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Coupled Simulation of Seismic Wave Propagation and Failure Phenomena

by Use of an MPS Method

JUNICHI TAKEKAWA,1 HITOSHI MIKADA,2 TADA-NORI GOTO,3 YOSHINORI SANADA,4 and YUZURU ASHIDA
5

Abstract—The failure of brittle materials, for example glasses

and rock masses, is commonly observed to be discontinuous. It is,

however, difficult to simulate these phenomena by use of con-

ventional numerical simulation methods, for example the finite

difference method or the finite element method, because of the

presence of computational grids or elements artificially introduced

before the simulation. It is, therefore, important for research on

such discontinuous failures in science and engineering to analyze

the phenomena seamlessly. This study deals with the coupled

simulation of elastic wave propagation and failure phenomena by

use of a moving particle semi-implicit (MPS) method. It is simple

to model the objects of analysis because no grid or lattice struc-

ture is necessary. In addition, lack of a grid or lattice structure

makes it simple to simulate large deformations and failure phe-

nomena at the same time. We first compare analytical and MPS

solutions by use of Lamb’s problem with different offset dis-

tances, material properties, and source frequencies. Our results

show that analytical and numerical seismograms are in good

agreement with each other for 20 particles in a minimum wave-

length. Finally, we focus our attention on the Hopkinson effect as

an example of failure induced by elastic wave propagation. In the

application of the MPS, the algorithm is basically the same as in

the previous calculation except for the introduction of a failure

criterion. The failure criterion applied in this study is that particle

connectivity must be disconnected when the distance between the

particles exceeds a failure threshold. We applied the developed

algorithm to a suspended specimen that was modeled as a long bar

consisting of thousands of particles. A compressional wave in the

bar is generated by an abrupt pressure change on one edge. The

compressional wave propagates along the interior of the specimen

and is visualized clearly. At the other end of the bar, the spalling

of the bar is reproduced numerically, and a broken piece of the bar

is formed and falls away from the main body of the bar. Conse-

quently, these results show that the MPS method effectively

reproduces wave propagation and failure phenomena at the same

time.

Key words: Moving particle semi-implicit method, discon-

tinuous phenomenon, failure, elastic wave propagation.

1. Introduction

Several numerical methods have been developed

and modified for modeling elastic wave propagation.

Finite difference methods (FDM) with the staggered

grid technique (VIRIEUX, 1986; GRAVES, 1996) have

been widely used to solve elastic wave equations

because of the simplicity and accuracy of the meth-

ods. Finite element methods (FEM) and spectral

element methods (SEM) have also been used,

because of their flexibility in respect of geometric

topography (KOKETSU et al., 2004; KOMATITSCH and

TROMP, 1999). These methods use grids or elements

structures to discretize the object.

Mesh-free methods which need no connectivity

between nodes and elements have also been devel-

oped (NAYROLES et al., 1992; BELYTSCHKO et al.,

1994). These were applied to elastic wave propaga-

tion modeling (JIA and HU, 2006; KATOU et al., 2009).

Although these methods provide accurate simulation

results in elastic wave propagation problems, imple-

mentation of failure phenomena related to wave

propagation has not been considered in depth. A

discrete element method (DEM), one of the particle

methods, was developed to deal with granular mate-

rials (CUNDALL and STRACK, 1979), and applied to

1 Kyoto University, C1-1-111, Kyotodaigaku-Katsura,

Nishikyo-ku, Kyoto 615-8540, Japan. E-mail: takekawa@tansa.

kumst.kyoto-u.ac.jp
2 Kyoto University, C1-1-112, Kyotodaigaku-Katsura,

Nishikyo-ku, Kyoto 615-8540, Japan. E-mail: mikada@gakushikai.jp
3 Kyoto University, C1-1-113, Kyotodaigaku-Katsura,

Nishikyo-ku, Kyoto 615-8540, Japan. E-mail: goto.tadanori.8a@

kyoto-u.ac.jp
4 Japan Agency for Marine-Earth Science and Technology

(JAMSTEC), 3173-25, Showa-machi, Kanazawa-ku, Yokohama,

Kanagawa 236-0001, Japan. E-mail: sanada@jamstec.go.jp
5 Environment, Energy, Forestry and Agriculture Network

(EEFA), Suzakuhaitsu4-G, 27-1, Mibusuzaku-cho, Nakakyo-ku,

Kyoto 604-8871, Japan. E-mail: ashida@eefa.jp

Pure Appl. Geophys. 170 (2013), 561–570

� 2012 Springer Basel AG

DOI 10.1007/s00024-012-0571-8 Pure and Applied Geophysics



failure simulations (BRARA et al., 2001; POTYONDY and

CUNDALL, 2004). DEM has also been applied to

elastic wave propagation. DEL VALLE-GARCIA and

SANCHEZ-SESMA (2003) and O’BRIEN and BEAN (2004)

simulated surface wave propagation and evaluated

the accuracy of their methods. O’BRIEN et al. (2009)

evaluated the dispersion property of an elastic lattice

method and showed the applicability of the method to

seismic modeling in a complex Earth model. These

studies on discrete or particle methods focused

mainly on seismic wave propagation.

In this study, we apply a moving particle semi-

implicit method (MPS) to failure phenomena and

elastic wave propagation at the same time. The MPS

method was developed to analyze incompressible

fluid flow. Dam-break problems and breaking wave

analysis are applications of the MPS method (KOSH-

IZUKA and OKA, 1996; KOSHIZUKA et al., 1998, 1999a).

The method has also been applied to solid analysis

and fluid–structure interaction analysis (KOSHIZUKA

et al., 1999b; CHIKAZAWA et al., 2001a, b). Because

the method can handle large deformations or frag-

mentation of solids, use of the simulation to deal with

the coupling between elastic wave propagation and

failure phenomena can be achieved seamlessly.

In this paper, we first compare analytical and MPS

solutions by use of Lamb’s problem with different

offset distances, material properties, and source fre-

quencies. We then simulate the Hopkinson effect as

an example of failure phenomena induced by elastic

wave propagation.

2. Methods

2.1. Particle Interaction Model

In the MPS method the elastic body is represented

as an assembly of particles. Each particle interacts

with neighboring particles and a weighting function

w(r) is used to calculate the differential operators in

the governing equations.

wðrÞ ¼ re=r � 1 r� reð Þ; 0 r [ reð Þ ð1Þ

where r is the distance between particles and re is the

radius of the influence domain. Each particle interacts

solely with particles inside the influence domain.

Particle number density ni is defined as:

ni ¼
X

j6¼i
wðrÞ ð2Þ

Calculated particle density number will be con-

stant if the particle arrangement is uniform. This

constant value is denoted by n0. n0 is used as a

normalizing factor when the particle interactions are

averaged by use of the weighting function.

In the MPS method, differential operators are

modeled as the interactions between particles. For

example, gradient and divergence are modeled as

follows:

r/h ii¼
d

n0

X

j6¼i

/j � /i

� �
rj � ri

� �

rj � ri

�� ��2 w rj � ri

�� ��� �
ð3Þ

r � uh ii¼
2d

n0

X

i 6¼j

uj � ui

� �
rj � ri

� �

rj � ri

�� ��2 w rj � ri

�� ��� �
ð4Þ

where / and u are arbitrary variables, d is the number

of space dimensions, and ri and rj are the positioning

vectors of particles i and j. You can find the more

details of particle interaction models in KOSHIZUKA

and OKA (1996).

2.2. Governing Equation for Elastic Body

In this section, we explain the MPS method

algorithm for elastic body analysis. In the MPS method,

both an explicit scheme (KOSHIZUKA et al., 1999b) and

an implicit scheme (CHIKAZAWA et al., 2001a) exist.

Here, we adopt the explicit scheme to simulate elastic

wave propagation and dynamic fracturing. Although

we focus on two-dimensional problems for simplicity

in this study, the following concept could readily be

applied to three-dimensional (3D) problems except for

calculation of the rotational angle. Because the rota-

tional angle is not scalar but a vector in 3D, calculation

of the rotational angle is slightly complex. The

increment of numerical costs (CPU time and memory)

largely depends on the influence domain, i.e. the

number of neighboring particles. When we use the

radius of the influence domain re ¼ 1:9� Dx (Dx is

the particle spacing in a regular lattice), the number of

particles in 2D and 3D cases are 8 and 26, respectively.

This means the computational cost in 3D becomes

more than triple that in 2D. Therefore, the influence

domain needs to be smaller for efficient calculations
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without reducing the accuracy. The effects of the

influence domain on accuracy are investigated by use

of Lamb’s problem in the next section.

The governing equation for an elastic body is as

follows:

qova=ot ¼ o=oxb keccdab þ 2leab
� �

þ qfa ð5Þ

where va is the velocity vector, q is the mass density,

k and l are Lame’s constants, eab is the strain tensor,

dab is Kronecker delta, and fa is the external force

vector. The strain tensor can be described as follows:

eab ¼ oua=oxb þ oub=oxa
� �

=2 ð6Þ

where ua is the displacement vector.

Each particle has position, velocity, rotational

angle, and angular velocity of degrees of freedom.

The relative displacement vector between particles i

and j can be described as follows:

uij ¼ rij � Rr0
ij ð7Þ

rij ¼ rj � ri ð8Þ

r0
ij ¼ r0

j � r0
i ð9Þ

R ¼ cos hij � sin hij

sin hij cos hij

� �
ð10Þ

where uij is the relative displacement vector between

particles i and j, R is the rotation matrix, rij and r0
ij are

the relative position vectors of the present and initial

conditions, respectively. hij is the averaged rotational

angle between particles i and j. In this way, the rel-

ative displacement between particles is calculated by

eliminating the rotational component.

In the MPS method, the stress and strain between

particles is calculated as a vector as follows:

rn
ij ¼ 2len

ij ¼ 2lun
ij= r0

ij

���
��� ð11Þ

rs
ij ¼ 2les

ij ¼ 2lus
ij= r0

ij

���
��� ð12Þ

where un
ij and us

ij are the relative displacement vector

between particles i and j in the normal and tangential

components of the rij direction, respectively. rn
ij and

rs
ij are the stress components in normal and tangential

directions, respectively. All components of the stress

tensor are not needed to calculate the acceleration of

particles.

ecc in Eq. (5) corresponds to the volumetric strain

term and is calculated by use of the following

equations.

ecc

� �
i
¼ div uð Þi

¼ d

n0

X

i 6¼j

uij � rij

r0
ij

���
��� rij

�� ��
w r0

ij

���
���

� �

¼ d

n0

X

i 6¼j

en
ij

rij

rij

�� ��w r0
ij

���
���

� �
ð13Þ

pi ¼ �k ecc
� �

i
ð14Þ

where pi is the pressure on particle i. We can calcu-

late the acceleration of particles by using stresses and

pressure (rn
ij, rn

ij, pi).

ovi

ot

	 

¼ ovi

ot

	 


n

þ ovi

ot

	 


s

þ ovi

ot

	 


p

ð15Þ

qi

ovi

ot

	 


n

¼ d

n0

X

i 6¼j

2rn
ij

r0
ij

���
���
w r0

ij

���
���

� �
ð16Þ

q1i
ovi

ot

	 


s

¼ d

n0

X

i 6¼j

2rs
ij

r0
ij

���
���
w r0

ij

���
���

� �
ð17Þ

qi

ovi

ot

	 


p

¼ � d

n0

X

i 6¼j

2pijrij

r0
ij

���
��� rij

�� ��
w r0

ij

���
���

� �
ð18Þ

where pij is the pressure between particles i and j

calculated as follows:

pij ¼ pi þ pj

� �
=2 ð19Þ

In Eqs. (15)–(18), we used the divergence model

in Eq. (4).

In this method, for conservation of angular

momentum, rotations are added to particles to cancel

the torque generated by tangential stress. The force

acting on particle i as a result of tangential stress is

calculated by use of the equation:

Fij ¼ mi
ovij

ot

	 


s

¼ mi

qi

2d

n0

rs
ij

r0
ij

���
���
w r0

ij

���
���

� �
ð20Þ

where mi is the mass of particle i. On the other hand,

particle j is subjected to an opposite force which has

the same absolute value. The torque Tij generated by

a couple of force given by Eq. (20) is also calculated

as follows:
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Tij ¼ �rij � Fij ð21Þ

The torque calculated by use of Eq. (21) is added

to particles i and j.

Ii
oxi

ot

	 

¼ Ij

oxj

ot

	 

¼ � 1

2
Tij ð22Þ

where Ii is the moment of inertia of particle i.

From the equations given above, we can update

the velocity, position, angular velocity, and rotational

angle of particle i as follows:

vkþ1
i ¼ vk

i þ Dt ovi=ot½ �k ð23Þ

rkþ1
i ¼ rk

i þ Dtvkþ1
i ð24Þ

xkþ1
i ¼ xk

i þ Dt oxi=ot½ �k ð25Þ

hkþ1
i ¼ hk

i þ Dtxkþ1
i ð26Þ

If we consider the two-dimensional problem, the

equation for the rotational angle becomes a scalar

expression. This scheme is symplectic. The accuracy

of the scheme described above is verified in the next

section by use of surface wave propagation.

3. Numerical Simulation of Surface Wave

Propagation

In this section, we verify the reproducibility of the

surface wave field in the MPS method by comparison

with an analytical solution of Lamb’s problem. We

studied two models (A and B) which are homogeneous

and isotropic. Model A has a P-wave velocity of

Vp ¼ 2;611 m=s, an S-wave velocity of VS ¼
1;846 m=s, and a mass density of q ¼ 2;200 kg=m3.

Model B has a P-wave velocity of Vp ¼ 4;522 m=s, an

S-wave velocity of VS ¼ 1;846 m=s, and a mass den-

sity of q ¼ 2;200 kg=m3. The particle distance Dx and

time spacing Dt are 0.1 m and 0.01 ms, respectively.

The time spacing is set to satisfy the Courant condition.

The simulations are conducted for two different radii of

the influence domain (i.e. 1:9� Dx and 2:1� Dx) for

comparison. The number of particles inside the influ-

ence domain is 8 and 12 in each case. The

compressional seismic source and eight receivers are

set at 1 m depth. The distance between the seismic

source and the nearest receiver is 10 m, and the spacing

of each receiver is 4 m. The source function used in the

simulation is the first derivative of a Gaussian function

with central frequencies of 300 and 400 Hz.

We compute the misfit between analytical and

numerical results to evaluate the effect of offset dis-

tance, material property, radius of the influence

domain, and source frequency. The misfit is calcu-

lated by use of the equation:

Misfit ¼
P

t SNUM tð Þ � SANA tð Þð Þ2
P

t SANA tð Þ2
ð27Þ

where SNUM(t) is the seismogram from the MPS

method and SANA(t) is the analytical seismogram.

Figures 1 and 2 show the seismograms and misfits

recorded at the receivers for different source fre-

quencies. The influence domain is set to 1:9� Dx in

each figure. Solid and dashed lines are analytical and

numerical results, respectively. The dotted lines are

the difference between them amplified by a factor of

5. The misfits calculated by use of Eq. (27) increase

with an increase in the offset distances in each case.

The vertical direction has larger misfits than the

horizontal in both medium properties and

frequencies.

The misfits of vertical seismograms for model B

are smaller than those for model A, because the

velocity of the Rayleigh wave for model B is slightly

higher than that for model A. On the other hand, the

misfits of horizontal seismograms for model B are

slightly larger than those for model A, especially in

the far receivers. This is caused by the small ampli-

tude of far receivers in model B, which induces the

small value of the denominator in Eq. (27).

On the other hand, the difference relating to the

source frequency is clear; i.e. the misfits for 300 Hz

are smaller than those for 400 Hz. This is caused by

the change in the number of particles in a wave-

length. The number of particles in a minimum

wavelength for 300 and 400 Hz are approximately 20

and 15, respectively. It is well known that a small

number of grids or particles in a wavelength leads to

numerical dispersion. These results show that the

misfit in the farthest receiver, whose offset distance is

approximately 20 wavelengths, can be limited to less

than 10 % if we use approximately 20 particles in a

minimum wavelength.

564 J. Takekawa et al. Pure Appl. Geophys.



Figure 3 shows the seismograms and misfits

recorded at the receivers for an influence domain of

2:1� Dx: The source frequency is set to 400 Hz. It is

observed that the difference of the misfits is indis-

tinguishable from that in Fig. 1. This indicates that

the smaller influence domain has an advantage in

terms of calculation cost (CPU time and memory)

that would be saved by using the smaller number of

neighboring particles.

4. Numerical Simulation of Dynamic Tensile

Fracturing

We conducted numerical simulations of Hopkin-

son’s effect as an example of failure phenomenon

induced by elastic wave propagation. Figure 4 shows

a schematic diagram of the experimental condition of

the split Hopkinson pressure bar. The incident com-

pressive wave generated at an end of Hopkinson bar

is transmitted into the specimen, and is reflected at

the other free end of the specimen as a tensile wave.

Because of the superposition of the incident com-

pressive wave and the reflected tensile wave, the

tensile stress which leads to spalling of the specimen

is generated near the free end. This phenomenon has

been used to determine the dynamic tensile strength

of brittle material such as a rock mass. Many

researchers have conducted numerical simulations of

Hopkinson’s effect by use of diverse methods (BRARA

et al., 2001; CHO et al., 2003; ZHU and TANG, 2006).

Introduction of a failure criterion is a key aspect

of this study. BRARA et al., (2001) adopted the

cumulative fracture criterion proposed by Klepaczko

Figure 1
Comparison of numerical and analytical seismograms. The radius of the influence domain is set to 1:9� Dx: The source frequency is 400 Hz.

Solid, dashed, and dotted lines are analytical, numerical, and differences between them, respectively. Filled circles are misfits of each

seismogram calculated by use of Eq. (27). a Horizontal displacement at the receivers for model A. b Horizontal displacement at the receivers

for model B. c Vertical displacement at the receivers for model A. d Vertical displacement at the receivers for model B
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(1990). ZHU and TANG (2006) used the rate-dependent

failure criterion proposed by ZHAO (2000). In this

study we adopted a very simple failure criterion. If

the distance between particles exceeds a threshold

value, the interaction between particles is set to zero.

This failure criterion is very simple to implement

although only tensile failure can be reproduced. In the

simulation of Hopkinson’s effect, this failure crite-

rion is sufficient because only tensile failure will be

generated in the bar.

We discretize the split Hopkinson pressure bar by

using MPS particles. The width and the height of the

bar are 300 mm and 10 mm, respectively. The model

is discretized into 301� 11 particles. The particle

distance and the time spacing are 1 mm and

0.0001 ms, respectively. Three models, in which

homogeneous and isotropic media are assumed, are

studied. Model A has a P-wave velocity of Vp ¼
2;993 m=s, an S-wave velocity of VS ¼ 1;600 m=s,

and a mass density of q ¼ 2;000 kg=m3: Model B has

a P-wave velocity of Vp ¼ 2;613 m=s, an S-wave

velocity of VS ¼ 1;600 m=s, and a mass density of

q ¼ 2;000 kg=m3: Model C has a P-wave velocity of

Vp ¼ 2;400 m=s, an S-wave velocity of VS ¼
1;600 m=s, and a mass density of q ¼ 2;000 kg=m3:

We apply the impulsive force to one edge to generate

the compressive wave in the bar. In this study, we use

the time history of a Gaussian function.

Figure 5 shows the pressure and velocity distri-

butions in the bar near the right edge. The impulsive

force is applied at the left end of the bar. After

approximately 0.16 ms, the compressive pressure

Figure 2
Comparison of numerical and analytical seismograms. The radius of the influence domain is set to 1:9� Dx: The source frequency is 300 Hz.

Details are given in caption of Fig. 1. a Horizontal displacement at the receivers for model A. b Horizontal displacement at the receivers for

model B. c Vertical displacement at the receivers for model A. d Vertical displacement at the receivers for model B
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wave reaches the other edge of the bar. Because of

the free boundary condition, the reflected pressure

wave is generated with tensile stress. At 0.17 ms, the

tensile pressure wave propagating in the opposite

direction is observed. After 0.18 ms, the discontinuity

of the velocity field indicated by an arrow becomes

visible because of the detachment of neighboring

particles. The fragmented block flies away to right-

ward with local oscillation.

Figure 6 shows the particle distribution only

around the right edge in several time steps. At

0.180 ms, particles start to separate near the free end

in each model. At 0.200 ms, we can observe the clear

spalling of the piece of the bar. In each model,

dynamic fracturing induced by elastic wave propa-

gation can be reproduced in a similar manner.

However, the lengths of the fragments in both models

are different. The longest and shortest pieces are

observed in models A and C, respectively. This is

caused by the different transmissive wavelengths

because of the different P-wave velocity. In model A,

the transmissive wavelength is longer than in the

other models. On the other hand, model C has the

shortest wavelength. The difference of wavelength

changes the distance between the location where the

maximum tensile stress is generated and the free end.

Therefore, the length of the fragment in model A is

longer than those of the other models.

Here, we compare fracture cross-sections from

our numerical results with those from previous

numerical and experimental results. In BRARA et al.

(2001), the fracture cross-section simulated by DEM

did not have a flat surface, unlike our numerical

results. Additionally, the results from CHO et al.

Figure 3
Comparison of numerical and analytical seismograms. The radius of the influence domain is set to 2:1� Dx. The source frequency is 400 Hz.

Details are given in caption of Fig. 1. a Horizontal displacement at the receivers for model A. b Horizontal displacement at the receivers for

model B. c Vertical displacement at the receivers for model A. d Vertical displacement at the receivers for model B
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(2003) also have a similar non-flat fracture surface.

BRARA et al. (2001) used random packing of particles

for their DEM simulations; the heterogeneous prop-

erty is included in their numerical model. This leads

to a non-linear fracture, because failure will occur

selectively depending on the alignment of particles.

CHO et al. (2003) used uniform triangular elements

for their finite element analysis. However, the spatial

distribution of local strength satisfying Weibull’s

distribution was used to consider the inhomogeneous

property of rock. Thus, selective local failures, which

cause a non-flat fracture cross-section, were also

induced by the distribution of strength criterion.

Because natural rock is an inhomogeneous material,

and the inhomogeneity has a significant effect on the

shape of the fracture cross-section, the fracture sur-

face is indented according to their numerical results.

On the other hand, our numerical model does not

include the inhomogeneous property; i.e. regular

lattice structure and constant failure criterion are

used. This is the reason for the different shape of the

fracture cross-section in our results and previous

results. If we introduce an inhomogeneous property,

the non-flat failure surface will be reproduced,

although it exceeds the purpose of this study.

It is difficult to compare the length of fragment of

our results with those from other numerical or

experimental results because the experimental con-

ditions described above are different from each other.

In our results, however, the tensile fragmentations

occur near the end, as in previous numerical and

experimental studies (BRARA et al., 2001; CHO et al.,

2003). This therefore indicates the MPS method can

Figure 4
Schematic diagram of Hopkinson’s effect

Figure 5
Pressure and velocity distributions in the bar near the right edge.

White and black color represent compressional and tensile pressure.

Solid lines represent velocity vectors
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seamlessly reproduce both elastic wave propagation

and dynamic fracturing.

5. Conclusions

In this study, we conducted numerical simulations

of elastic wave propagation and failure phenomenon

using an MPS method.

First, we verified the dispersion properties of the

MPS method by comparing numerical and analytical

solutions using Lamb’s problem. We changed offset

distances, medium properties, and source frequencies,

and evaluated the misfit of each condition. The results

showed that the misfit can be smaller than 10 % if we

use 20 particles per minimum wavelength for a

propagation of approximately 20 wavelengths.

We then reproduced Hopkinson’s effect, as an

example of failure phenomena induced by elastic

wave propagation, by use of the MPS method. In the

simulation, material failure is represented by setting

the interaction between particles to zero. We studied

three numerical models with different material

properties. The results of numerical experiments

agree with previous results from experimental or

other numerical methods. This indicates that dynamic

fracturing induced by elastic wave propagation can

be reproduced by the MPS method.
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