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Abstract 

 Block copolymers in the strong segregation regime self-assembles to form regular 

periodic nanopatterns that are applicable as the templates for nanofablication or 

nanoprocessing such as theetching masks for nanolithography. However, self-assembly of 

block copolymers alone usually results in poly-grain structures. Directed self-assembly is an 

excellent technique developed rapidly in the past decade. Directed self-assembly either by 

graphoepitaxy with topographical guids or chemical registration with chemically pattered 

surfaces enabled us to control orientation and alignment of block copolymer microdomains in 

thin film on a substrate. It is expected that this technique will further extend the resolution 

limit of the conventional photolithography. This article briefly review the directed 

self-assembly techniques. 

 

Introduction 

Extremely regular and fine nanopatterns that block copolymers (bcp) exhibit in 

ultrathin films are a promising candidate as the etching masks for the new and facile approach 

for downsizing in nanolithography. The major problem is to solve the problem how to align 

the bcp microdomains in a single-crystal-like array with the minimum defects. The solution is 

the directed self-assembly (dsa) in which the microdomain formation of the bcp is guided by 
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the patterns prefabricated on the substrates by the top-down techniques. Here we review the 

two techniques of dsa, one is graphoepitaxy and the other is chemical registration. The former 

uses physically patterned guides such as trenches and the latter uses the chemically patterned 

substrates, the surface of which are grafted with self-assembled monolayer (sam) or polymer 

chains and patterned by lithographic techniques. Some review papers are also avairable [1-5]. 

 

Graphoepitaxy 

Graphoepitaxy was originally developed by Smith et al. [6,7] to control orientation 

of crystal growth in thin films with topographically patterned surfaces in contrast to classical 

heteroepitaxial growth of thin crystal films on single crystal surfaces. Siegalman et al. [8*] 

first applied graphoepitaxy to align spherical microdomains of 

polystyrene-block-poly(2-vinylpyridine) bcp (PS-b-P2VP) in a thin film with the thickness of 

a single layer of the spheres. The film coated on the flat surface of Si substrate with SiO2 

surface layer exhibited a polycrystalline pattern even after extensive annealing while a single 

crystal pattern of hexagonally packed spheres was formed on the regularly spaced long 

rectangular mesas formed on the substrate by a lithographic technique. Since the epitaxial 

growth of the hexagonal lattice is nucleated by the edges of the mesas, the persistence of the 

alignment is limited by the width of the mesas. Cheng et al. [9], on the other hand, 

demonstrated the regular alignment of spherical microdomains of 

polystyrene-block-polyferrocenyldimethylsilane bcp (PS-b-PFS) in the trenches prepared by 

interference lithography on the SiO2 surface. Alignment of single layer of spherical 

microdomains can be directed by physical confinement by the trenches as shown in Figure 1a. 

Again the persistence of the alignment is limited by the width of the grooves. Naito et al. 

[10*] applied this technique to prepare bit patterned media for magnetic data storage (2.5-inch 

hard disk), which requires size uniformity and position accuracy.  
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 For the purpose to use bcp self-assembled patterns as the etching masks in 

preparation of bit patterned media for high density data storage, cylindrical microdomains 

perpendicularly aligned to the substrate surface are preferred to spherical microdomains due 

to the larger aspect ratio. PS-b-PMMA with cylindrical microdomains was shown to be a 

good candidate because of the high etching contrast between PS and PMMA domains [11-13]. 

However, due to the lower interfacial energy between PMMA and SiO2 surfaces of Si 

substrates than PS and SiO2 PMMA cylinders tend to orient parallel to the trenches as shown 

in Figure 1b. By chemically modifying the surface of the trenches for neutral wetting, 

long-range order of cylindrical domains in hexagonal arrays oriented perpendicular to the 

substrate was attained [11]. The neutral surface can be attained by grafting random copolymer 

of PS and PMMA. Blending two PS-b-PMMA with different molecular weights is a simpler 

technique to induce the perpendicular orientation of the cylinders [13]. Hexagonally 

close-packed cylinders have interstitial space of a concaved triangular shape in the center of 

the adjacent three cylinders. The block chains of the major component must be stretched to 

fill the triangular interstitial space resulting in reduction of the conformational entropy. If the 

blended longer block chains of the higher molecular weight preferentially fill this space to 

avoid stretching of the shorter chains, it would stabilize hexagonal packing of the cylinders, 

which can be realized by perpendicular orientation of the cylinders. In this case, film 

thickness must be adjusted not to be an integer multiple of the domain spacing.  

In addition to PS-b-PMMA other bcps such as polystyrene-block-polyethyleneoxide 

(PS-b-PEO) [14-18], PS-b-PFS [19], polystyrene-block-polydimethysiloxane (PS-b-PDMS) 

[19-26] and PS-b-P2VP [8,27-29] are also used for bcp dsa by graphoepitaaxy. The 

characteristics of these bcps is that the segregation power between two blocks is much larger 

than PS-b-PMMA so that much smaller domain sizes are available while it is more difficult to 

attain the perpendicular orientation of cylinders. As small as 8 nm feature width [24] or 15 nm 
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spacing [26] of the line pattern was reported for PS-b-PDMS.  

In practical applications formation of defects of the patterns should be avoided. The 

effect of trench walls to align cylindrical microdomains in an array dissipates with increasing 

the distance from the walls. Utilizing the short-range interaction can eliminate defects in the 

self-assembled patterns more effectively. A good solution is to employ an array of nanoscale 

topographical elements (posts) that have a long-range order given by a lithographic technique 

and act as surrogates for the minority domains of the bcp instead of trenches. Bita et al. 

[20**] demonstrated that the substrate having a sparse 2D array of posts created by 

scanning-electron-beam lithography successfully arranged the PDMS spherical microdomains 

of spin-coated PS-b-PDMS thin film in a hexagonal array with one third of the spacing of the 

posts as shown in Figure 2, where the case of the posts grafted with PS is shown. Since the 

domain spacing of the spheres is a third of the spacing of the posts, the self-assembled array 

of the spheres has nine times higher density of the substrate pattern. Therefore, this technique 

will be useful in nanolithography applications such as the formation of high-density 

microelectronic structures. Recent advancement [22*] was reported for cylinder-forming 

PS-b-PDMS for which an array of carefully spaced and shaped posts, prepared by 

electron-beam patterning of an inorganic resist, can be used to template complex patterns 

including bends, junctions and other aperiodic features in specific locations. With this method 

linear patterns can be directed by a sparse template occupying only a few percent of the area 

of the final self-assembled pattern. In addition, the method can be used to selectively and 

locally template complex linear patterns. 

Preparation of prepatterned surface for graphoepitaxy in an area as large as the wafer 

surface is limited by the employed top-down techniques. A novel technique [16**,18] was 

proposed to prepare ordered arrays of cylindrical microdomains 3 nanometers in diameter, 

with areal densities in excess of 10 terabits per square inch for PS-b-PEO. They used 
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commercially available defect-free sapphire (-Al2O3) wafers and created faceted surfaces 

with a sawtooth topography, which was obtained by the cutting single crystals along specific 

crystallographic planes to create unstable surfaces and subsequent annealing. The 

unidirectional ridges of the sawtoothed topography provides the guide to direct the cylinders 

by the entropic driving force and surface defects such as dislocations can be amended by the 

self-assembly of the bcp. 

Topographic patterns to direct self-assembly of bcps in graphoepitaxy are 

sometimes unfavorable for applications to various nanomaterials and nanodevices. Jeon et 

al. [30] proposed “soft graphoepitaxy”, in which a mild cleaning process can easily 

dispose of the photoresist pattern directing nanoscale bcp assembly. Therefore, it may 

be useful in the nanolithography for complex device architectures requiring multilayer 

overlay processing.  

To reduce the feature sizes of the self-assembled patterns of bcps it is necessary to 

reduce their molecular weights. Reduction of the molecular weights in turn reduces the 

segregation power and leads to the order-disorder transition. Therefore, a bcp with highly 

incompatible blocks must be employed for dsa. 

Poly(2-vinylpyridine)-block-polydimethylsiloxane (P2VP-b-PDMS) is one of such bcps. 

Solvent annealing with P2VP-b-PDMS can provide an extraordinarily large degree of 

tunability both in geometry and dimension of the self-assembled patterns when the vapors of 

various selective solvents were used [31*]. Various morphologies such as spheres, cylinders, 

hexagonally perforated lamellae, and lamellae from the same sample. This methodology is 

particularly useful because a broad range of geometries and sizes can be obtained with a 

single block copolymer without changes in molecular weight or volume fraction. 

Chemical registration 

In chemical registration, the bcp microdomains is registered by chemically 
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pre-patterned templates with surface energy contrast. Figure 3 shows schematic illustration of 

chemical registration for PS-b-PMMA forming hexagonally-close-packed (hcp) cylinder 

microdomains of PMMA as an typical example of chemical registration [32*].  

The dots placed on hexagonal lattice are prepared on the surface of a substrate.  

The size of dots and the domain spacing dpre of chemical patterns are identical with those of 

the microdomain structure of PS-b-PMMA, dblock. The surface of dots is designed to have 

lower surface energy to PMMA, while the surrounding matrix is tuned for preferential wetting 

by PS. When PS-b-PMMA self-assembles the microdomain structure, the PMMA cylinders 

are registered on the dots regions to minimizing the free energy of the film. 

Rockford et al. first reported the control of the orientation of the microdomain of 

bcp thin film by using chemical registration [33]. They made the surface having stripe 

patterns consisting of alternate silicon oxide and Au. The difference of the affinity in silicon 

oxide and Au directed the orientation of the lamellar microdomain structure of PS-b-PMMA. 

Then, Nealey et al. have successfully directed lamellar- and cylinder-forming bcp 

self-assembled microdomains in registration with the lithographic pattern defined in the 

chemically modified surfaces with a one-to-one correspondence [34**-36]. 

It is well-known that bcp can form well-aligned microdomain structures with long 

range order during their self-assembling process.  These self-assembly can restore the 

short-range errors in pattern prepared by conventional lithography. Tada et al. demonstrate 

that the defect-free pattern of the microdomain structure of hcp cylinder in PS-b-PMMA thin 

film can be obtained on the chemical patterns having significant defects, indicating that 

variations in pattern position and point defects in the resist pattern can be corrected by the bcp 

self-assembly. This restoration effect has also been reported to be effective in reducing the 

line-edge roughness effect of the resist patterns [37,38] and in correcting the width variations 

of the line-and-space patterns [39]. As critical dimensions reach smaller dimensions, 
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conventional lithographic techniques are approaching their resolution limits. In such cases, 

quality of the pattern may have significant amount of errors and variations.  

Though the application of the chemical registration was described for one to one 

correspondence or dpre = d0 above, the technique can also be applied to density multiplication 

dpre = nd0 (n: integer) or frequency multiplication of sparse chemical template patterns 

[32,40,41*].  Figure 4 shows the nine-fold density multiplication (dpre = 3d0) of a hexagonal 

lattice pattern [41*]. As shown in Figure 4(a), the chemical template was prepared by EB 

resist pattern with dpre = 72 nm corresponding to three times of d0=24nm. Figure 4(b) shows 

the self-assembled structure of PS-b-PMMA thin film on the chemical template.  The 

self-assembled structure with long-range order is directed by the template pattern without 

defects. The domain spacing d0 of the microdomain structure of the thin film on the template 

was 24 nm, which was a third of the lattice spacing, dpre = 72 nm, of the chemical template. 

The self-assembling ability of bcp can induce interpolation of the chemical pre-patterns and 

achieve a nine-fold density multiplication. It should be noted that the density multiplication 

process is a promising technique to break through the limitations in current lithographic 

techniques to reach smaller dimensions. 

  Though chemical registiration of self-assembling structures of bcp was discussed mainly 

for hcp patterns with perpendicularly oriented cylindrical domains, chemical registration can 

also be applied to arrange spherical microdomains on hcp patterns [42,43] . In addition it is 

possible to align perpendicularly oriented lamellar microdomains [34*,38,39,44,45] or 

cylindrical microdomains oriented paralell to the substrate surface [35] to form line-and-space 

patterns. Moreover, it has been reported that changes in morphology can be induced by 

chemical heteroepitaxy [46,47]. Furthermore, chemical heteroepitaxy has also been 

successfully applied to complex patterns, such as bent lines, isolated lines, and junctions, 

which basically demonstrate that the method can be applicable in patterning semiconductor 
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logic circuits [48*-51*].  
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Figure Captions 

Figure 1  AFM images of (a) spherical microdomains and (b) cylindrical microdomains of 

PS-b-PMMA aligned in trenches by graphoepitaxy.  

Figure 2 A top-view scanning electron micrograph of PS-b-PFS diblock copolymer 

aligned by graphoepitaxy with the posts as illustrated in the drawings.  

Figure 3  Schematic illustration demonstrating block copolymer lithography process 

taking vertically oriented cylindrical microdomain as an example of block 

copolymer microphase separated structure. 

Figure 4 (a) A top-view scanning electron micrograph of EB resist employed to pattern 

PS graft layer on Si wafer surface for a chemically pre-patterned template with 

ds = 72nm. (b) A top-view scanning electron micrograph of cylinder structures of 

PS-b-PMMA with do = 24nm self-assembled perpendicularly on the chemically 

pre-patterned template. 
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