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Abstract

Quadrupeds vary their gaits in accordance with their locomotion speed. Such gait transitions

exhibit hysteresis. However, the underlying mechanism for this hysteresis remains largely

unclear. It has been suggested that gaits correspond to attractors in their dynamics and

that gait transitions are non-equilibrium phase transitions that are accompanied by a loss in

stability. In the present study, we used a robotic platform to investigate the dynamic stability

of gaits and to clarify the hysteresis mechanism in the walk–trot transition of quadrupeds.

Specifically, we used a quadruped robot as the body mechanical model and an oscillator

network for the nervous system model to emulate dynamic locomotion of a quadruped.

Experiments using this robot revealed that dynamic interactions among the robot mechanical

system, the oscillator network, and the environment generate walk and trot gaits depending

on the locomotion speed. In addition, a walk–trot transition that exhibited hysteresis was

observed when the locomotion speed was changed. We evaluated the gait changes of the robot

by measuring the locomotion of dogs. Furthermore, we investigated the stability structure

during the gait transition of the robot by constructing a potential function from the return

map of the relative phase of the legs and clarified the physical characteristics inherent to the

gait transition in terms of the dynamics.

keywords: Quadruped, Walk–trot transition, Hysteresis, Stability, Legged robot, Central

pattern generator, Potential function, Return map
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1 Introduction

Humans and animals vary their gaits depending on their locomotion speed. Humans have

walking and running gaits, whereas quadrupeds have walking, trotting, and galloping gaits.

A gait is a characteristic locomotion pattern that is generated over a limited range of loco-

motion speeds; it is described by parameters that vary discontinuously at transitions [1]. In

the walk–trot–gallop transitions of quadrupeds, the relative phase between the limbs (i.e.,

the interlimb coordination pattern) varies [1, 70]. In contrast, in the walk–run transition

of humans, the relative phase between the leg segments (that is, the intralimb (or inter-

segmental) coordination pattern) changes [19]. Despite such gait transitions having been

investigated from various viewpoints including mechanics, energetics, kinematics, and kinet-

ics [22, 28, 35, 63, 77], their underlying mechanism remains largely unclear.

In both human and animal locomotion, gait transitions exhibit hysteresis [19, 28, 31, 37,

49, 63, 71, 77]; in other words, the gait changes at different locomotion speeds depending

on whether the speed is increasing or decreasing. However, the hysteresis mechanism is

also unclear. Diedrich and Warren Jr. [19] proposed a potential function to explain the

hysteresis, as shown in Fig. 1. This potential function depends on the locomotion speed and

the relative phase between the limbs (leg segments). At low and high speeds, it is U-shaped

with a single attractor in the valley. In contrast, at moderate speeds, it has a double-well

shape and has one attractor in each of the two valleys. Therefore, as the locomotion speed

increases, a walk jumps to a trot (run) at a critical speed (indicated by the red (black)

balls). However, when the locomotion speed is reduced, a trot (run) jumps to a walk at a

lower critical speed (indicated by the blue (gray) balls); thus, hysteresis occurs. Diedrich

and Warren Jr. examined the energy expenditure and estimated the potential function for

human walk and run from metabolic energy expenditure data. They demonstrated that the

walk–run transition is consistent with the properties of the potential function.

In addition to energy expenditure, stability is a crucial factor in determining the gait [52]

since, for each gait, there is a limited range of locomotion speeds in which stable locomotion

occurs. It has been suggested that gaits correspond to attractors of their dynamics and

that gait transitions are non-equilibrium phase transitions that are accompanied by a loss

of stability [70]. The present study focuses on the dynamic stability of gaits to explain the

hysteresis mechanism from a dynamic viewpoint. Specifically, if a potential function such
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Figure 1: Hypothetical potential function that explains the hysteresis in the walk–trot (run)

transition (modified from [19])

as the one shown in Fig. 1 exists for locomotion speeds and gaits that explains the dynamic

stability in a similar way to the Lyapunov function, it will explain the hysteresis.

So far, biomechanical and physiological studies have been independently conducted to

elucidate the motions of humans and animals. Biomechanical studies mainly examine the

functional roles of the musculoskeletal system, whereas physiological studies generally in-

vestigate the configurations and activities of the neural system. However, locomotion is a

well-organized motion generated by dynamic interactions among the body, the nervous sys-

tem, and the environment. It is thus difficult to fully analyze locomotion mechanisms solely

from a single perspective. Integrated studies of the musculoskeletal and nervous systems are

required.

Due to their ability to overcome the limitations of studies based on a single approach,

constructive approaches that employ simulations and robots have recently been attracting

attention [17, 41–43, 46, 48, 60, 74]. Physiological findings have enabled reasonably adequate

models of the nervous system to be constructed, while robots have become effective tools

for testing hypotheses of locomotor mechanisms by demonstrating real-world dynamic char-

acteristics. We have demonstrated hysteresis in a walk–trot transition using a simple body

mechanical model of a quadruped and an oscillator network model based on the physiolog-

ical concept of the central pattern generator (CPG) [7]. In the present study, we design a
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quadruped robot to examine its gaits by varying the locomotion speed. We evaluate these

gait changes by measuring locomotion in dogs. Furthermore, we investigated the stability

structure by constructing a potential function using the return map obtained from robot

experiments and by comparing it with that proposed by Diedrich and Warren Jr. to clarify

the physical characteristics inherent in the gait transition of quadruped locomotion.
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Figure 2: (A) Quadruped robot and (B) schematic model. (The robot body consists of two

sections that are mechanically attached to each other).

Table 1: Physical parameters of quadruped robot

Link Parameter Value

Body Mass [kg] 1.50

Length [cm] 28

Width [cm] 20

Upper leg Mass [kg] 0.27

Length [cm] 11.5

Lower leg Mass [kg] 0.06

Length [cm] 11.5

2 Methods

2.1 Mechanical setup of quadruped robot

Figure 2 shows a quadruped robot that consists of a body and four legs (Legs 1–4). Each leg

consists of two links connected by pitch joints (Joints 1 and 2) and each joint is manipulated

by a motor. A touch sensor is attached to the tip of each leg. Table 1 lists the physical

parameters of the robot.

The robot walks on a flat floor. Electric power is externally supplied and the robot

is controlled by an external host computer (Intel Pentium 4 2.8 GHz, RT-Linux), which

calculates the desired joint motions and solves the oscillator phase dynamics in the oscillator

network model (see Section 2.2). It receives command signals at intervals of 1 ms. The robot
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Figure 3: Oscillator network model with four oscillators. The oscillators interact with each

other based on the relative phase Δij . The oscillator phases are modulated by touch sensor

signals. The oscillator phases determine the leg joint kinematics.

is connected to the electric power unit and the host computer by cables that are slack and

suspended during the experiment so that they do not affect the locomotor behavior.

2.2 Oscillator network model

Physiological studies have shown that the CPG in the spinal cord strongly contributes to

rhythmic limb movement, such as locomotion [58]. To investigate animal locomotion using

legged robots, locomotion control systems have been constructed based on the concept of

the CPG [42, 43, 48, 74]. The CPG has been suggested to consist of hierarchical networks

composed of rhythm generator (RG) and pattern formation (PF) networks [66]. The RG

network generates the basic rhythm and the PF network shapes the rhythm into spatiotem-

poral patterns of motor commands. We used an oscillator network model to control our

robot (Fig. 3); it was constructed based on a two-layer network model composed of RG and

PF models [7].

2.2.1 Rhythm generator model

We used four simple phase oscillators (Leg 1–4 oscillators) to generate the basic rhythm and

phase information for the corresponding leg based on commands related to the desired speed

and gait. They receive touch sensor signals to modulate the rhythm and phase information.
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We denote the phase of Leg i oscillator by φi (i = 1, . . . , 4, 0 ≤ φi < 2π), which follows the

dynamics

φ̇i = ω + g1i + g2i, i = 1, . . . , 4 (1)

where ω is the basic oscillator frequency (it has the same value for all four oscillators), g1i

is related to the interlimb coordination (see Section 2.2.3), and g2i is the phase and rhythm

modulation in response to touch sensor signals (see Section 2.2.4).

2.2.2 Pattern formation model

Recent physiological studies have shown that spinocerebellar neurons receive sensory signals

from proprioceptors and cutaneous receptors and encode global information about limb kine-

matics such as the length and orientation of the limb axis [14,61]. We used the PF model to

determine these global parameters based on the oscillator phase φi from the RG model and

to produce motor torques for generating the desired kinematics.

Locomotion in humans and animals involves propelling the center of mass forward. To

achieve this, the swing limb is moved forward. When the limb touches the ground, it sup-

ports the body and produces a propulsive force from the ground. We designed a simple leg

kinematics determined by the length and orientation of the limb axis in the pitch plane,

which consists of the swing and stance phases (Fig. 4). The swing phase consists of a simple

closed curve for the leg tip that includes the anterior extreme position (AEP) and the pos-

terior extreme position (PEP). It starts from the PEP and continues until the leg touches

the ground. The stance phase is a straight line from the landing position (LP) to the PEP.

During this phase, the leg tip moves in the opposite direction to the body. The body travels

in the walking direction while the leg tips are in contact with the ground.

We denote the distance between the AEP and the PEP by D. We use Tsw and Tst for the

nominal swing and stance phase durations, respectively, for the case when the leg tip contacts

the ground at the AEP (LP = AEP). The nominal duty factor β, the basic frequency ω in

(1), the nominal stride length S, and the nominal locomotion speed v are respectively given

by

β =
Tst

Tsw + Tst
, ω =

2π(1 − β)

Tsw
, S =

D

β
, v =

(1 − β)D

βTsw
(2)
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Joint 1
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Stance phase
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Leg tip trajectory

A B

Figure 4: Desired joint kinematics of fore legs. (A) Length and orientation of the limb axis.

(B) Leg tip trajectory consisting of swing and stance phases. The swing phase is a closed

curve that includes the anterior extreme position (AEP) and the posterior extreme position

(PEP). The line segment between the AEP and the PEP is parallel to the body. The stance

phase is a straight line from the landing position (LP) to the PEP. When the leg lands on

the ground, the trajectory changes from the swing to the stance phase. When the leg tip

reaches the PEP, the trajectory moves into the swing phase. Joint 2 of the hind legs has a

different bending direction from that of the fore legs.

In the present study, we used D = 1.0 cm and Tsw = 0.14 s and varied v by changing β

through Tst in the same manner as in the motion of humans and animals [27, 34], where

ω and S also vary with β. We used the same values of these parameters for all the legs.

Although the stride length is relatively small, we determined these paremeters such that

stable locomotion was generated at all locomotion speeds in the range considered in this

study.

These two trajectories for the swing and stance phases are given as functions of the

corresponding oscillator phase, where we used φi = 0 at the PEP and φi = φAEP(= 2π(1−β))

at the AEP. Therefore, the desired joint kinematics is given as a function of the oscillator

phase and each joint is controlled by the joint torque based on PD feedback control to

produce the desired kinematics.

8



Leg 1
Leg 4

Leg 3

π

π

/2

Walk

Trot
Leg 1
Leg 4
Leg 2
Leg 3

Leg 2

β(   =0.75)

β(   =0.5)

Figure 5: Schematic diagrams of footprint for walking (β = 0.75) and trotting (β = 0.5),

where the right and left legs move in antiphase (red (black): fore legs; blue (gray): hind legs)

2.2.3 Gait pattern

Since the leg kinematics is determined by the corresponding oscillator phase, the interlimb

coordination pattern is determined by the relative phase between the oscillators. We denote

this by the matrix Δij = φi − φj (i, j = 1, . . . , 4, 0 ≤ Δij < 2π). Since the relations

Δij = −Δji, Δij = Δik + Δkj , and Δii = 0 (i, j, k = 1, . . . , 4) are satisfied, the gait is

determined by three state variables, such as [ Δ21 Δ31 Δ43 ]. For example, [ Δ21 Δ31 Δ43 ] =

[ π π/2 π ] is satisfied for walking and [ Δ21 Δ31 Δ43 ] = [ π π π ] is satisfied for trotting

(Fig. 5) [2, 7, 13, 30, 62, 76].

Function g1i in (1) manipulates this relative phase. It is given by

g1i = −
4∑

j=1

Kij sin(Δij − Δ∗
ij), i = 1, . . . , 4 (3)

where Δ∗
ij is the desired relative phase determined by the desired gait and Kij (i, j = 1, . . . , 4)

is the gain constant (Kij ≥ 0). When Δij is shifted from Δ∗
ij (Δij = Δ∗

ij + δΔij), from (1)

we can approximately obtain

δΔ̇ij = −(Kij + Kji)δΔij i, j = 1, . . . , 4, i �= j (4)

where we neglect the function g2i. When a large value is used for Kij , δΔij quickly converges

to 0 (Fig. 6) and we assume that Δij = Δ∗
ij is satisfied.
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Figure 6: Convergence rate of the error δΔij for the gain parameter Kij (Kji = Kij)

2.2.4 Phase resetting

Although the CPG can produce oscillatory signals even without rhythmic input and proprio-

ceptive feedback, sensory feedback is required to generate adaptive and effective locomotion.

Spinal cats produce locomotion on treadmills and their gait changes with the speed [23,58],

suggesting that tactile sensory information influences the locomotor phase and rhythm gen-

erated by the CPG [20]. The locomotor rhythm and phase have been shown to be modulated

by producing phase shift and rhythm resetting based on sensory afferents and perturbations

(phase resetting) [18, 66, 68].

We modulated the locomotor rhythm and phase based on such a phase resetting mech-

anism in response to touch sensor signals using the function g2i. When Leg i lands on the

ground, the phase φi of Leg i oscillator is reset to φAEP. Therefore, g2i is given by

g2i = (φAEP − φi)δ(t − tiland), i = 1, . . . , 4 (5)

where tiland is the time when Leg i contacts the ground and δ(·) denotes the Dirac delta

function. The touch sensor signals not only modulate the locomotor rhythm and phase

but also switch the leg movements from the swing to the stance phase, as described in

Section 2.2.2.
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2.3 Robot experiment

2.3.1 Constraints for gait

The relative phase between the oscillators determines the gait of our robot, which is produced

by interactions among the oscillators (3) and sensory regulation by phase resetting (5). When

we use neither (3) nor (5), the relative phase remains in the initial state and the gait does not

change. When all the elements of matrix Δ∗
ij are determined based on the desired gait and

large values are used for the gain constants Kij in (3), the robot will establish the desired

gait when the gait becomes stable. In contrast, when small values are used for Kij , the robot

can generate a different gait from the desired one due to sensory regulation through phase

resetting (5).

The present study focuses on the gait in which the right and left legs move in antiphase.

That is, we use Δ∗
21 = Δ∗

43 = π and a large value for K12, K21, K34, and K43 (K12 =

K21 = K34 = K43 = 20). Therefore, Δ21 = Δ43 = π is generally satisfied so that there are

two constraints for the three state variables of the gait. Under this condition, the gait is

determined by the relative phase between the fore and hind legs, such as Δ31. Throughout

this paper, we investigate the gait based on Δ31.

We also used the desired value for Δ31 in which the ipsilateral legs move in antiphase;

that is, Δ∗
31 = π (Δ∗

42 = π). This means that the desired gait is the trot. We used K13, K31,

K24, and K42 for this interlimb coordination and set the other Kij to zero. However, we

used as small values as possible for K13, K31, K24, and K42 (K13 = K31 = K24 = K42 = 0.6)

to minimize this influence and to allow the robot to change its gait from the desired gait

through locomotion dynamics due to sensory regulation by phase resetting (5).

2.3.2 Experimental procedure

To examine the stability structure of the gaits dependence on the locomotion speed, we first

investigated the gaits the robot generates at different speeds (see Section 3.1). We then

slowly increased or reduced the speed using the duty factor and examined how the gait

changed (see Section 3.2). To evaluate the gait stability, we obtained the first return map

and constructed the potential function, as explained respectively in Sections 2.4.1 and 2.4.2

(see Sections 3.3 and 3.4). In addition to the gait stability, we also investigated the energy
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expenditure (see Section 3.2) by calculating the cost of transport μ using

μ =
1

vT

∫ T+t0

t0

∑
i,j

|uij θ̇ij |dt (6)

where T is the gait cycle and uij and θij are respectively the motor torque and rotation angle

of Joint j of Leg i (i = 1, . . . , 4, j = 1, 2).

2.4 Gait stability analysis

2.4.1 First return map

Under the constraints (Δ21 = Δ43 = π), the gait of our robot is determined by the dynamics

of Δ31, which is given from (1), (3), and (5) by

Δ̇31 = −(K13 + K31) sin(Δ31 − Δ∗
31) − (φAEP − φ1)δ(t − t1land)

+(φAEP − φ3)δ(t − t3land) (7)

Clearly, the trot is the only attractor (Δ31 = Δ∗
31(= π)) without sensory regulation (5).

Although regulation influences the stability, Δ31 generates a stable periodic behavior when

the robot establishes a stable gait. To investigate the stability, we obtained the first return

map of Δ31 by plotting the relationship between Δ31n at the foot-contact of Leg 1 for the

nth step and Δ31n+1 for the next step. We can determine possible gaits and their stabilities

from the intersection with the diagonal line (Δ31n+1 = Δ31n).

2.4.2 Potential function

To construct a potential function, we approximated the obtained return map by Δ31n+1 =

P (Δ31n) using an polynomial, whose order we selected to reduce the error, and defined δΔ

by

δΔ(Δ31n) = Δ31n+1 − Δ31n

= P (Δ31n) − Δ31n (8)

We consider the range Δ31n ∈ [Δ0, Δ1] and denote the integration of −δΔ from Δ0 to Δ31n

(≤ Δ1) by

ν(Δ31n) = −
∫ Δ31n

Δ0

δΔ(Δ)dΔ (9)
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We define the potential function V by

V (Δ31n) = ν(Δ31n) − min
Δ∈[Δ0,Δ1]

ν(Δ) (10)

This satisfies V > 0 for Δ31n �= arg min
Δ∈[Δ0,Δ1]

ν(Δ). The stability is verified by

δV (Δ31n) = V (Δ31n+1) − V (Δ31n)

= V (Δ31n + δΔ(Δ31n)) − V (Δ31n)

� ∂V (Δ31n)

∂Δ31n

δΔ(Δ31n)

= −{δΔ(Δ31n)}2 ≤ 0 (11)

This equality is satisfied only for δΔ = 0.

2.5 Empirical experiments with dogs

To evaluate the gait of our robot, we used two adult male Labrador Retriever dogs (26

and 32 kg), which had been trained as guide dogs. Reflective markers were attached to

the standard bony landmarks of the fore and hindlimbs of the dogs; the humeral head, the

estimated joint center of the elbow, the distal head of the ulna, the metacarpo-phalangeal

joint, and the distal phalanx of the third digit for the forelimbs; the femoral head, the

estimated joint center of the knee, the lateral malleolus, the metatarso-phalangeal joint,

and the tip of the third digit for the hindlimbs. Additional markers were attached to the

head and the trunk. They walked on a treadmill (ITR3017, Bertec Corporation) whose

speed was changed between 0.5 and 2.0 m/s at a rate of 0.05 m/s2. After training them to

walk on the treadmill, their motions were measured using a motion capture system (Digital

RealTime System, Motion Analysis Corporation) at a sampling rate of 500 Hz. The Ethical

Committees for Animal Experiments at Doshisha University and Kansai Guide Dogs for the

Blind Association approved the experimental methods and procedures.

We numbered the four limbs (Limbs 1–4) in the same manner as for the robot and

calculated the relative phases between the limbs from the foot contact timings to determine

their gaits [3, 52, 53]. We denote the relative phase by Δdog
ij (i, j = 1, . . . , 4, 0 ≤ Δdog

ij < 2π),

which is given by

Δdog
ij = 2π

tdog
i − tdog

j

T dog
, i, j = 1, . . . , 4 (12)

13



where tdog
i is the time when Limb i touches the treadmill belt and T dog is the gait cycle of

Limb 1.

14



1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8

R
el

at
iv

e 
ph

as
e 

Δ 3
1 [

ra
d]

Time [s]

βv =7.0 cm/s (   =0.50)
β

Trot

Walk

v =2.3 cm/s (   =0.75)

Figure 7: The relative phase Δ31 plotted at contact of Leg 1 for three initial values with

v = 7.0 cm/s (β = 0.5) and 2.3 cm/s (β = 0.75). Two experimental results are shown for

each initial value. For v = 7.0 cm/s the relative phase converges to about 2.4 rad (trot),

while it converges to about 1.6 rad (walk) for v = 2.3 cm/s.

3 Results

3.1 Dependence of walk and trot generation on speed

We first investigated the gaits that the robot generates at v = 7.0 cm/s (β = 0.5) and

2.3 cm/s (β = 0.75). We used three initial values for Δ31 and investigated where Δ31

converges.

Figure 7 shows Δ31, plotted when Leg 1 touches the ground. For v = 7.0 cm/s, Δ31

converged to about 2.4 rad, indicating that the robot established the trot at a high speed.

Although Δ31 = 2.4 rad differs slightly from π rad, we considered this motion to be the trot

to distinguish it from the walk described below (we discuss this difference in Section 4.6).

In contrast, Δ31 converged to about 1.6 rad for v = 2.3 cm/s, indicating that the robot

performed the walk at a low speed. In other words, the robot established a different gait

from the desired gait (trot) due to sensory regulation by phase resetting through locomotion

dynamics.
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3.2 Hysteresis in the walk–trot transition of robot and dogs

After our robot established a stable gait, we slowly increased the locomotion speed v from

2.3 to 7.0 cm/s by reducing the duty factor β from 0.75 to 0.5 or we reduced v from 7.0 to

2.3 cm/s by increasing β from 0.5 to 0.75. We investigated how the gait changed through

locomotion dynamics.

Figure 8A shows Δ31 for six trials in which the locomotion speed was increased and

reduced by β (Fig. 8B). Δ31 varied between 2.4 and 1.6 rad, indicating that the gait changed

between the walk and trot (see supplementary movies in Appendix A). When we reduced

the locomotion speed, the trot transitioned to the walk at about v = 4.0 cm/s (β = 0.64).

In contrast, when we increased the locomotion speed, the walk changed to the trot at about

v = 5.0 cm/s (β = 0.58). This means that the gait transition occurs at different speeds

depending on the direction of the speed change (i.e., hysteresis occurs). Figure 8C shows

the footprint diagrams during the trot-to-walk and walk-to-trot transitions.

Figure 9A shows the cost of transport μ/μ0 during the gait transition, where μ0 is the

average cost for the trot using v = 7.0 cm/s. When the gait transition occurs, the cost

of transport suddenly decreases. To clearly show this change, we calculated the average of

μ/μ0 over an interval of 0.5 cm/s for each speed (bold line) and show the deviation from

this average (Fig. 9B). The deviation increases by changing the locomotion speed in the

region where the hysteresis loop exists (4.0 to 5.0 cm/s) and it suddenly decreases at the

gait transition. This implies that the robot changes the gait to reduce the cost of transport.

The cost of transport decreases more at the trot-to-walk transition than at the walk-to-

trot transition, which reflects that the trot-to-walk transition occurs more rapidly than the

walk-to-trot transition, as shown in Fig. 8A.

To evaluate the gait changes in the robot, we measured locomotion of dogs. Figure 10

shows the relative phases and duty factors of a dog when the belt speed was varied. The

relative phases between the right and left limbs (Δdog
21 in B and Δdog

43 in C) remain almost

antiphase. In contrast, as the speed was increased, the relative phase between the right fore

and hindlimbs (Δdog
31 in A) increased and the walk transitioned to the trot. When the speed

was reduced, the relative phase decreased and the trot changed to the walk. The duty factors

(D and E) decreased (increased), as the speed was increased (decreased). The relative phases

and duty factors obtained for the walk and trot are consistent with the results of previous
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studies [1, 4, 5, 12, 36]. Although the transition speeds fluctuate slightly, walk-to-trot and

trot-to-walk transitions occur at different speeds, indicating the occurrence of hysteresis.

The results of the robot experiments are consistent with these observations. Although data

is shown for only one dog, the results for the other dog exhibit similar trends.

3.3 First return map for various speeds

Figure 11 shows the return map obtained for various initial conditions in the robot experiment

with v = 3.6 (β = 0.66), 4.5 (β = 0.61), and 5.3 cm/s (β = 0.57). The bold lines indicate

the approximated functions, where we used an eighth-order polynomial for v = 3.6 and

5.3 cm/s and a 10th-order polynomial for v = 4.5 cm/s. When v = 3.6 cm/s, the return

map shows that there is only one intersection with the diagonal line and the walk is the

only attractor. However, for v = 4.5 cm/s, three intersections appear and there are two

stable gaits (trot and walk) and one unstable gait between the stable gaits (indicated by the

open dot). When v = 5.3 cm/s, the walk disappears due to the loss of the two intersections

and the trot becomes the only attractor. The gait stability passes through the saddle-node

bifurcation twice. There is a saddle-node ghost around Δ31n = 2.5 rad for v = 3.6 cm/s and

Δ31n = 1.8 rad for v = 5.3 cm/s.

3.4 Potential function for various speeds

Finally, we constructed the potential function V from the approximated return maps, where

we used Δ0 = 1.0 and Δ1 = 2.9 rad. Figures 12A and B show δΔ and V , respectively.

When v = 3.6 and 5.5 cm/s, V is unimodal and the valley corresponds to δΔ = 0, which

is the only attractor. In contrast, when v = 4.6 cm/s, V is double-well shaped and the hill

and valleys correspond to δΔ = 0. The hill is a repeller and only the valleys are attractors.

These potential functions obtained are consistent with the hypothetical potential function

(Fig. 1) proposed to explain the hysteresis.
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4 Discussion

4.1 Switching rhythmic motions accompanied by loss of stability

To emulate the dynamic locomotion of a quadruped, we developed a quadruped robot for the

body mechanical model and used an oscillator network for the nervous system model, which

was inspired from the biological systems. The robot produced the walk and trot depending

on the locomotion speed and exhibited a walk–trot transition with hysteresis (Fig. 8). This

is not because we intentionally designed the robot movements to produce the gait transition

and hysteresis; rather, it is because the stability structure changes through the interaction

between the robot dynamics, the oscillator dynamics, and the environment.

Spontaneous switches in the coordination pattern of rhythmic human motions have been

investigated from the viewpoint of a non-equilibrium phase transition in synergetics [47,

67, 69]. In this viewpoint, emerging patterns are characterized only by order parameters

that have low-dimensional dynamics. In these investigations, an oscillator phase is used

as an order parameter to examine the relative phase between the rhythmic motions and a

potential function is used to construct the phase dynamics. Observable patterns correspond

to attractors of the dynamics and the switch is accompanied by a loss of stability. The loss

of stability has been measured in various experiments using theoretically based measures of

stability (such as the relaxation time) to clarify the nature of the switching process. Schöner

et al. [70] used a synergetic approach to investigate quadrupedal gaits and suggested that the

gaits correspond to attractors of their dynamics and that gait transitions are non-equilibrium

phase transitions accompanied by a loss of stability. Gait transitions could be interpreted as

bifurcations in a dynamic system.

We clarified the changes in the stability structure of gaits by generating return maps

(Fig. 11) and potential functions (Fig. 12). The present results show that the walk and trot

produced are attractors of the integrated dynamics of the robot mechanical and oscillator

network systems and that the gait stability changes twice through the saddle-node bifurcation

(Fig. 11). These results provide dynamic confirmation of the suggestion of Schöner et al.
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4.2 Clarifying stability structure using a potential function

Locomotion in humans and animals is a complex nonlinear dynamic phenomenon that in-

volves the nervous system, the musculoskeletal system, and the environment. Consequently,

it is difficult to clarify stability structures inherent in the dynamics. In the switches of

coordination pattern in rhythmic human motions [47, 67, 69], the relaxation time of the or-

der parameter was measured to investigate the loss of stability from a viewpoint of the

non-equilibrium phase transition, which is the time until the order parameter returns to its

previous steady-state value after being disturbed close to the attractor. In our experiments,

we perturbed Δ31 from its steady-state value and constructed return maps from the expan-

sion of Δ31 after perturbation (Fig. 11). This enabled us to show the global stability of the

gait dynamics.

In addition, we constructed potential functions from the obtained return maps (Fig. 12).

This allows us to discuss the relationship with the previous study by Diedrich and War-

ren Jr. [19] regarding the hysteresis mechanism and further clarify changes to the stability

structure due to the locomotion speed. At a low speed (v = 3.6 cm/s) and a high speed

(v = 5.5 cm/s), the potential functions obtained are unimodal. On the other hand, at a mod-

erate speed (v = 4.6 cm/s), the potential function has a double-well shaped. The shapes of

these potential functions are consistent with that proposed by Diedrich and Warren Jr. [19]

to explain the hysteresis in the gait transition.

Hysteresis is a typical characteristic of nonlinear dynamic systems [33]. In our system,

the dynamics of Δ31 (7) contains nonlinearities such as delta functions. There is no general

method for deriving a potential function (such as the Lyapunov function) for nonlinear

dynamical systems to show their stability. We reduced the continuous dynamical system (7)

to a discrete dynamical system of Δ31n using the return map. This allowed us to construct

a potential function and to clarify the stability structure. Our approach of constructing

a potential function from the return map provides a useful methodology for clarifying the

global stability structure of complex nonlinear dynamic systems as well as the locomotion

dynamics of humans and animals.
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4.3 Neural mechanism for interlimb coordination in biological sys-

tems

The cerebellum is involved in the neural mechanism for interlimb coordination [29, 78]. A

copy of the motor command (efference copy) is sent from the spinal CPG to the cerebellum

through the ventral spinocerebellar tract (VSCT), while the sensory information is fed back

to the cerebellum through the dorsal spinocerebellar tract (DSCT). Purkinje cells produce the

output of the cerebellum from these inputs to modulate motor commands. The locomotion

of cats with selective lesions of the VSCT [21] and of mice in which the function of Purkinje

cells was blocked by the targeted deletion of metabotropic glutamate receptor-subtype 1

(mGluR1) gene (mGluR1-null mutant mice) [40] and by the degeneration of Purkinje cells

in Lurcher mutant mice [24] exhibited severely impaired interlimb coordination.

For a decerebrate cat walking on a splitbelt treadmill that has three moving belts (one

mounted under the left forelimb, another under the left hindlimb, and the third under the

right forelimb and right hindlimb) [83, 84], increasing the belt speed of the left forelimb

induced unstable locomotor behavior. However, after a certain number of steps, the cat

generated a new stable gait. When the belt speed was returned to its original speed, the cat

continued to walk with the new gait. However, after a while, the cat gradually returned to its

original gait. In other words, aftereffects were observed in this gait adaptation. These results

suggest that the cat adapted to a new environment by learning and storing a new interlimb

coordination in its nervous system. Such gait adaptation was abolished by injecting with

hemoglobin, a nitric oxide (NO) scavenger, or NG-monomethyl-L-arginine (L-NMMA), a NO

synthase inhibitor, which causes defects in the function of Purkinje cells [84]. In addition, similar

adaptation in interlimb coordination was observed in human walking on a splitbelt treadmill [55,64]

and cerebellar gait ataxia significantly impaired this adaptation [55]. Injecting an antibody of the

orphan glutamate receptor δ2 (GluRδ2) into Purkinje cells in mice impaired motor learning with

gait ataxia [32].

The cerebellum has been suggested to contain an internal model that plays an important role

in motor learning and control [44,80]. It provides feedforward motor commands through learning,

which allows time delays associated with feedback control to be overcome and smooth and effective

movements to be generated. Ito et al. [45] modeled adaptation with learning for interlimb coor-

dination in a decerebrate cat walking on a splitbelt treadmill. They used a potential function for

the relative phases between the limb movements whose minimum point corresponds to the desired
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relative phase. They modulated the desired relative phase to minimize the potential function to

learn and store a new gait. Their model demonstrates gait adaptation in quadruped locomotion

and their simulation results exhibit aftereffects in gait adaptation.

Through the robot experiments, we also generated a potential function for the relative phases

between the leg movements. Its minimum point corresponds to a stable gait (Fig. 12). When this

is stored in the control system of the robot and is used to control the interlimb coordination in a

similar manner as the cerebellar function, the robot changes its gait with the locomotion speed and

hysteresis appears without sensory feedback from the structure of the potential function. This is

consistent with the hypothetical gait adaptation mechanism in biological systems [45]. To further

understand the gait adaptation mechanism that includes aftereffects, we intend to develop a more

plausible model as the learning process in the cerebellum in future studies.

4.4 Roles of sensorimotor coordination in gait generation and

transition

Oscillator network models have been developed to investigate gait transitions in quadruped loco-

motion [15, 26, 45, 70]. However, they only consider the nervous system; they do not incorporate

the contribution of body mechanical systems. A nervous system model alone or a body mechan-

ical system model alone cannot fully explain the locomotion mechanisms since neuromechanical

interactions are crucial in animal locomotion [16, 59]. Our results reveal that while the trot is

the only attractor without sensory feedback from the robot mechanical system to the oscillator

network system (phase resetting), the sensory modulation altered the gait stability and produced

a different gait. This demonstrates the important contribution of the body mechanical system to

gait generation.

We used phase resetting (5) in the sensory regulation model. This modulates the locomotor

phase based on foot contact to switch the leg movements from the swing to stance phase. During

locomotion, the swing leg is raised and swung forward, while the stance leg supports the body and

generates a propulsive force from the ground. As the swing and stance legs play completely different

roles in locomotion, adequate switching of motor commands based on foot-contact information is

crucial. The phase resetting contributes to this adequate switching. This sensory regulation have

generated adaptive locomotion in both rigid robots with quick responses to sensory information [8,

10, 56, 57] and compliant musculoskeletal systems with a delay to generate muscle tension and to

transmit sensory information [6,11,81,82]. In the present study, this sensory regulation contributed
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to adaptive gait generation at different speeds.

Taga et al. [75] conducted a pioneering study of computer simulation for human locomotion by

employing a CPG model. They employed an articulated multi-link system for the body mechanical

model and an oscillator network for the CPG model. They demonstrated that adaptive locomotion

is established through the interaction between the body dynamics, the oscillator dynamics, and the

environment; they called this “global entrainment”. In addition, they demonstrated that the gait

changes between the walking and running gait with the locomotion speed and that a gait transi-

tion with hysteresis appears. Our results reveal a gait transition with hysteresis for quadrupedal

locomotion due to the interaction between the robot dynamics, the oscillator dynamics, and the

environment. They are consistent with Taga et al.’s results.

4.5 Determinants of gait transitions

To clarify the determinants of gait transitions, most studies have searched for a potential trigger

that changes the gait. Margaria [51] and Hoyt and Taylor [35] respectively showed that humans and

horses employ gaits that minimize metabolic energy expenditure and they suggested that humans

and animals switch gaits to reduce the metabolic cost of locomotion. Our results reveal that the

robot changed its gait to reduce energy expenditure (Fig. 9). However, this does not imply that

the robot selected the gait to minimize the energy expenditure, as the locomotion control system

did not seek to reduce it.

Farley and Taylor [22] state that it is difficult to imagine how animals can sense metabolic

cost in rapid gait transitions; rather, they consider that an another criterion (e.g., biomechanical

factors) may act as the trigger. They demonstrated that the musculoskeletal force level triggered

the gait transition. Griffin et al. [28] investigated the walk–trot transition based on the inverted-

pendulum model and suggested that biomechanical and metabolic factors are tightly coupled at

the gait transition. However, there are many conflicting reports regarding the roles of metabolic

and biomechanical factors in determining gait transitions [38,39,54,63,79].

An alternative approach is based on dynamic systems analysis, as conducted in Diedrich and

Warren Jr. [19], Schöner et al. [70], Ito et al. [45], and Taga et al. [75]. In this approach, gaits

are viewed as the results of self-organization in complex dynamic system and gait transitions occur

when the stability of a gait decreases so much that switching to a new gait improves stability [28].

The present study adopts this approach.
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4.6 Limitations of our approach and future work

We used a robotic platform to investigate quadrupedal locomotion. However, there are differences

between the robot and actual quadrupeds. For example, the robot is rigid and kinematically

controlled by motors, whereas quadrupeds are compliant and dynamically driven by muscles. Our

robot has much simpler mechanical and locomotion control systems than biological systems. In

addition, we used short stride lengths for the robot. These differences cause quantitative differences

in locomotion.

For example, the robot took about eight steps in the walk-to-trot transition and five steps in the

trot-to-walk transition (Fig. 8), whereas the dog took about five steps in the walk-to-trot transition

and four steps in the trot-to-walk transition (Fig. 10). Thus, the transition speed differs between

the robot and dog. This may reflect differences in the gait stability of their dynamics; in other

words, different divergence rate after a gait becomes unstable and different convergence rate to a

stable gait. For the robot locomotion, we determine the convergence rate around the stable gait

from the inclination of the return map at the intersection with the diagonal line. The approximate

return maps in Fig. 11 give inclinations of 0.13 for the walk (v = 3.6 cm/s) and 0.19 for the trot

(v = 5.3 cm/s), showing that the walk has a faster convergence rate than the trot. When it becomes

possible to derive the return map from measuring dog locomotion in the future, this will enhance

the understanding of the stability structure and the gait transition mechanism in dog locomotion.

Another important qualitative difference is in the relative phase in the trot. When the locomo-

tion speed of the robot was increased, the relative phase Δ31 changed greatly from π/2 rad (Fig. 8).

In other words, the robot changed its gait from the walk. However, the relative phase did not reach

π rad, which corresponds to the trot. This implies that the diagonal legs did not completely syn-

chronize. This limitation may reflect that the robot did not utilize the spring–mass mechanism well

due to the mechanical limitations [53]. This gait may be closer to the tölt [65,73,85], rather than

the trot, which Icelandic horses often exhibit over a large range of locomotion speeds. The foot

pattern of this gait is similar to the walk and the body movement is smooth. However, the bias of

Δ31 from π rad is so small that the diagonal legs appear synchronized during locomotion, as the

footprint diagram (Fig. 8C) and supplementary movies show. In addition, the lateral movement of

the robot body is large in the walk and is small in the trot (see supplementary movies), as observed

in quadrupeds [50]. We confirmed this from the observation of dog locomotion.

Although the above-mentioned differences exist, our robot exhibits similar dynamic properties

to quadrupeds in terms of gait generation and transition, as confirmed by the measurements of

dogs (Fig. 10). Simple physical systems constructed by extracting the fundamentals of locomotion
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dynamics have enabled us to explain the essential characteristics of gait generation and have pro-

vided meaningful insights into biological sciences [5, 7, 9, 17, 25, 42, 72]. Our robot mechanical and

oscillator network systems are simple since they extract the essential aspects of locomotion from

biomechanical and physiological findings. The results clearly reveal the physical characteristics

of the gait transition of quadruped locomotion. To further clarify the transition mechanism, we

intend to develop a more sophisticated model of quadrupeds and a biologically plausible robot and

to improve the experimental setup used for the measurements of dogs (e.g., construct potential

functions from measured data).
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Appendix

A Supplementary movies

We prepared four supplementary movies that show the gait transition of the robot:

1. Gait transition from walk to trot on increasing the locomotion speed.

2. Walk-to-trot transition at 1/4 speed to clearly see the gait change.

3. Gait transition from trot to walk on decreasing the locomotion speed.

4. Trot-to-walk transition at 1/4 speed to clearly see the gait change.
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