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GLOBAL DYNAMICS BELOW THE GROUND STATE ENERGY
FOR THE ZAKHAROV SYSTEM IN THE 3D RADIAL CASE

ZIHUA GUO, KENJI NAKANISHI, SHUXIA WANG

Abstract. We consider the global dynamics below the ground state energy for
the Zakharov system in the 3D radial case. We obtain dichotomy between the
scattering and the growup.
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1. Introduction

In this paper, we continue our study [7] on the global Cauchy problem for the 3D
Zakharov system {

iu̇−∆u = nu,

n̈/α2 −∆n = −∆|u|2,
(1.1)

with the initial data

u(0, x) = u0, n(0, x) = n0, ṅ(0, x) = n1, (1.2)

where (u, n)(t, x) : R1+3 → C × R, and α > 0 denotes the ion sound speed. It
preserves ‖u(t)‖L2

x
and the energy

E =

∫
R3

|∇u|2 + |D−1ṅ|2/α2 + |n|2

2
− n|u|2dx, (1.3)

where D :=
√
−∆, as well as the radial symmetry.
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This system (1.1) in d dimensions was introduced by Zakharov [23] as a mathe-
matical model for the Langmuir turbulence in unmagnetized ionized plasma. It has
been extensively studied. Local wellposedness (without symmetry) is well known.
For example, the well-posedness in the energy space was proved in [4] for d = 2, 3
and in [6] for d = 1, and in weighted Sobolev space in [13]. It has been improved to
the critical regularity in [6, 3] for d = 1, 2, and to the full subcritical regularity in
[6, 2] for d ≥ 4, d = 3. The well-posedness for the system on the torus was studied
in [22, 14]. These results except for [13] follow from the iteration argument using
Bourgain space, where the estimates depend on α, while in [13] the well-posedness
is obtained uniformly for α. For more results on the subsonic limit to NLS (as
α → ∞), see [20, 18, 15]. Concerning the long-time behavior, Merle [16] obtained
blow-up in finite or infinite time for negative energy (which we will call grow-up for
brevity), while the scattering theory was studied in [21, 5, 19], dealing with solutions
for given asymptotic free profiles. Recently, in [7] the authors obtained scattering
for radial initial data1 with small energy in the 3D case, by using the normal form
reduction and radial-improved Strichartz estimates. The purpose of this paper is to
consider the global dynamics for larger data under the radial symmetry.

To simplify the presentation, we rewrite the system into the first order as usual.
Let N := n− iD−1ṅ/α. Then (1.1) can be rewritten as

(i∂t −∆)u = (<N)u, (i∂t + αD)N = αD|u|2, (1.4)

with initial data (u0, N0) ∈ H1 × L2. It has the conserved mass

M(u) :=

∫
R3

|u|2

2
dx, (1.5)

and the Hamiltonian

EZ(u,N) :=

∫
R3

|∇u|2

2
+

|N |2

4
− <N |u|2

2
dx = ES(u) + ‖N − |u|2‖2L2/4, (1.6)

where ES(u) denotes the Hamiltonian for the cubic NLS (the limit α → ∞)

(i∂t −∆)u = |u|2u, (1.7)

namely

ES(u) :=

∫
R3

|∇u|2

2
− |u|4

4
dx. (1.8)

Let Q be the ground state for NLS (1.7), that is the unique positive radial solution
for the following equation

−∆Q+Q = Q3, (1.9)

which minimizes the action

J(Q) := ES(Q) +M(Q) (1.10)

1After submitting this paper, the authors learned the more recent result by Hani, Pusateri and
Shatah [9] of small data scattering, imposing no symmetry, but instead fast decay as |x| → ∞.
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among all nontrivial solutions of (1.9) (see, e.g., [10] for further properties of Q).
For λ > 0, let

Qλ(x) := λQ(λx), (1.11)

then we have

−∆Qλ + λ2Qλ = Q3
λ, M(Qλ) = λ−1M(Q), ES(Qλ) = λES(Q). (1.12)

Thus the Zakharov system (1.4) has the following family of radial standing waves

(u,N) = (ei(θ−λ2t)Qλ, Q
2
λ), (1.13)

where λ > 0 and θ ∈ R can be chosen arbitrarily.
The goal of this study is to determine global dynamics of all the radial solu-

tions “below” the above family of special solutions, in the spirit of Kenig-Merle
[12], namely the variational dichotomy into the scattering solutions and the blowup
solutions. Such a result has been obtained for the limit equation (1.7) by Holmer-
Roudenko [10] in the radial case, as well as in the nonradial case [11]. For the
dichotomy, we need to introduce another functional (for NLS), which is the scaling
derivative of the action J :

K(ϕ) := ∂λ|λ=1J(λ
d/2ϕ(λx)) =

∫
Rd

|∇ϕ|2 − d|ϕ|4

4
dx. (1.14)

We would like to get the same result as in [10] for NLS, but by the virial argument
as in [16] we can only prove grow-up, due to the poor control of the wave component
N . In fact, existence of any blowup in finite time is still an open question for the
3D Zakharov system. The main result of this paper is

Theorem 1.1. Assume that (u0, N0) ∈ H1(R3)× L2(R3) is radial and satisfies

EZ(u0, N0)M(u0) < ES(Q)M(Q). (1.15)

Then we have
(a) if K(u0) ≥ 0, then (1.4) has a unique global solution (u,N), which scatters

both as t → ∞ and as t → −∞ in the energy space. More precisely, there are
(u±, N±) ∈ H1 × L2 such that

‖(u(t), N(t))− (e−it∆u±, e
itαDN±)‖H1×L2 → 0 (t→ ±∞). (1.16)

(b) if K(u0) < 0, then (1.4) blows up in either finite or infinite time, in the sense
that sup0<t<T ∗ ‖(u,N)‖H1(R3)×L2(R3) = ∞ = supT∗<t<0 ‖(u,N)‖H1(R3)×L2(R3), where
(T∗, T

∗) is the maximal interval of existence.

Remark 1.1. 1) Assuming K(u0) = 0 and (1.15), one can actually get by variational
estimates that u0 = 0, so u ≡ 0 and N = eitαDN0, see Section 2.

2) The condition (1.15) is sharp in view of the standing wave solutions (1.13).

The difficulty for the scattering even for small data can be observed by comparing
the time decay with the NLS of general power nonlinearity

iu̇−∆u = |u|pu, u : R1+d → C. (1.17)
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It is well known that the scattering for NLS requires p > 2/d, corresponding to the
time integrability of the optimal decay of the potential

‖|u|p‖L∞
x
∼ |t|−dp/2, (1.18)

while the scattering in Hs for any s has been proven only for p ≥ 4/d. The 3D
Zakharov system would be on the borderline in the above sense, since the potential
n can decay only by

‖n‖L∞
x
∼ |t|−1, (1.19)

as it is solving the 3D wave equation. This suggests that the decay estimates are
far insufficient for the scattering in H1, and so it is essential to exploit nonlinear
oscillations, e.g. by the normal form. This part for small radial data has been
resolved in the previous paper [7]. Hence our main task in this paper is to carry
out the Kenig-Merle approach [12] in accordance with the normal form. Since the
normal form produces nonlinear terms without time integration, we need to modify
Kenig-Merle’s formulation, as well as some estimates in [7]. As a crucial ingredient
for that approach, we will derive a virial identity, which is slightly different from
Merle’s one in [16] and more suitable for the scattering.

2. Hamiltonian and variational structures

2.1. Virial identity. We derive a virial identity on Rd, which is slightly different
from [16]. Recall that the Zakharov system can be rewritten in the Hamiltonian
form

∂t

(
u
N

)
= JE ′

Z(u,N), (2.1)

where J and E ′
Z denote the symplectic operator and the Fréchet derivative given by

J =

(
i 0
0 2iαD

)
, E ′

Z(u,N) =

(
E ′

S(u)− (<N − |u|2)u
(N − |u|2)/2

)
=

(
−∆u− (<N)u
(N − |u|2)/2

)
.

Let A be the generator for the family of scaling transforms2(
f
g

)
7→ Sλ

(
f
g

)
:=

(
λd/2f(λx)

λ(d+1)/2g(λx)

)
(λ > 0), (2.2)

hence we have

A =

(
x · ∇+ d/2 0

0 x · ∇+ (d+ 1)/2

)
,

A∗ = −
(
x · ∇+ d/2 0

0 x · ∇+ (d− 1)/2

)
.

(2.3)

2The order of scaling, i.e. the exponents d
2 and d+1

2 , is the unique choice such that (2.5) holds.
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Let v := (u,N), J := J−1 and denote the real part of L2 inner product by 〈·|·〉.
Then the virial identity for the Zakharov system is given by

∂t〈Jv|Av〉 = 〈Jv̇|Av〉+ 〈Jv|Av̇〉 = 〈v̇|(J∗A+ A∗J)v〉
= 2〈v̇|J∗Av〉 = 2〈JE ′

Z(v)|J∗Av〉 = 2〈E ′
Z(v)|Av〉

= 2∂λ=1EZ(Sλv) = 2∂λ=1[ES(Sλu) + ‖λ1/2N − λd/2|u|2‖22/4]

= 2K(u) +
1

2
‖N − |u|2‖22 −

d− 1

2
〈N − |u|2||u|2〉,

(2.4)

where we used for the third equality that

J∗A∗ = i

(
x · ∇+ d/2 0

0 2α(x · ∇+ (d+ 1)/2)D

)
= AJ. (2.5)

Therefore, we have proved

Lemma 2.1 (Virial identity). Assume v = (u,N) is a smooth decaying solution to
Zakharov system (1.1). Then

∂t〈Jv|Av〉 = ∂t
[
〈u|ir∂ru〉+

1

2α
〈N |ir∂rD−1N〉

]
= 2K(u) +

1

2
‖N − |u|2‖22 −

d− 1

2
〈N − |u|2||u|2〉.

(2.6)

The virial identity by Merle [16] is slightly different from the above one. In our
notation, it can be written as

∂t
[
〈u|ir∂ru〉 −

1

α
〈<N |r∂rD−1=N〉

]
= 2K(u) +

d

2
‖N − |u|‖22 − (d− 1)‖=N‖22

= 2dEZ(u,N)− (d− 2)‖∇u‖22 − (d− 1)‖=N‖22.

(2.7)

The left hand side differs from (2.6) since ir∂rD
−1 is not self-adjoint, but ir(∂r +

(d− 1)/2)D−1 is so. Precisely, the difference is

∂t
d− 1

2α
〈<N |D−1=N〉 = 1− d

2
〈N − |u|2|N〉+ (d− 1)‖=N‖22. (2.8)

The advantage of our identity is that it is monotone both in the scattering region
(K > 0) and in the blow-up region (K < 0), as we will show in the next section,
while (2.7) is not monotone when u(t) and n(t) are very small compared with ṅ(t).
Although Merle’s identity is more convenient in the blow-up region, our identity can
also be used there, as we will see in Section 3.

2.2. Variational estimates. In the 3D case d = 3, the cubic nonlinearity is L2-
supercritical and Ḣ1 subcritical. Hence Q is obtained by the constrained minimiza-
tion

J(Q) = inf{J(ϕ) | 0 6= ϕ, K(ϕ) = 0}. (2.9)

Indeed, Q is the unique minimizer modulo the phase eiθ and spatial translation. By
scaling, we also have for any λ > 0

λJ(Q) = Jλ(Qλ) = inf{Jλ(ϕ) | 0 6= ϕ, K(ϕ) = 0}, Jλ := ES + λ2M, (2.10)
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and Qλ is the unique minimizer modulo phase and translation.

Lemma 2.2. Assume that (u,N) is a solution to (1.4) with maximal interval I
satisfying

EZ(u,N)M(u) < ES(Q)M(Q). (2.11)

Then for some λ > 0 we have EZ(u,N)+λ2M(u) < λJ(Q). Moreover, either u ≡ 0
on I, or K(u(t)) 6= 0 for all t ∈ I. In other words, K(u(t)) does not change its sign
on I.

Proof. From (2.9), we have J(Q) = infλ>0 J(Qλ), and thus ∂λ|λ=1J(Qλ) = 0. This
implies

J2(Q)/4 = ES(Q)M(Q).

Thus we see that there exists λ > 0 such that

EZ(u,N) + λ2M(u) < Jλ(Qλ) = λJ(Q). (2.12)

Since Jλ(u) ≤ EZ(u,N) + λ2M(u), by the variational characterization of Qλ, we
have at each t ∈ I,

K(u(t)) = 0 ⇐⇒ u(t) = 0. (2.13)

If K(u(t0)) = 0 for some t0 ∈ I, by uniqueness we have u ≡ 0. �

Corollary 2.3. Assume that (u,N) is a solution to (1.4) with maximal interval I
satisfying for some λ > 0

EZ(u,N) + λ2M(u) < λJ(Q), K(u0) ≥ 0. (2.14)

Then I = (−∞,∞), and moreover,

EZ(u,N) + λ2M(u) ∼ ‖u‖2H1 + ‖N‖2L2 ∼ ‖u0‖2H1 + ‖N0‖2L2 . (2.15)

where the implicit constant depends only on λ and J(Q).

Proof. From Lemma 2.2 we get that if K(u0) = 0, then u ≡ 0, and hence this case
is trivial. Thus we may assume K(u0) > 0, hence K(u(t)) > 0 by Lemma 2.2. From
the assumption, we get (2.15) immediately from

λJ(Q) ≥EZ(u,N) + λ2M(u)−K(u(t))/3

=
1

6
‖∇u‖22 +

λ2

2
‖u‖22 +

1

4
‖N − |u|2‖22,

and the Sobolev inequality ‖u‖L4.‖u‖H1 . So (u,N)(t) is a priori bounded inH1×L2,
and thus by the local wellposedness we have I = (−∞,∞). �

So far, the global well-posedness of part (a) of Theorem 1.1 is proved. It remains
to prove the scattering and part (b). For both purposes, the virial estimates play
crucial roles. Unlike the NLS case, it is not at all obvious that virial for (1.4) is
monotone. The following lemma is our key observation
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Lemma 2.4. Let ϕ ∈ H1(R3), λ > 0 and ν̃ ≥ 0 satisfy

ES(ϕ) + λ2M(ϕ) +
ν̃2

4
≤ Jλ(Qλ). (2.16)

Then we have {
K(ϕ) ≥ 0 =⇒ 4K(ϕ) + ν̃2 ≥

√
6ν̃‖ϕ‖24,

K(ϕ) ≤ 0 =⇒ 4K(ϕ) + ν̃2 ≤ −2ν̃‖ϕ‖24.
(2.17)

Proof. First, if K(ϕ) = 0 then ν̃ = 0 and the conclusion is trivial. Hence we may

assume K(ϕ) 6= 0 as well as ν̃ > 0. Next by the scaling (ϕ, ν̃) 7→ (λϕ(λx),
√
λν̃), we

may remove λ or assume λ = 1. Then the energy constraint becomes J(ϕ)+ ν̃2/4 ≤
J(Q). Now consider the L2 scaling of ϕ, Sµϕ = µd/2ϕ(µx) and

J(Sµϕ) =
µ2

2
‖∇ϕ‖22 +

1

2
‖ϕ‖22 −

µ3

4
‖ϕ‖44,

µ∂µJ(Sµϕ) = K(Sµϕ) = µ2‖∇ϕ‖22 −
3µ3

4
‖ϕ‖44.

(2.18)

There is a unique 0 < µ 6= 1 such that

‖∇ϕ‖22 =
3µ

4
‖ϕ‖44, (2.19)

which is equivalent to K(Sµϕ) = 0. Then the variational characterization of Q
implies J(Sµϕ) ≥ J(Q), and so

ν̃2

4
≤ J(Sµϕ)− J(ϕ) =

µ2 − 1

2
‖∇ϕ‖22 −

µ3 − 1

4
‖ϕ‖44,

=
(µ− 1)2(µ+ 2)

8
‖ϕ‖44,

(2.20)

where (2.19) is used in the last step. Let X := ‖ϕ‖24/ν̃. Then the above inequality
is rewritten as

|µ− 1|
√
µ+ 2X ≥

√
2. (2.21)

Hence it suffices to estimate, under the above constraint,

4K(ϕ) + ν̃2

ν̃‖ϕ‖24
= 3(µ− 1)X + 1/X =: f(X,µ). (2.22)

For K(ϕ) > 0, or equivalently µ > 1, f(X,µ) is increasing in X unless√
1

3(µ− 1)
<

1

µ− 1

√
2

µ+ 2
, (2.23)

which is solved µ > (
√
33− 1)/2. In the latter case, we have

3(µ− 1)X + 1/X ≥ 2
√
3(µ− 1)X/X >

√
6, (2.24)

since µ > 3/2. Otherwise, the minimum is attained at the boundary and equal to

f(
1

µ− 1

√
2

µ+ 2
, µ) = 3

√
2

µ+ 2
+ (µ− 1)

√
µ+ 2

2
=: b(µ), (2.25)
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which is increasing3 in µ > 0, hence b(µ) > b(1) =
√
6.

For K(ϕ) < 0, or equivalently 0 < µ < 1, −f(X,µ) is increasing in X, so its
minimum is attained at the boundary and equals to

−f( 1

1− µ

√
2

µ+ 2
, µ) = b(µ) > b(0) = 2. (2.26)

Therefore, the proof of the lemma is completed. �
Remark 2.1. Applying the lemma above by letting

ν̃ > ‖N − |u|2‖2, (2.27)

we get from Lemma 2.1 that the virial 〈Jv|Av〉 is monotone in our consideration.
This fact will play crucial role in our consequent analysis.

3. Growup at infinity

This section is devoted to prove part (b) of Theorem 1.1. We assume that under
the assumption of part (b), the solution exists for all t > 0. We will show that
sup
t>0

‖(u,N)‖H1(R3)×L2(R3) = ∞.

In the following computation, the algebraic part is valid in general dimensions
Rd, but we need to specify d = 3 for the estimates. We will keep d in the identities
because they may be recycled in other dimensions, but the reader can regard d = 3
throughout this section or the entire paper.

3.1. Localized virial. LetX = X∗ be the operator of smooth truncation to |x| < R
by multiplication with ψR(x) = ψ(x/R), where ψ ∈ C∞

0 (R3) is a fixed radial function
satisfying 0 ≤ ψ ≤ 1, ∂rψ ≤ 0, ψ(x) = 1 for |x| ≤ 1 and ψ(x) = 0 for |x| ≥ 2. We
consider the localized virial quantity in the form

VR(t) := 〈Jv|(AX +XA)v〉. (3.1)

Then similarly to the non-localized virial identity, we can compute

V̇R = 〈E ′
Z(v)|(AX +XA+ AJXJ + J∗XJ∗A)v〉. (3.2)

Putting ν := N − |u|2, the right hand side can be written componentwise

V̇R =〈E ′
S(u)− νu|2A0Xu+ 2XA0u〉

+ 〈ν/2|(XA1 + A1X +DXD−1A1 + A1DXD
−1)(ν + |u|2)〉,

(3.3)

where Aj := x ·∇+(d+ j)/2. The right hand side is decomposed into the NLS part:

NS := 〈E ′
S(u)|2A0Xu+ 2XA0u〉, (3.4)

the quadratic terms in ν:

QN := 〈ν/2|(XA1 + A1X +DXD−1A1 + A1DXD
−1)ν〉, (3.5)

and the cubic cross terms:

CC :=〈−νu|2A0Xu+ 2XA0u〉
+ 〈ν/2|(XA1 + A1X +DXD−1A1 + A1DXD

−1)|u|2〉,
(3.6)

3This can be checked by computing d(b2)
dµ .
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i.e., V̇R = NS+QN+CC. Since the NLS part has been treated by Ogawa-Tsutsumi
[17] and Holmer-Roudenko [10], while the cross terms are higher order, the main
problem for us is to control QN . Indeed, our way of the localization is motivated
by a better cancellation in QN , while some other multipliers such as AXv in (3.2)
could make the other terms simpler.

It is further decomposed QN = (QN1 +QN2 +QN3)/2 with

QN1 := 〈ν|(XA1 + A1X)ν〉 = 〈ν|X(A1 + A∗
1)ν〉 = 〈ν|Xν〉, (3.7)

where we used the symmetry of the bilinear form as well as X = X∗ and A0 = −A∗
0.

Putting η := D−1ν, the other two terms are computed as follows.

QN2 : = 〈ν|DXD−1A1ν〉 = 〈η|D2XA−1η〉 = 〈∇η|∇XA−1η〉
= 〈∇η|XA1∇η〉+ 〈∇η|(∇ψR)A−1η〉,

(3.8)

where we used DA−1 = A1D and ∇A−1 = A1∇,

QN3 := 〈ν|A1DXD
−1ν〉 = 〈η|DA1DXη〉 = 〈∇η|A1∇Xη〉

= 〈∇η|A1X∇η〉+ 〈∇η|A1(∇ψR)η〉,
(3.9)

where we used DA1D = −∇ · A1∇. Hence

QN2 +QN3 = 〈∇η|X(A1 + A∗
1)∇η〉+ 〈∇η|(∇ψR)A−1η + A1(∇ψR)η〉

= 〈∇η|X∇η〉+ 2〈∇η|(∇ψR)x · ∇η〉+ 〈∇η|ηAd∇ψR〉

= 〈∇η|X∇η〉+ 2〈ηr|rψ′
Rηr〉 −

1

2
〈|η|2|Ad+2∆ψR〉,

(3.10)

where we used the radial symmetry of ψR but not of η. Thus we obtain

QN = 〈ν|Xν〉/2 + 〈∇η|X∇η〉/2 + 〈ηr|rψ′
Rηr〉 −

1

4
〈|η|2|Ad+2∆ψR〉. (3.11)

The first two terms are less than ‖ν‖22 = ‖∇η‖22 since ψR ≤ 1, while the third term
is nonpositive since ψ′

R ≤ 0. The last term is bounded from above and below by4

ρR :=

∫
|x|∼R

|η|2

R2
dx . ‖∇η‖22 = ‖ν‖22. (3.12)

In short, we have

QN(t) ≤ ‖ν‖22 +O(ρR(t)). (3.13)

ρR(t) → 0 as R → ∞ for each fixed t, but some uniform decay is needed for the
main term V̇∞(t) = 4K + ‖ν‖22+(1− d)〈ν||u|2〉 to absorb the error. For that we use
the equation of η:

(i∂t + αD)η = D−1(i∂t + αD)(N − |u|2) = −iD−1|u|2t , (3.14)

4Such an error term does not occur in Merle’s virial identity [16]. This is a disadvantage of our
identity. Nevertheless we can dispose of it using the evolution equation.
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and the corresponding integral equation

η = η0 + η1, η0 := eiαDtη(0),

η1 := −
∫ t

0

eiαD(t−s)D−1|u(s)|2sds = η2 + η3 + η4,

η2 := D−1[eiαDt|u(0)|2 − |u(t)|2],

η3 := iα

∫ (t−1)+

0

eiαD(t−s)|u(s)|2ds, η4 := iα

∫ t

(t−1)+

eiαD(t−s)|u(s)|2ds.

(3.15)

We use the above equation only for very low frequency. More precisely, with a small
parameter 0 < δ < 1 independent of t, decompose η smoothly in the Fourier space

η = η<δ + η>δ, η<δ := F−1ψδFη, (3.16)

then we have ‖η>δ‖2 ≤ δ−1‖ν‖2. For the low frequency part, we have

‖η0<δ‖Ḣ1 = ‖ν<δ(0)‖L2 ,

‖η2<δ‖Ḣ−1/2+ . ‖|u(0)|2‖L1 + ‖|u(t)|2‖L1 . ‖u(0)‖22,
‖η4<δ‖Ḣ−3/2+ . α‖|u|2‖L∞

t L1
x
. α‖u(0)‖22,

‖η3<δ‖L4 . δ1/2‖η3<δ‖Ḃ−1/2
4,∞

. δ1/2‖η3<δ‖
1/2

Ḃ−2
∞,∞

‖η3<δ‖
1/2

Ḣ1 ,

(3.17)

and by the L∞ decay of the wave equation,

‖η3<δ‖Ḃ−2
∞,∞

.
∫ (t−1)+

0

1

|t− s|
‖u(s)‖22ds . ‖u(0)‖22 log(t+ 1). (3.18)

Thus we obtain

‖η1<δ‖L∞
t (0,T ;L4

x)
. ‖u(0)‖22δ log(T + 2) + ‖ν‖2L∞

t (0,T ;L2
x)
, (3.19)

and so

sup
0<t<T

ρR(t) .‖ν<δ(0)‖22 +R−1/2[‖u(0)‖22δ log(T + 2) + ‖ν‖2L∞
t (0,T ;L2

x)
]

+ (δR)−2‖ν‖2L∞
t (0,T ;L2

x)
.

(3.20)

Next we estimate the cubic cross terms
CC = CC1 + CC2 + CC3,

CC1 := −2〈νu|A0Xu+XA0u〉 = −2〈ν|(rψ′
R +XAd)|u|2〉,

CC2 :=
1

2
〈ν|(XA1 + A1X)|u|2〉 = 〈ν|(XA1 + rψ′

R/2)|u|2〉,

CC3 :=
1

2
〈ν|(DXD−1A1 + A1DXD

−1)|u|2〉.

(3.21)

For the last term we use the commuting relations:

A1DXD
−1 = DA−1XD

−1 = D(XA−1 + rψ′
R)D

−1

= DXD−1A1 +Drψ′
RD

−1,
(3.22)

and so

CC3 = 〈ν|(XA1 + rψ′
R/2)|u|2〉+ CC ′

3,

CC ′
3 := 〈ν|([D,X]D−1A1 + [D, rψ′

R]D
−1/2)|u|2〉.

(3.23)
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Hence

CC = (1− d)〈ν||u|2〉+ 〈ν|[(1− d)(ψR − 1)− rψ′
R]|u|2〉+ CC ′

3, (3.24)

and the second term on the right is bounded by∫
|x|&R

|νu2|dx . ‖ν‖2‖u‖2‖u‖L∞(|x|&R) . R−1‖ν‖2‖u‖3/22 ‖∇u‖1/22 , (3.25)

since the functions in the brackets [] vanish on |x| . R. We used the radial Sobolev
inequality

ϕ(x) = ϕ(|x|) ∈ H1(R3) =⇒ ‖rϕ‖L∞(R3) . ‖ϕ‖1/22 ‖∇ϕ‖1/22 . (3.26)

For the commutator terms CC ′
3, we use the elementary commutator estimate5

‖[D, f ]g‖L2 . ‖F(∇f)‖L1‖g‖L2 , (3.27)

together with the (radial/nonradial) Sobolev

‖xu2‖2 ≤ ‖xu‖∞‖u‖2 . ‖u‖3/22 ‖∇u‖1/22 ,

‖D−1|u|2‖2 . ‖|u|2‖6/5 ≤ ‖u‖2‖u‖3 . ‖u‖3/22 ‖∇u‖1/22 .
(3.28)

Since ‖F(∇ψR)‖1 = CR−1, we thus obtain

|CC ′
3| . ‖ν‖2R−1[‖D−1∇ · x|u|2‖2 + ‖D−1|u|2‖2] . R−1‖ν‖2‖u‖3/22 ‖∇u‖1/22 . (3.29)

In short, we have obtained

CC = (1− d)〈ν||u|2〉+O(R−1‖ν‖2‖u‖3/22 ‖∇u‖1/22 ). (3.30)

Finally we estimate the NLS part

NS/2 = 〈−∆u− |u|2u|A0Xu+XA0u〉
= 〈∇u|∇(A0X +XA0)u〉 − 〈rψ′

R||u|4〉 − 〈ψR|(r∂r/2 + d)|u|4〉
=: NS1 +NS2 +NS3.

(3.31)

For the first term NS1 we use

∇(A0X +XA0) = A2∇X +X∇A0 + [∇ψR]A0

= A2X∇+ A2[∇ψR] +XA2∇+ [∇ψR]A0

= (A2X +XA2)∇+ 2[∇ψR]r∂r + [A2+d∇ψR],

(3.32)

where the bracket denotes the multiplication with the inside function. Using A∗
0 =

−A0 as well, we obtain

NS1 = 〈∇u|2X∇u〉+ 2〈ur|ψ′
Rrur〉+

1

2
〈∇|u|2|A2+d∇ψR〉. (3.33)

Since ψR ≤ 1 and ψ′
R ≤ 0, the first term is less than 2‖∇u‖22 and the second is

nonpositive. The last term equals

−1

2
〈|u|2|Ad∆ψR〉 . ‖u‖22‖Ad∆ψR‖∞ . R−2‖u‖22. (3.34)

5This follows from Plancherel: ‖[D, f ]g‖2 ∼ ‖[|ξ|, f̂∗]ĝ‖2 ≤ ‖(|ξ||f̂ |) ∗ |ĝ|‖2 ≤ ‖ξf̂‖1‖ĝ‖2.
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The quartic terms equal

NS2 +NS3 = −1

2
〈(r∂r + d)ψR||u|4〉 = −d

2
‖u‖44 −

1

2
〈rψ′

R + d(ψR − 1)||u|4〉, (3.35)

and the last term is bounded by

‖u‖4L4(|x|&R) ≤ ‖u‖22‖u‖2L∞(|x|&R) . R−2‖u‖32‖∇u‖2, (3.36)

using the radial Sobolev inequality. In short, we have obtained

NS/2 ≤ 2K(u) +O(R−2‖u‖32‖∇u‖2). (3.37)

Gathering the above estimates on QN , CC and NS, we obtain

V̇R ≤ 4K(u) + ‖ν‖22 + (1− d)〈ν||u|2〉+O(ρR)

+O(R−1‖ν‖2‖u‖3/22 ‖∇u‖1/22 ) +O(R−2‖u‖32‖∇u‖2),
(3.38)

and

sup
0<t<T

ρR .‖ν<δ(0)‖22 +R−1/2[‖u(0)‖22δ log(T + 2) + ‖ν‖2L∞
t (0,T ;L2

x)
]

+ (δR)−2‖ν‖2L∞
t (0,T ;L2

x)
.

(3.39)

Also we have

|VR| . R[‖u‖2‖∇u‖2 + ‖N‖22]. (3.40)

Now suppose for contradiction that

sup
t>0

‖u(t)‖H1
x
+ ‖N(t)‖L2

x
≤M ∈ [1,∞), (3.41)

then ‖ν‖L2
x
.M2 and |VR| . RM2. The variational lemma 2.4 provides us with an

upper bound

V̇∞ = 4K(u) + ‖ν‖22 + (1− d)〈ν||u|2〉 ≤ −κ, (3.42)

with d = 3 and κ := 4[Jλ(Qλ)−EZ(v)− λ2M(u)] > 0, choosing ν̃2 = ‖ν‖22 + κ. We
can first choose 0 < δ � 1 so small that ‖ν<δ(0)‖22 � κ. Secondly we can choose
R � 1 so large that

R−1/2M2δ log(RM2/(δκ)) � κ, (R−1/2 + (δR)−2)M4 � κ, (3.43)

where log(RM2/(δκ)) may be replaced with (RM2/(δκ))1/6 for example. Then for

0 < t < RM2/δκ =: T , we have V̇R ≤ −κ/2, and so |VR(T )−VR(0)| ≥ κT/2 = RM2

2δ
,

which is contradicting the above bound on |VR|.

4. Concentration-compactness procedure

It remains to prove the scattering in part (a) of Theorem 1.1. Thanks to the
variational estimates in Section 2, we can proceed as Kenig-Merle. For each 0 ≤
a ≤ J(Q) and λ > 0, let

Eλ(f, g) := λ−1EZ(f, g) + λM(f),

K+
λ (a) := {(f, g) ∈ H1

r × L2
r | Eλ(f, g) < a, K(f) ≥ 0},

Sλ(a) := sup{‖(u,N)‖S | (u(0), N(0)) ∈ K+
λ (a), (u,N) sol.},

(4.1)
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where S denotes a norm containing almost all the Strichartz norms for radial free
solutions, including L∞

t (H1×L2). See (4.25) for the precise definition. For any time
interval I, we will denote by S(I) the restriction of S onto I.

From Corollary 2.3 we already know that all solutions starting from K+
λ (a) stays

there globally in time. What we want to prove is the uniform scattering below the
ground state energy, i.e. Sλ(a) <∞ for all a < J(Q). Let

E∗
λ := sup{a > 0 | Sλ(a) <∞}. (4.2)

The small data scattering in [7] implies that E∗
λ > 0, and the existence of the ground

state soliton implies that E∗
λ ≤ J(Q). We will prove E∗

λ = J(Q) by contradiction,
and thus finish the proof of Theorem 1.1 (a). The main result in this section is

Lemma 4.1 (Existence of critical element). Suppose E∗
λ < J(Q), then there is a

global solution (u,N) in K+
λ (a) satisfying

Eλ(u,N) = E∗
λ, ‖(u,N)‖S(−∞,0) = ‖(u,N)‖S(0,∞) = ∞. (4.3)

Moreover, {(u,N)(t) | t ∈ R} is precompact in H1
x × L2

x.

We will prove this lemma by following the concentration-compactness procedure.
The main difference from NLS is that we need to work with the solutions after
the normal form transform. In particular, we have some nonlinear terms without
time integration (or the Duhamel form). Besides that, we have various different
interactions, for which we need to use different norms or exponents.

4.1. Profiles for the radial Zakharov. First we recall the free profile decompo-
sition of Bahouri-Gérard type [1]. Actually we do not need its full power, as we can
freeze scaling and space positions of the profiles thanks to the radial symmetry and
the regularity room of our problem. Hence the setting is essentially the same as the
NLS case [10].

Lemma 4.2. For any bounded sequence (fn, gn) in H
1
r ×L2

r, there is a subsequence
(f ′

n, g
′
n), J̄ ∈ N∪ {∞}, a bounded sequence {f j,gj}1≤j<J̄ in H1

r ×L2
r, and sequences

{tjn}n∈N,1≤j<J̄ ⊂ R, such that the following holds. For any 0 ≤ j ≤ J < J̄ , let

un(t) := e−it∆f ′
n, Nn(t) := eitαDg′n,

uj
n(t) := e−i(t−tjn)∆f j, Nj

n(t) := ei(t−tjn)αDgj,

u>J
n := un −

J∑
j=1

uj
n, N>J

n := Nn −
J∑

j=1

Nj
n.

(4.4)

Then for any j, k ∈ {1 . . . J}, we have tj∞ := limn→∞ tjn ∈ {0,±∞},
j 6= k =⇒ lim

n→∞
|tjn − tkn| = ∞, (4.5)

(u>J
n , N>J

n )(tjn) → 0 weakly in H1 × L2as n→ ∞,

(u>J
n , N>J

n )(0) → 0 weakly in H1 × L2as n→ ∞,
(4.6)

and for any δ > 0,

lim
J→J̄

lim sup
n→∞

[‖u>J
n ‖

L∞
t B

−1/2−δ
∞

+ ‖N>J
n ‖

L∞
t (Ḃ

−3/2−δ
∞ +Ḃ

−3/2+δ
∞ )

] = 0. (4.7)
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Remark 4.1. 1) (4.5)–(4.6) implies the linear orthogonality

lim
n→∞

‖un(0)‖2H1 −
J∑

j=1

‖uj
n(0)‖2H1 − ‖u>J

n (0)‖2H1 = 0,

lim
n→∞

M(un(0))−
J∑

j=1

M(uj
n(0))−M(u>J

n (0)) = 0,

lim
n→∞

‖Nn(0)‖2L2 −
J∑

j=1

‖Nj
n(0)‖2L2 − ‖N>J

n (0)‖2L2 = 0,

(4.8)

as well as the nonlinear orthogonality

lim
n→∞

‖un(0)‖4L4 −
J∑

j=1

‖uj
n(0)‖4L4 − ‖u>J

n (0)‖4L4 = 0,

lim
n→∞

ES(un(0))−
J∑

j=1

ES(u
j
n(0))− ES(u

>J
n (0)) = 0,

lim
n→∞

K(un(0))−
J∑

j=1

K(uj
n(0))−K(u>J

n (0)) = 0,

lim
n→∞

EZ(un(0), Nn(0))−
J∑

j=1

EZ(u
j
n(0),N

j
n(0))− EZ(u

>J
n (0), N>J

n (0)) = 0.

(4.9)

The same orthogonality holds also along t = tjn instead of t = 0.

2) The norms in (4.7) are related to the Sobolev embedding L2 ⊂ Ḃ
−3/2
∞ . Inter-

polation with the Strichartz estimate extends the smallness to any Strichartz norms
as far as the exponents are not sharp either in Lp or in regularity (including the low
frequency of N).

We call such a sequence of free solutions {(uj
n,N

j
n)}n∈N a free concentrating wave.

Now we introduce the nonlinear profile associated to a free concentrating wave

(un(t),Nn(t)) = U(t− tn)(f ,g), t∞ = lim
n→∞

tn ∈ {0,±∞}, (4.10)

where U(t) = e−it∆ ⊕ eitαD denotes the free propagator. With it, we associate the
nonlinear profile (u,N), defined as the solution of the Zakharov system satisfying

(u,N) = U(t)(f ,g) +

∫ t

−t∞

U(t− s)(nu, αD|u|2)(s)ds, (4.11)

which is obtained by solving the initial data problem (if t∞ = 0) or by solving the
final data problem (if t∞ = ±∞). When t∞ = ±∞, the existence of wave operators
will be given at the end of this paper as appendix .

We call (un(t),Nn(t)) := (u(t − tn),N(t − tn)) the nonlinear concentrating wave
associated with (un(t),Nn(t)). By the above construction we have

‖(un,Nn)(0)− (un,Nn)(0)‖H1×L2

= ‖(u,N)(−tn)− U(−tn)(f ,g)‖H1×L2 → 0.
(4.12)
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Given a sequence of solutions to the Zakharov system with bounded initial data, we
can apply the free profile decomposition Lemma 4.2 to the sequence of initial data,
and associate a nonlinear profile with each free concentrating wave. If all nonlinear
profiles are scattering and the remainder is small enough, then we can conclude that
the original sequence of nonlinear solutions is also scattering with a global Strichartz
bound. More precisely, we have

Lemma 4.3. For each free concentrating wave (uj
n,N

j
n) in Lemma 4.2, let (ujn,N

j
n)

be the associated nonlinear concentrating wave. Let (un, Nn) be the sequence of
nonlinear solutions with (un, Nn)(0) = (fn, gn). If ‖(ujn,Nj

n)‖S(0,∞) < ∞ for all
j < J̄ , then

lim sup
n→∞

‖(un, Nn)‖S(0,∞) <∞. (4.13)

To prove Lemma 4.3, we need some global stability. In the next subsection, we
will refine the normal form reduction and the nonlinear estimates that was used in
[7], and then prove Lemma 4.3 and Lemma 4.1.

4.2. Nonlinear estimates with small non-sharp norms. In order to obtain the
nonlinear profile decomposition, we need that the non-sharp smallness (4.7) is suffi-
cient to reduce the nonlinear interactions globally. The idea is to use interpolation,
thus we need to do some refined estimates than in [7], more precisely, to avoid using
the sharp (or endpoint) norms with L2

t or L∞
t .

4.2.1. Modifying the nonresonant part. The first problem in following the Strichartz
analysis in [7] is the L2

t -type norms. In fact, one can observe that the use of L2
t -type

Strichartz norm for N is inevitable for the low-high interactions of nu in very low
frequencies, since the regularity exponent becomes bigger than that for the dual
Schrödinger admissible exponent as we move the Strichartz norm of N to L2+

t .
However, this problem can be avoided by applying the normal form to those

interactions. In fact, there is no resonance in very low frequencies because

−|ξ|2 ± α|ξ − η|+ |η|2 ∼ α|ξ − η| (4.14)

when all of |ξ|, |ξ− η|, |η| are small. Hence we include them into the “non-resonant”
interactions, which are integrated in time before the Strichartz estimate.

The second problem is that our solution is no longer small, so the nonlinear terms
without time integration (i.e. the boundary terms from the partial integration)
do not contain any small factor for the perturbation argument. To overcome this
difficulty, we shrink the “non-resonant” part to either higher or lower frequencies,
for which we gain a small factor, depending on the frequencies, from the regularity
room. Hence our decomposition into the “resonant” and “non-resonant” interactions
depends on the solution size.

Thus we are lead to divide the bilinear interactions nu and |u|2 as follows. Let
u =

∑
k∈Z Pku be the standard homogeneous Littlewood-Paley decomposition such
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that suppFPku ⊂ {2k−1 < |ξ| < 2k+1}. For a parameter β ≥ 5 + | log2 α|, let
XL := {(j, k) ∈ Z2 | j ≥ max(k + 5, β)},
RL := {(j, k) ∈ Z2 | |j| < β and k ≤ max(j − 5,−β)},
LL := {(j, k) ∈ Z2 | max(j, k) ≤ −β},
LH := {(j, k) ∈ Z2 | k > max(j − 5,−β)},
HH := {(j, k) ∈ Z2 | |j − k| < 5 and max(j, k) ≥ β},
RR := {(j, k) ∈ Z2 | max(j, k) < β},

(4.15)

and LX := {(k, j) | (j, k) ∈ XL}. Then
Z2 = (XL ∪ LL) ∪ (RL ∪ LH) = (XL ∪ LX) ∪ (HH ∪RR), (4.16)

where all the unions are disjoint. For any set A ⊂ Z2, and any functions f(x), g(x),
we denote the bilinear frequency cut-off to A by

(fg)A = F−1

∫
PAf̂(ξ − η)ĝ(η)dη :=

∑
(j,k)∈A

(Pjf)(Pkg). (4.17)

For the nonlinear term nu, we apply the time integration by parts on XL ∪ LL,
where the phase factor ω = −|ξ|2 ± α|ξ − η|+ |η|2 is estimated

|ω| ∼ |ξ − η|〈ξ − η〉 ∼ |ξ − η|〈ξ〉, (4.18)

which is gained in the bilinear operator

Ω±(f, g) := F−1

∫
PXL∪LL

f̂(ξ − η)ĝ(η)

−|ξ|2 ± α|ξ − η|+ |η|2
dη,

Ω(f, g) :=
1

2
{Ω+(f, g) + Ω−(f, g)}

(4.19)

For the nonlinear term uū, we integrate by parts on XL ∪ LX. Then we get a
bilinear operator of the form

Ω̃(f, g) := F−1

∫
PXL∪LX

f̂(ξ − η)ˆ̄g(η)

|ξ − η|2 − |η|2 − α|ξ|
dη. (4.20)

After this modification of the normal form, we can rewrite the integral equation
for (1.4) as follows. Let

~u := (u,N), ~u0 := U(t)~u(0) = (e−it∆u(0), eitαDN(0)). (4.21)

For the fixed free solution ~u0, the iteration ~u′ 7→ ~u is given by

~u = ~u0 − U(t)B(~u(0), ~u(0)) +B(~u′, ~u′) +Q(~u′, ~u′) + T (~u′, ~u′, ~u′), (4.22)

where the bilinear forms B,Q and the trilinear form T are defined by

B(~u1, ~u2) :=(Ω(N1, u2), DΩ̃(u1, u2)),

Q(~u1, ~u2) :=

∫ t

0

U(t− s)((n1u2)LH∪RL, D(u1u2)HH∪RR)(s)ds,

T (~u1, ~u2, ~u3) :=

∫ t

0

U(t− s)(Ω(D(u1u2), u3) + Ω(N1, n2u3), DΩ̃(u1, n2u3))(s)ds.
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For brevity, we denote

NL(~u1, ~u2, ~u3) :=B(~u1, ~u2) +Q(~u1, ~u2) + T (~u1, ~u2, ~u3), NL(~u) := NL(~u, ~u),

B(~u) :=B(~u, ~u), Q(~u) := Q(~u, ~u), T (~u) := T (~u, ~u, ~u).

We can estimate each term in the Duhamel formula using some powers of Strichartz
norms with non-sharp exponents. For brevity of Hölder-type estimates, we denote
the space-time norms by

(b, d, s) := L
1/b
t Ḃs

1/d,2,

(b, d± ε, s)+ := (b, d+ ε, s) + (b, d− ε, s),

(b, d± ε, s)∩ := (b, d+ ε, s) ∩ (b, d− ε, s).

(4.23)

Using the above notation, we introduce nearly full sets of the radial Strichartz norms
for the Schrödinger and the wave equations (cf. [8]). Fix small numbers

0 < κ� ε� 1, (4.24)

and let

SS := 〈D〉−1[(0,
1

2
, 0) ∩ (

1

2
,
3

10
− κ

3
,
2

5
− κ)],

SW := (0,
1

2
, 0) ∩ (

1

2
,
1

4
− κ

3
,−1

4
− κ), S := SS × SW.

(4.25)

Also we denote the smallness in (4.7) by using

‖u‖X := ‖u‖
L∞
t (B

− 1
2−δ

∞ )
, ‖n‖Y := ‖n‖

L∞
t (Ḃ

− 3
2−δ

∞ +Ḃ
− 3

2+δ
∞ )

, Z := X × Y. (4.26)

In the nonlinear terms, we should choose appropriate Strichartz exponents so that
all can be controlled by interpolation between S and Z. For that purpose, we will
choose (b, d, s) for u and N respectively to be Hs admissible with 0 < s < 1 and
L2 admissible for radial functions. Moreover, b < 1/2 and (b, d) 6= (0, 1/2). Besides
that, we will use the sum space6 with small ε > 0 for N and the intersection for
u, so that we can dispose of very low or high frequencies, and sum over the dyadic
decomposition without any difficulty.

4.2.2. Bare bilinear terms. First consider the bilinear terms which do not contain
the time integration, namely the boundary term in the transform. In the equation
for u, Ω(n, u) is roughly like 〈D〉−1(D−1n)u for each dyadic piece.

Lemma 4.4. (a) There exists θ > 0 such that for any N and u, we have

‖Ω(n, u)‖L∞H1 .2−θβ‖u‖1−θ
SS ‖n‖1−θ

SW ‖n‖θY ‖u‖θX , (4.27)

‖Ω(n, u)‖SS .2−θβ‖u‖1−θ
SS ‖n‖1−θ

SW ‖n‖θY ‖u‖θX . (4.28)

(b) There exists θ > 0 such that for any u and u′, we have

‖DΩ̃(u, u′)‖L∞L2 .2−θβ‖u‖1−θ
SS ‖u′‖1−θ

SS ‖u‖θX‖u′‖θX , (4.29)

‖DΩ̃(u, u′)‖SW .2−θβ‖u‖1−θ
SS ‖u′‖1−θ

SS ‖u‖θX‖u′‖θX . (4.30)

6This is because N(0) ∈ L2 while u(0) ∈ H1 = L2 ∩ Ḣ1.
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Proof. (a) By the Coifman-Meyer-type bilinear estimate on dyadic pieces (see [7,
Lemma 3.5]), we have for (j, k) ∈ XL,

‖Ω(nj, uk)‖L∞H1 . ‖D−1nj‖(0, 1
5
±ε,0)+

‖uk‖(0, 3
10

±ε,0)∩

. 2−β/10‖D−1nj‖(0, 1
5
±ε, 1

10
)+
‖uk‖(0, 3

10
±ε,0)∩ ,

and for (j, k) ∈ LL,

‖Ω(nj, uk)‖L∞H1 . ‖D−1nj‖(0, 2
15

±ε,0)+
‖uk‖(0, 11

30
±ε,0)∩

. 2−β/10‖D−1nj‖(0, 2
15

±ε,− 1
10

)+
‖uk‖(0, 11

30
±ε,0)∩ .

Since the right hand side is bounded by ‖n‖L∞L2‖u‖L∞H1 via non-sharp Sobolev
embedding, we obtain, after summation over dyadic decomposition,

‖Ω(n, u)‖L∞H1 . 2−β/10‖u‖1−θ
SS ‖n‖1−θ

SW ‖n‖θY ‖u‖θX , (4.31)

for some small θ > 0. Similarly we have, for (j, k) ∈ XL,

‖Ω(nj, uk)‖〈D〉−1( 1
2
, 3
10

−κ
3
, 2
5
−κ) . ‖D−1nj‖( 1

4
, 7
30

−κ
3
±ε, 2

5
−κ)+

‖uk‖( 1
4
, 1
15

±ε,0)∩

. 2−β/20‖D−1nj‖( 1
4
, 7
30

−κ
3
±ε, 9

20
−κ)+

‖uk‖( 1
4
, 1
15

±ε,0)∩ ,
(4.32)

and for (j, k) ∈ LL,

‖Ω(nj, uk)‖〈D〉−1( 1
2
, 3
10

−κ
3
,0) . ‖D−1nj‖( 1

4
, 1
15

−κ
3
±ε,0)+

‖uk‖( 1
4
, 7
30

±ε,0)∩

. 2−β/20‖D−1nj‖( 1
4
, 1
15

−κ
3
±ε,− 1

20
)+
‖uk‖( 1

4
, 7
30

±ε,0)∩

(4.33)

Hence in either case we can control by non-sharp norms, so

‖Ω(n, u)‖SS . 2−β/20‖u‖1−θ
SS ‖n‖1−θ

SW ‖n‖θY ‖u‖θX . (4.34)

(b) We may assume (j, k) ∈ XL, since the other case LX is treated in the same

way. Similarly to the above, we have DΩ̃(fj, gk) ∼ 〈D〉−1(fjgk), so

‖DΩ̃(uj, u
′
k)‖L∞L2 . ‖〈D〉DΩ̃(uj, u

′
k)‖L∞(L2+L6/5)

. ‖uj‖(0, 1
3
±ε,0)+

‖u′k‖(0, 1
3
±ε,0)+

. 2−β/10‖uj‖(0, 1
3
±ε, 1

10
)+
‖u′k‖(0, 1

3
±ε,0)+

,

(4.35)

hence

‖DΩ̃(u, u′)‖L∞L2 . 2−β/10‖u‖1−θ
SS ‖u′‖1−θ

SS ‖u‖θX‖u′‖θX . (4.36)

Similarly,

‖DΩ̃(uj, u
′
k)‖( 1

2
, 1
4
−κ

3
,− 1

4
−κ) . ‖〈D〉DΩ̃(uj, u

′
k)‖( 1

2
, 2
3
,0)

. 2−β/10‖uj‖( 1
4
, 1
3
, 1
10

)‖u′k‖( 1
4
, 1
3
,0),

(4.37)

and so

‖DΩ̃(u, u′)‖SW . 2−β/10‖u‖1−θ
SS ‖u′‖1−θ

SS ‖u‖θX‖u′‖θX . (4.38)

Thus the proof is completed. �
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4.2.3. Duhamel bilinear terms. Next we consider the remaining bilinear terms in
the Duhamel form after the normal form transform. Here we have to use the radial
improvement of the Strichartz norms. For brevity, we denote the integrals in the
Duhamel formula by

Iuf :=

∫ t

0

e−i(t−s)∆f(s)ds, INf :=

∫ t

0

ei(t−s)αDf(s)ds. (4.39)

Lemma 4.5. (a) There exists θ > 0 and C(β) > 1 such that for any N and u, we
have

‖Iu(nu)LH‖SS ≤C(β)‖u‖1−θ
SS ‖n‖1−θ

SW ‖n‖θY ‖u‖θX ,
‖Iu(nu)RL‖SS ≤C(β)‖u‖1−θ

SS ‖n‖1−θ
SW ‖n‖θY ‖u‖θX .

(b) There exists θ > 0 and C(β) > 1 such that for any u and u′, we have

‖IND(uu′)HH‖SW ≤C(β)‖u‖1−θ
SS ‖u′‖1−θ

SS ‖u‖θX‖u′‖θX ,
‖IND(uu′)RR‖SW ≤C(β)‖u‖1−θ

SS ‖u′‖1−θ
SS ‖u‖θX‖u′‖θX .

Proof. In this proof we ignore the dependence of the constants on β.
(a) For (j, k) ∈ LH, we have for 0 ≤ s ≤ 1,

‖njuk‖(1−2ε, 1
2
+2ε,s+2ε) . ‖nj‖( 1

2
−ε, 1

4
± ε

3
,− 1

4
−ε)+

‖uk‖( 1
2
−ε, 1

4
+2ε± ε

3
,s+ 1

4
+3ε)∩

. ‖nj‖( 1
2
−ε, 1

4
± ε

3
,− 1

4
−ε)+

‖uk‖( 1
2
−ε, 1

4
+2ε± ε

3
, 5
4
+3ε)∩ ,

(4.40)

where in the second inequality we used that k is bounded from below. Since the
left hand side is Ḣs-admissible norm for the Strichartz estimate (without the radial
symmetry), we obtain the full Strichartz bound in H1.

For (j, k) ∈ RL, we may neglect the regularity of nj and the product, since their
frequencies are bounded from above and below. Using the radial improved Strichartz
[8], the full H1 Strichartz norm is bounded by

‖njuk‖( 1
2
+2ε, 3

4
−3ε,0) . ‖nj‖( 1

2
−ε, 1

4
,0)‖uk‖(3ε, 1

2
−3ε,0). (4.41)

Summing these estimates over dyadic pieces in the specified regions, and using
non-sharp Sobolev embedding and interpolation, we obtain

‖Iu(nu)LH‖SS . ‖u‖1−θ
SS ‖n‖1−θ

SW ‖n‖θY ‖u‖θX ,
‖Iu(nu)RL‖SS . ‖u‖1−θ

SS ‖n‖1−θ
SW ‖n‖θY ‖u‖θX .

(4.42)

(b) We consider only the case j ≥ k for uju
′
k, since the other case is treated in

the same way. For (j, k) ∈ HH,

‖uju′k‖(1−ε, 1
2
+ 2

3
ε,1+ε) . ‖uj‖( 1

2
− ε

2
, 1
4
+ ε

3
, 1
2
+ ε

2
)‖u′k‖( 1

2
− ε

2
, 1
4
+ ε

3
, 1
2
+ ε

2
), (4.43)

and in the case (j, k) ∈ RR, since j is bounded from above,

‖uju′k‖( 1
2
+ε, 3

4
, 5
4
+ε) . ‖uj‖( 1

2
−ε, 1

4
+2ε, 5

4
+ε)‖u′k‖(2ε, 1

2
−2ε,0)

. ‖uj‖( 1
2
−ε, 1

4
+2ε, 1

2
)‖u′k‖(2ε, 1

2
−2ε,0).

(4.44)

Hence

‖D(uu′)HH‖(1−ε, 1
2
+ 2

3
ε,ε) . ‖u‖1−θ

SS ‖u′‖1−θ
SS ‖u‖θX‖u′‖θX ,

‖D(uu′)RR‖( 1
2
+ε, 3

4
, 1
4
+ε) . ‖u‖1−θ

SS ‖u′‖1−θ
SS ‖u‖θX‖u′‖θX .

(4.45)
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The left hand sides are L2-admissible norms for radial functions. Thus the proof is
completed by the radial improved Strichartz [8]. �

4.2.4. Duhamel trilinear terms. Finally we estimate the trilinear terms which appear
after the normal transform. These are supposedly the easiest, but there is a small
complication due to the fact that we have to use negative Sobolev spaces for N in
some of the products:

‖fg‖Ḃ−s
r,2

. ‖f‖Ḃ−s
p,2
‖g‖Ḃs

q,2

0 ≤ s < 3/q, 1/r = 1/p+ 1/q − s/3.
(4.46)

In the next lemma, the constant may decay as β → ∞, but we do not need it.

Lemma 4.6. (a) There exists θ > 0 such that for any u, v, w, n, n′, we have

‖IuΩ(D(uv), w)‖SS .‖u‖1−θ
SS ‖v‖1−θ

SS ‖w‖1−θ
SS ‖u‖θX‖v‖θX‖w‖θX .

‖IuΩ(n, n′u)‖SS .‖n‖1−θ
SW ‖n′‖1−θ

SW ‖u‖1−θ
SS ‖n‖θY ‖n′‖θY ‖u‖θX .

(b) There exists θ > 0 such that for any n, u, u′, we have

‖INDΩ̃(nu, u′)‖SW + ‖INDΩ̃(u, nu′)‖SW . ‖n‖1−θ
SW ‖u‖1−θ

SS ‖u′‖1−θ
SS ‖n‖θY ‖u‖θX‖u′‖θX .

Proof. (a) Since Ω(D(uv)j, wk) ∼ 〈D〉−1((uv)jwk),

‖Ω(D(uv)j, wk)‖L1H1 . ‖u‖L3L6‖v‖L3L6‖w‖L3L6 , (4.47)

and by non-sharp Sobolev embedding and interpolation,

‖Ω(D(uv), w)‖L1H1 . ‖u‖1−θ
SS ‖v‖1−θ

SS ‖w‖1−θ
SS ‖u‖θX‖v‖θX‖w‖θX . (4.48)

For Ω(nj, (n
′u)k), we have either 2j � 2k or 2j + 2k � 1. In the first case, we have

‖Ω(nj, (n
′u)k)‖L1H1 . ‖D−1+5εnj‖( 1

2
−ε,2ε± ε

6
,0)+

‖D−5ε(n′u)k‖( 1
2
+ε, 1

2
−2ε± ε

6
,0)∩

. ‖nj‖( 1
2
−ε,2ε± ε

6
,−1+5ε)+

‖n′‖(2ε, 1
2
− 7

3
ε± ε

6
,−5ε)+

‖u‖( 1
2
−ε,2ε± ε

3
,5ε)∩ ,

(4.49)

where we used the product estimate for negative Sobolev spaces for n′u. In the
second case 2j + 2k � 1, we have

‖Ω(nj, (n
′u)k)‖L1H1 . ‖D−1nj‖( 1

2
−ε, ε

3
± ε

6
,0)+

‖(n′u)k‖( 1
2
+ε, 1

2
− ε

3
± ε

6
,0)∩

. ‖nj‖( 1
2
−ε, ε

3
± ε

6
,−1)+

‖n′‖(2ε, 1
2
− 7

3
ε± ε

6
,−5ε)+

‖u‖( 1
2
−ε, 11

3
ε± ε

3
,5ε)∩ .

(4.50)

Hence, by non-sharp Sobolev embedding and interpolation,

‖Ω(n, n′u)‖L1H1 . ‖n‖1−θ
SW ‖n′‖1−θ

SW ‖u‖1−θ
SS ‖n‖θY ‖n′‖θY ‖u‖θX . (4.51)

(b) We have DΩ̃ ∼ 〈D〉−1 on each dyadic piece, so

‖DΩ̃((nu)j, u
′
k)‖L1L2 . ‖〈D〉DΩ̃((nu)j, u

′
k)‖(1, 5

6
− 5

3
ε,−5ε)

. ‖(nu)j‖( 1
2
+ε, 2

3
−ε,−5ε)‖u′k‖( 1

2
−ε, 1

6
+ε,5ε)

. ‖n‖(2ε, 1
2
− 7

3
ε± ε

6
,−5ε)+

‖u‖( 1
2
−ε, 1

6
+ε± ε

6
,5ε)∩‖u

′
k‖( 1

2
−ε, 1

6
+ε,5ε),

(4.52)
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where we used the product estimate twice, but did not use any restriction on j, k.

Hence we have the same estimate on Ω̃(uj, (n
′u)k), and so

‖DΩ̃(nu, u′)‖L1L2 + ‖DΩ̃(u, nu′)‖L1L2

. ‖n‖1−θ
SW ‖u‖1−θ

SS ‖u′‖1−θ
SS ‖n‖θY ‖u‖θX‖u′‖θX .

(4.53)

Thus, the proof is completed. �

Note that in the above estimates we needed the L∞
t -type norms only for the bare

bilinear terms, but not for the Duhamel terms. Thus we have obtained

Lemma 4.7. There exist θ > 0, η > 0 and C(β) > 1 such that for each β � 1 and
any ~u1, ~u2, ~u3, we have

2θβ‖B(~u1, ~u2)‖S + ‖Q(~u1, ~u2)‖S/C(β) . ‖~u1‖1−θ
S ‖~u2‖1−θ

S ‖~u1‖θZ‖~u2‖θZ ,
‖T (~u1, ~u2, ~u3)‖S . ‖~u1‖1−θ

S ‖~u2‖1−θ
S ‖~u3‖1−θ

S ‖~u1‖θZ‖~u2‖θZ‖~u3‖θZ .
(4.54)

For the Duhamel terms we have also

‖Q(~u1, ~u2)‖S . C(β)‖~u1‖S̃‖~u2‖S̃,
‖T (~u1, ~u2, ~u3)‖S . ‖~u1‖S̃‖~u2‖S̃‖~u3‖S̃,

(4.55)

where

S̃ := S̃S × S̃W ,

S̃S := 〈D〉−1[(η,
1

2
− 2

5
η,

4

5
η) ∩ (

1

2
,
3

10
− κ

3
,
2

5
− κ)],

S̃W := (η,
1

2
− 1

2
η,−1

4
η) ∩ (

1

2
,
1

4
− κ

3
,−1

4
− κ).

(4.56)

4.3. Nonlinear profile approximation. We will prove Lemma 4.3 by the follow-
ing two lemmas.

Lemma 4.8 (Stability). For any A > 0 and σ > 0, there exists ς > 0 with the fol-
lowing property: Suppose that ~ua satisfies ‖~ua‖S(0,∞) ≤ A and approximately solves
the Zakharov system in the sense that

~ua = U(t)~ua(0)− U(t)B(~ua(0)) +NL(~ua) + ~e

and ‖~e‖S(0,∞) ≤ ς. Then for any initial data ~u(0) satisfying ‖~u(0)−~ua(0)‖H1×L2 < ς,
there is a unique global solution ~u satisfying ‖~u− ~ua‖S(0,∞) < σ.

Proof. Denote ~uB = ~ua − ~u, then ‖~uB(0)‖H1×L2 ≤ ς and

~uB =U(t)~uB(0)− U(t)B(~ua(0)) +NL(~ua) + ~e+ U(t)B(~u(0))−NL(~u). (4.57)

Thus

‖~uB‖S . 2ς + ‖B(~ua)−B(~u)‖S + ‖Q(~ua)−Q(~u)‖S + ‖T (~ua)− T (~u)‖S. (4.58)

Noting that Z ⊃ S, by (4.54) we have

‖B(~ua)−B(~u)‖S ≤ ‖B(~ua, ~uB)‖S + ‖B(~uB, ~ua)‖S + ‖B(~uB, ~uB)‖S
. 2−θβA‖~uB‖S + 2−θβ‖~uB‖2S.
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By (4.55), we have

‖Q(~ua)−Q(~u)‖S ≤C(β)
(
‖~ua‖S̃‖~uB‖S + ‖~uB‖2S

)
,

‖T (~ua)− T (~u)‖S ≤C
(
‖~ua‖2S̃‖~uB‖S + ‖~ua‖S̃‖~uB‖

2
S + ‖~uB‖3S

)
.

(4.59)

So

‖~uB‖S ≤ 2ς + (2−θβCA+ C(β)‖~ua‖S̃ + C‖~ua‖2S̃)‖~uB‖S
+ (2−θβC + C(β) + C‖~ua‖S̃)‖~uB‖

2
S + C‖~uB‖3S.

(4.60)

Choose β = β(A) such that 2−θβCA < 1
4
. Then we subdivide the time interval

[0,∞) into finite subintervals Ij = [tj, tj+1], j = 1, · · · , J , J = J(A, β) such that

C(β)‖~ua‖S̃(Ij) + C‖~ua‖2S̃(Ij) <
1

4
(4.61)

for each j. Let ς = ς(A, σ, β, J) small such that

C(β)82Jς � 1, 82Jς � σ. (4.62)

Then by (4.60) on I1, we have ‖~uB‖S(I1) ≤ 8ς and

‖~uB(t2)‖H1×L2

≤‖U(t2 − t1)~uB(t1)‖H1×L2 + ‖U(t2 − t1)B(~ua(t1))− U(t2 − t1)B(~u(t1))‖H1×L2

+ ‖B(~ua(t2))−B(~u(t2))‖H1×L2 + ‖Q(~ua)−Q(~u)‖S(I1)
+ ‖T (~ua)− T (~u)‖S(I1) + ‖~e‖S(I1)

≤2ς + 4 · 8ς ≤ 82ς.

Using the same analysis as above, we can get ‖~uB‖S(I2) ≤ 83ς. Iterating this for
I2, I3, . . . , IJ , we obtain ‖~ua−~u1‖S . 82Jς � σ, the desired result was obtained. �

With J close to J̄ and large n, our approximate solution is given by

~uJn = (uJn, N
J
n ) :=

J∑
j=1

(ujn,N
j
n) + (u>J

n , N>J
n ). (4.63)

To prove Lemma 4.3, we only need to prove that ~uJn is an approximate solution of
the Zakharov system. In fact, we have

Lemma 4.9. Suppose that ‖(ujn,Nj
n)‖S <∞ for all j < J̄ , then

lim
J→J̄

lim sup
n→∞

‖U(t)B(~uJn(0))−NL(~uJn)−
J∑

j=1

[U(t)B(~ujn(0))−NL(~ujn)]‖S = 0.

Note that ‖(ujn,Nj
n)‖S does not depend on n.

Proof. By triangle inequality, it suffices to show that

lim
n→∞

‖
∑
j≤J

[U(t)B(~ujn(0))−NL(~ujn)]

− [U(t)B(
∑
j≤J

~ujn(0))−NL(
∑
j≤J

~ujn)]‖S = 0,
(4.64)
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and

lim
J→J̄

lim sup
n→∞

‖[U(t)B(~uJn(0))−NL(~uJn)]

− [U(t)B(~uJn(0)− ~u>J
n (0))−NL(~uJn − ~u>J

n )]‖S = 0.
(4.65)

In fact,

L.H.S of (4.64) .
∑
i6=j

(
‖B(~uin,~u

j
n)‖S + ‖Q(~uin,~ujn)‖S

)
+

∑
i6=j or j 6=k

‖T (~uin,~ujn,~ukn)‖S.

For each i 6= j, we have |tin − tjn| → ∞. for the subsequence tin − tjn → ∞, we have
by (4.54),

‖B(~uin,~u
j
n)‖S . ‖B(~ui(· − tin),~u

j(· − tjn))‖S(−∞,(tin+tjn)/2)∩S((tin+tjn)/2,∞)

. ‖~ui‖1−θ
S ‖~uj‖1−θ

S

[
‖~ui‖θ

Z(−∞,tjn−tin)/2)
‖~uj‖θZ + ‖~ui‖θZ‖~uj‖θZ((tin−tjn)/2,∞)

]
.

(4.66)

For each j, by the scattering of ~uj,

lim
T→∞

‖~uj‖Z(|t|≥T ) = 0, (4.67)

so from the above estimate

‖B(~uin,~u
j
n)‖S → 0, (4.68)

as tin − tjn → ∞. The case tin − tjn → −∞ is treated similarly, as well as the other
terms Q and T . Thus we obtain

‖B(~uin,~u
j
n)‖S → 0 for i 6= j,

‖Q(~uin,~ujn)‖S → 0 for i 6= j,

‖T (~uin,~ujn,~ukn)‖S → 0 for i 6= j or i = j 6= k,

(4.69)

from which (4.64) follows immediately.
In order to prove (4.65), we need a uniform bound on the approximate solutions

~uJn for J → J̄ . Note that (4.9) implies that ‖ ~un
j(0)‖H1×L2 � 1 except for a bounded

number of j. Let A be the set of j in the latter case. Then for all j 6∈ A, the small
data scattering implies that

‖(ujn,Nj
n)‖S . ‖(uj

n(0),N
j
n(0))‖H1

x×L2
x
� 1. (4.70)

Then by the orthogonality in H1
x × L2

x and |tin − tjn| → ∞, we deduce

‖
∑
j 6∈A

~ujn‖2S .
∑
j 6∈A

‖~ujn‖2S .
∑
j 6∈A

‖~uj
n‖2H1

x×L2
x
. 1. (4.71)

Since the number of the remaining components j ∈ A are bounded, we obtain

sup
J<J

sup
n

‖~uJn‖S <∞. (4.72)

The left hand side of (4.65) is bounded by

‖B(~uJn)−B(~uJn − ~u>J
n )‖S + ‖Q(~uJn)−Q(~uJn − ~u>J

n )‖S
+ ‖T (~uJn)− T (~uJn − ~u>J

n )‖S.
(4.73)
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By (4.54), (4.7) and (4.72),

lim
J→J̄

lim sup
n→∞

‖B(~uJn)−B(~uJn − ~u>J
n )‖S = 0. (4.74)

One can estimates Q and T similarly. Then (4.65) was proved. �
Proof of Lemma 4.3. By the construction of ~uJn,

lim
n→∞

‖~uJn(0)− ~un(0)‖H1×L2 = 0. (4.75)

By Lemma 4.9 and Lemma 4.8, passing to a subsequence if necessary, we obtain
‖~uJn − ~un‖S � 1 for large J and n. �
Proof of Lemma 4.1. By the definition of E∗

λ, there is a sequence of global solutions
(un, Nn) in K+

λ (a) such that

lim
n→∞

Eλ(un, Nn) = E∗
λ, lim

n→∞
‖(un, Nn)‖S(−∞,0) = lim

n→∞
‖(un, Nn)‖S(0,∞) = ∞. (4.76)

To see this, first note that since (un, Nn) are in K+
λ (a), they are bounded in H1×L2

by the energy. Hence if ‖(un, Nn)‖S → ∞ then the L2
t part must diverge, and we

can translate (un, Nn) in t so that the norm diverges both on (−∞, 0) and on (0,∞).
For the sequence (un(0), Nn(0)), we use the linear profile decomposition. For the

associated nonlinear profile (ujn,N
j
n), we must have K(ujn(0)) ≥ 0 for each j. In fact,

if we denote

Gλ(ϕ) = Jλ(ϕ)−
1

3
K =

(
1

2
− 1

3

)
‖∇u‖22 +

λ2

2
‖u‖22 > 0, (4.77)

then

Jλ(Qλ) = inf{Jλ(ϕ) | ϕ 6= 0, K(ϕ) = 0}
= inf{Gλ(ϕ) | ϕ 6= 0, K(ϕ) = 0}
= inf{Gλ(ϕ) | ϕ 6= 0, K(ϕ) ≤ 0}.

(4.78)

By the orthogonality,

lim
n→∞

Gλ(un(0)) = lim
n→∞

(
J∑

j=1

Gλ(u
j
n(0)) +Gλ(u

>J
n (0))

)
≤ λE∗

λ < Jλ(Qλ). (4.79)

Hence, for n sufficiently large, Gλ(u
j
n(0)) < Jλ(Qλ); and then by the third line of

(4.78), K(ujn(0)) ≥ 0. Noting that

lim
n→∞

Eλ(un(0), Nn(0))−
J∑

j=1

Eλ(u
j
n(0),N

j
n(0))− Eλ(u

>J
n (0), N>J

n (0)) = 0, (4.80)

we have
J∑

j=1

Eλ(u
j
n(0),N

j
n(0)) ≤ lim

n→∞
Eλ(un, Nn) = E∗

λ. (4.81)

If Eλ(u
j
n(0),N

j
n(0)) < E∗

λ for all j < J̄ , then we have ‖(ujn,Nj
n)‖S < ∞ for all j,

and so by Lemma 4.3,

lim sup
n→∞

‖(un, Nn)‖S <∞, (4.82)
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which contradicts limn→∞ ‖(un, Nn)‖S(0,∞) = ∞. Thus, we must have one j < J
such that

Eλ(u
j
n(0),N

j
n(0)) = E∗

λ. (4.83)

Without losing generality, we may assume j = 1. Comparing this with (4.81), we
have

(un(0), Nn(0)) = U(−tn)(f1,g1) + (u>1
n (0), N>1

n (0)) (4.84)

and

‖(u>1
n (0), N>1

n (0))‖H1×L2 . Eλ(u
>1
n (0), N>1

n (0)) → 0. (4.85)

If tn → −∞, then we have

‖U(t− tn)(f
1,g1)‖Z(0,∞) → 0, (4.86)

and hence

‖U(t)(un(0), Nn(0))‖Z(0,∞)

. ‖U(t− tn)(f
1,g1)‖Z(0,∞) + ‖(u>1

n (0), N>1
n (0))‖H1×L2 → 0.

(4.87)

By Lemma 4.7,

‖U(t)B((un(0), Nn(0)))‖S(0,∞) + ‖NL(U(t)(un(0), Nn(0)))‖S(0,∞) → 0. (4.88)

Then using Lemma 4.8 (with ~ua := U(t)(un(0), Nn(0)) and (un(0), Nn(0)) as the
initial data), we obtain

lim
n→∞

‖(un, Nn)‖S(0,∞) <∞. (4.89)

which contradicts ‖(un, Nn)‖S(0,∞) → ∞.
If tn → +∞, the argument is similar and we obtain a contradiction by using

‖(un, Nn)‖S(−∞,0) → ∞.
So, the only case left is tn → 0. In this case,

‖(un(0), Nn(0))− (f1,g1)‖H1×L2 → 0. (4.90)

Let (u,N) be the global solution with initial data (u(0), N(0)) = (f1,g1), then
Eλ(u,N) ≤ E∗

λ. By stability, we must have

‖(u,N)‖S(−∞,0) = ‖(u,N)‖S(0,∞) = ∞, (4.91)

since otherwise (un, Nn) should be bounded either in S(−∞, 0) or in S(0,∞). By
the definition of E∗

λ, Eλ(u,N) ≥ E∗
λ and hence Eλ(u,N) = E∗

λ.
Since (u,N) is locally in S, for any tn ∈ R, we have

‖(u,N)‖S(−∞,tn) = ∞ = ‖(u,N)‖S(tn,∞). (4.92)

Applying the above argument to the sequence (un(t), Nn(t)) := (u(t+tn), N(t+tn)),
we see that (u(t + tn), N(t + tn)) is precompact in H1 × L2. Thus we obtain the
desired result. �
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5. Rigidity Theorem

The main purpose of this section is to disprove the existence of critical element
that was constructed in the previous section under the assumption E∗

λ < J(Q). The
main tool is the spatial localization of the virial identity. We prove

Theorem 5.1 (Rigidity Theorem). Let (u,N) be a global solution to (1.4) satisfying
K(u) ≥ 0, and EZ(u,N) + λ2M(u) < Jλ(Qλ) for some λ > 0. Moreover, assume
{(u,N)(t) : t ∈ R} is precompact in H1 × L2. Then u = N ≡ 0.

Proof. By contradiction, we assume (u,N) 6= (0, 0). Then by the compactness we
may assume further u 6= 0, since otherwise N would be a free wave and dispersive.
We divide the proof into the following three steps:

Step 1: Energy trapping.
We claim that

c := inf
t∈R

K(u) > 0. (5.1)

If not, then there exists {tn} with tn → t∗ ∈ [−∞,∞], and K(u(tn)) → 0. By
the precompactness of {u(t) : t ∈ R}, we get that up to a sequence (u(tn), N(tn))
converges to some (f, g) in H1 × L2. Then we have K(f) = 0, Jλ(f) ≤ EZ(f, g) +
λ2M(f) = EZ(u,N)+λ2M(u) < Jλ(Qλ). By the variational characterization of Qλ,
we get f ≡ 0 which contradicts to the M(f) =M(u) 6= 0.

Step 2: Uniform small tails.
Let ν = <N − |u|2 = n − |u|2. We claim that for any ε > 0, there exists R > 0

such that at any t ∈ R, we have

∫
|x|≥R

(
|∇u|2 + |u|2 + |u|4 + |u|6 + |ν|2 + |D−1∇ν|2 + |D−1ν|2

|x|2
)
dx < ε.

Indeed, since {(u,N)(t) : t ∈ R} is precompact in H1 × L2, by Sobolev embedding
and the Lp-boundedness of D−1∇, we get that {u(t)} is precompact in L2, L4, L6,
{D−1N(t)} is precompact in Ḣ1, and {D−1∇N(t), ν(t), D−1∇ν} is precompact in
L2. Then the claim follows immediately.

Step 3: Contradiction to the local virial estimates.
We recall the local virial estimates obtained in Section 3. For any R > 0

VR(t) := 〈Ju|(AX +XA)u〉. (5.2)

where X = X∗ be the operator of smooth truncation to |x| < R by multiplication
with ψR(x). From the proof in Section 3 and Corollary 2.3 we have

|VR(t)| . R[‖u‖2‖∇u‖2 + ‖N‖22] . R. (5.3)
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On the other hand, from Step 2, Step 1, and Lemma 2.4, we get

V ′
R(t) =〈ν|Xν〉/2 + 〈∇η|X∇η〉/2 + 〈ηr|rψ′

Rηr〉 −
1

4
〈|η|2|A1∆ψR〉

− 2〈ν||u|2〉+O(R−1‖ν‖2‖u‖3/22 ‖∇u‖1/22 )

+ 〈∇u|4X∇u〉+ 4〈ur|ψ′
Rrur〉

− 3‖u‖44 +O(R−2(‖u‖22 + ‖u‖32‖∇u‖2)) (obtained in Section 3)

=4K(u) + ‖ν‖22 − 2〈ν||u|2〉+ o(1), R → ∞ (by Step 2)

≥(1− 2√
6
)K(u) + o(1) ≥ c/2, R � 1. (by Step 1 and Lemma 2.4)

Thus we get

VR(t) ≥ VR(0) + ct/2,

which contradicts (5.3) for sufficiently large t. �

Appendix A. Construction of wave operators

Here we briefly sketch a proof for the existence of the wave operators, or the
solvability of the final state problem. For the construction of a nonlinear profile in
the radial setting, we need only to consider a sequence of solutions in the form

~un = U(t)~f +

∫ t

−tn

U(t− s)(nu, αD|u|2)ds, (A.1)

with tn → ±∞, which is normally transformed into such a form as

~un =U(t)~f − U(t+ tn)B(U(−tn)~f) +B(~un) +Q−tn(~un) + T−tn(~un), (A.2)

whereQ−tn and T−tn denote respectivelyQ and T with the Duhamel integration
∫ t

−tn
,

and arbitrarily fixed β, say β = 10. Below we consider only the case tn → −∞,
since the other case is similar. The following is the precise statement that we need
for the nonlinear profile in this case.

Lemma A.1. Let ~f ∈ H1 × L2, R 3 tn → −∞, and let {~un} be the sequence of

solutions to the Zakharov system with the Cauchy data ~un(−tn) = U(−tn)~f . Then
there exist T ∈ R and a unique ~u ∈ S(T,∞) satisfying

~u = U(t)~f +B(~u) +Q∞(~u) + T∞(~u), lim
n→∞

‖~un − ~u‖S(T,∞) = 0, (A.3)

as well as the Zakharov system on (T,∞). Moreover, if {~un} is bounded in L∞(R;H1×
L2), then ~u is global and the above convergence holds for any T ∈ R.

Proof. First, we can solve (A.3) on (T,∞) for T � 1, by the iteration argument
similar to [7] in the space

X := {~u ∈ C([T,∞);H1 × L2) | ‖~u‖S(T,∞) . 1, ‖~u‖Z(T,∞) ≤ η}, (A.4)

with η := 2‖U(t)~f‖Z(T,∞) � 1, using the estimates similar to (4.54) as well as

‖U(t)~f‖Z(T,∞) . ‖U(t)~f‖L∞
t>T (L6

x×Ḣ−1
6 ) → 0 as T → ∞. (A.5)
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Similar estimates imply that ~un are scattering as t→ ∞ for large n. Also similarly
to (4.54), we have for some θ > 0

‖U(t+ tn)B(U(−tn)~f)‖S . ‖B(U(−tn)~f)‖H1×L2

. ‖U(−tn)~f‖1−θ
H1×L2‖U(−tn)~f‖θL6×Ḣ−1

6
→ 0.

(A.6)

Then by applying (4.54) to the difference equation, we obtain the convergence ~un →
~u in S(T,∞). Since ~un solves the Zakharov system, so does the limit ~u. If the
former is uniformly bounded in H1×L2, so is the latter, and the convergence is also
extended to arbitrary (T,∞) by the local wellposedness. �
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