Site no.	tributary rivers	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range	Mean	Range
1	Kamo River	91.3	87 - 96	4.8	4 - 6	3.8	0 - 7	98.2	97 - 99	0.4	0 - 1	1.4	0 - 3	38.2	35 - 42	15.3	13 - 17	46.5	44 - 49	95.9	94 - 98	3.2	2 - 5	0.9	0 - 3
2	Ado R.							86.4	86 - 87	12.0	10 - 14	1.6	0 - 4	38.0	0 - 86	20.9	14 - 27	41.1	0 - 76	78.7	57 - 97	3.4	3 - 4	17.8	0 - 40
3	Ishida R.	31.1	0 - 69	9.6	2 - 16	59.3	29 - 85	81.6	81 - 82	6.2	5 - 7	12.2	11 - 13	-		-		-		88.0	84 - 92	4.5	4 - 5	7.5	4 - 11
4	Momose R.	80.5	79 - 83	0.3	0 - 1	19.2	17 - 21	98.7	98 - 100	0.7	0 - 2	0.7	0 - 2	-		-		-		58.0	47 - 69	12.0	9 - 15	30.1	22 - 38
5	Oura R.	99.3	99 - 100	0.3	0 - 1	0.3	0 - 1	69.0	67 - 71	0.0	0 - 0	31.0	29 - 33	-		-		-		75.2	66 - 85	0.8	0 - 2	24.0	15 - 32
6	Shiotsu-o R.	98.1	96 - 100	1.1	0 - 2	0.7	0 - 2	60.6	60 - 61	12.3	11 - 14	27.1	25 - 29	-		-		-		3.0	0 - 6	8.7	8 - 9	88.3	86 - 91
7	Chonoki R.	79.3	71 - 81	2.8	0 - 6	17.9	13 - 23	90.0	89 - 91	0.0	0 - 0	10.0	9 - 11	33.7	32 - 37	0.9	0 - 3	65.4	63 - 68	47.3	36 - 58	9.2	7 - 12	43.5	34 - 53
8	Ta R.	79.3	71 - 87	2.8	0 - 6	17.9	13 - 23																		
9	Ane R.	80.5	74 - 87	3.8	3 - 5	15.7	10 - 21	63.3	63 - 64	0.7	0 - 1	36.0	35 - 37	-		-		-		99.5	99 - 100	0.5	0 - 1	0.0	0 - 0
10	Yone R.	46.9	0 - 94	13.2	6 - 20	39.8	0 - 80	54.3	53 - 55	0.3	0 - 1	45.5	44 - 47												
11	Amano R.	41.3	0 - 95	8.6	5 - 14	50.1	0 - 91	35.2	34 - 36	0.4	0 - 1	64.4	63 - 66	-		-		-		86.3	82 - 90	10.2	9 - 12	3.5	0 - 9
12	Seri R.	90.8	82 - 100	1.0	0 - 2	8.2	0 - 17	54.0	54 - 54	0.5	0 - 1	45.5	45 - 46							81.0	79 - 83	2.7	2 - 4	16.3	15 - 18
13	Inukami R.	27.2	0 - 67	7.5	3 - 11	65.2	30 - 91	47.0	47 - 47	0.0	0 - 0	53.0	53 - 53	45.8	39 - 55	0.2	0 - 1	54.0	45 - 61	97.2	95 - 99	1.8	1 - 3	1.0	0 - 2
14	Ajiki R.	10.6	0 - 28	19.9	15 - 23	69.6	57 - 77	22.7	20 - 26	4.0	0 - 10	73.2	70 - 76							90.2	88 - 92	8.7	8 - 9	1.2	0 - 3
15	Uso R.	96.8	92 - 100	0.7	0 - 2	2.5	0 - 6	49.5	49 - 50	0.0	0 - 0	50.5	50 - 51	78.4	75 - 83	0.6	0 - 2	21.1	17 - 24	93.5	91 - 96	3.0	3 - 3	3.5	1 - 6
16	Bunroku R.							72.0	72 - 72	0.0	0 - 0	28.0	28 - 28							92.4	89 - 96	5.2	4 - 6	2.5	0 - 6
17	Nomazu R.							78.1	71 - 84	12.0	0 - 29	9.8	0 - 19	53.5	53 - 54	0.0	0 - 0	46.5	46 - 47	91.2	83 - 100	1.1	0 - 3	7.7	0 - 14
18	Echi R.	81.0	79 - 83	0.2	0 - 1	18.8	17 - 20	72.3	71 - 73	0.7	0 - 2	27.0	25 - 29	-		-		-		-		-		-	
19	Nagaso R.	2.0	0 - 6	37.5	36 - 40	60.5	57 - 64	-		-		-		82.5	80 - 85	0.3	0 - 1	17.2	15 - 19	94.0	93 - 95	0.0	0 - 0	6.0	5 - 7
20	Hayama R.	29.2	0 - 63	10.3	0 - 19	60.4	37 - 81	7.0	6 - 8	6.5	6 - 7	86.5	85 - 88	1.9	0 - 6	24.0	21 - 29	74.1	71 - 78	97.5	95 - 100	0.0	0 - 0	2.5	0 - 5
21	Shin-moriyama R	0.8	0 - 2	55.3	55 - 56	44.0	43 - 45	15.8	15 - 17	23.0	22 - 24	61.2	60 - 63	38.0	36 - 40	0.8	0 - 2	61.2	60 - 62	0.5	0 - 1	0.0	0 - 0	99.5	99 - 100
22	Yasu R.																								
23	Yanomune R.							62.0	60 - 64	0.0	0 - 0	38.0	36 - 40	28.1	24 - 33	1.1	0 - 3	70.9	67 - 73	87.7	85 - 91	0.2	0 - 1	12.1	9 - 15
24	Hino R.	6.6	1 - 13	38.8	37 - 41	54.6	50 - 59	61.5	61 - 62	0.0	0 - 0	38.5	38 - 39	1.6	0 - 4	0.4	0 - 1	98.0	96 - 100	91.0	91 - 91	8.5	8 - 9	0.5	0 - 1
25	UR.	85.0	85 - 85	0.0	0 - 0	15.0	15 - 15	83.0	83 - 83	16.5	16 - 17	0.5	0 - 1	81.6	63 - 100	3.0	0 - 6	15.4	0 - 31	0.7	0 - 1	27.7	27 - 28	71.7	71 - 72
26	Wani R.	87.5	84 - 92	0.3	0 - 1	12.2	8 - 15	82.0	81 - 83	0.0	0 - 0	18.0	17 - 19	77.3	52 - 96	0.2	0 - 1	22.5	3 - 48	25.8	15 - 38	8.4	8 - 9	65.8	54 - 76
27	Mano R.	95.6	92 - 100	2.7	0 - 7	1.7	0 - 5	53.5	53 - 54	0.0	0 - 0	46.5	46 - 47	94.5	94 - 95	5.5	5 - 6	0.0	0 - 0	91.5	91 - 92	8.5	8 - 9	0.0	0 - 0
28	Tenjin R.	100.0	100 - 100	0.0	0 - 0	0.0	0 - 0	70.7	70 - 72	2.2	0 - 5	27.1	24 - 30	69.5	56 - 84	19.9	16 - 23	10.5	0 - 22	83.5	82 - 85	0.0	0 - 0	16.5	15 - 18
29	Fujinoki R.	0.5	0 - 1	99.5	99 - 100	0.0	0 - 0	44.3	43 - 45	7.0	6 - 8	48.7	47 - 50	36.2	35 - 38	63.5	62 - 65	0.3	0 - 1	76.0	75 - 77	0.0	0 - 0	24.0	23 - 25