Title	Critical profiles of chiral diether-mediated asymmetric conjugate aminolithiation of enoate with lithium amide as a key to the total synthesis of (-)-kopsinine
Author(s)	Harada, Shingo; Sakai, Takeo; T akasu, Kiy osei; Y amada, Ken- ichi; Y amamoto, Y asutomo; Tomioka, Kiyoshi
Citation	Tetrahedron (2013), 69(15): 3264-3273
Issue Date	$2013-04$
URL	http:/hdl.handle.net/2433/173087
Right	© 2013 Elsevier Ltd.
Type	Journal A rticle
Textversion	author

Graphical Abstract

To create your abstract, type over the instructions in the template box below.
Fonts or abstract dimensions should not be changed or altered.

Critical Profiles of Chiral Diether-Mediated Asymmetric Conjugate Aminolithiation of Enoate with Lithium Amide as a Key to the Total Synthesis of (-)-Kopsinine

Shingo Harada, ${ }^{\text {a }}$ Takeo Sakai, ${ }^{a}$ Kiyosei Takasu, ${ }^{a}$ Ken-ichi Yamada, ${ }^{a}$ Yasutomo Yamamoto ${ }^{\text {b }}$ and Kiyoshi Tomioka ${ }^{\text {b }}$ *
${ }^{a}$ Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo, Kyoto 606-8501, Japan
${ }^{b}$ Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe 610-0395, Japan

Critical Profiles of Chiral Diether-Mediated Asymmetric Conjugate Aminolithiation of Enoate with Lithium Amide as a Key to the Total Synthesis of (-)-Kopsinine

Shingo Harada, ${ }^{a}$ Takeo Sakai, ${ }^{\text {a }}$ Kiyosei Takasu, ${ }^{a}$ Ken-ichi Yamada, ${ }^{a}$ Yasutomo Yamamoto ${ }^{\text {b }}$ and Kiyoshi Tomioka ${ }^{\text {b }}$ *
${ }^{a}$ Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo, Kyoto 606-8501, Japan.
${ }^{b}$ Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kodo, Kyotanabe 610-0395, Japan

ARTICLE INFO

Article history

Received
Received in revised form
Accepted
Available online

Keywords:
total synthesis
one-pot
lithium
asymmetric reaction
heterocycles

Abstract

Chiral diether-mediated asymmetric aminolithiation of indolylpropenoate with lithium amide in toluene at $-78^{\circ} \mathrm{C}$ for 15 min gave, after aqueous ammonium chloride quench, the corresponding conjugate addition product with 97% ee in 89% yield. If hydrogen chloride in methanol was selected as a quencher, however, aminolithiation at $-78{ }^{\circ} \mathrm{C}$ for 3 h gave the corresponding adduct with 97% ee in 54% yield, along with recovery of the starting enoate in 39% yield. Based on this finding of an incomplete and slow reaction at $-78^{\circ} \mathrm{C}$, the aminolithiation conditions were optimized to be at $-60^{\circ} \mathrm{C}$ for 15 h and subsequent enolate trap with alkyl halide upon an addition of DMPU afforded the desired aminoalkylation product with 98% ee in 89% yield. Further approach towards total synthesis of $(-)$-kopsinine was carried out by examining asymmetric aminoithiation with N-hydroxyethylamine equivalent, one-pot piperidine formation, and Claisen condensation.

This is an author version based on a template provided by Elsevier 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Chiral diether-mediated asymmetric conjugate addition reaction of a lithium amide with an enoate has been proven to be a powerful aminolithiation methodology, mainly because the intermediate lithium enolate is applicable as a carbon nucleophile to a further bond forming reaction with an electrophile, giving nearly enantiomerically pure β-amino acid derivatives bearing two vicinal chiral centers in high yield. The conjugate addition step is usually very rapid and completes within hours, whereas the second alkylation step suffers from the low reactivity of an electrophilic alkyl halide, even in a toluene-THF solvent. It is also not so easy to determine whether the first conjugate addition reaction has completed, because highly reactive anionic species are involved in the reaction. TLC monitoring is a standard method of tracing the reaction progress in chemical laboratories; during spotting of the sample from a capillary, however, the reaction sometimes proceeds significantly because of an increase in the temperature, leading to the incorrect information that the reaction has completed. We describe herein that the speed of the chiral diether-mediated asymmetric conjugate addition is dependent on the structure of an enoate and is sometimes very slow at low temperature. Another approach toward the total synthesis of (-)kopsinine ${ }^{1,2}$ is also the subject of the present study.

2. Results and Discussion

2.1. Chiral Diether-Mediated Asymmetric Conjugate Aminolithiation with Lithium Amide and Subsequent Alkylation

Chiral diether 3-mediated conjugate addition of lithium N -benzyl- N-trimethylsilylamide 1 with t-butyl 3 -(N-Boc-indol-3yl)propenoate 2a was conducted in toluene at $-78^{\circ} \mathrm{C}$ for 15 min and then quenched with aqueous ammonium chloride to give the conjugate adduct 5 a with 97% ee in 89% isolated yield, indicating rapid and high yield generation of lithium enolate 4 with 97% ee (Table 1 , entry 1). The sequence of conjugate addition followed by alkylation of lithium enolate 4 was carried out as previously reported for 1.5 h at $-78^{\circ} \mathrm{C}$ and then at $-40^{\circ} \mathrm{C}$ for 2 h in order to confirm the completion of the conjugate aminolithiation, ${ }^{3}$ and then, after addition of 222 equiv of THF as a solvent, 6 equiv of HMPA as an activator by coordination to lithium, and iodide $6 \mathbf{a}$ as an electrophile, at $-40^{\circ} \mathrm{C}$ for 3 h . The crude extracts were treated for protodesilylation with TBAF in THF at room temperature for 12 h . Silica gel column chromatography gave a 93:7 mixture of anti- and syn-7a with 86% ee in 70% yield (entry 2). Major byproducts were deBoc and its N-alkylated products $\mathbf{2 b}$ and 2c in 5% and 11% yield, respectively. DeBoc products derived from 5a and 7a were not observed. The chemical yield of 70% and $93: 7$ diastereomer ratio of 7 a were on the line of

[^0]Table 1. Asymmetric Conjugate Aminolithiation in Toluene-Electrophile Trap of Lithium Enolate Upon Addition of Polar Additive. ${ }^{a}$

${ }^{a}$ With 3 equiv of $\mathbf{1}, 3.6$ equiv of $\mathbf{3}$, and 10 equiv of $\mathbf{6 a}$. $\mathrm{Ar}=1$-Boc-indol-3-yl. ${ }^{b}$ Quoted from ref. $2 .{ }^{c}$ With 1.5 equiv of $\mathbf{1}$ and 1.8 equiv of $\mathbf{3}$.
acceptance or not; however, 86% ee was rather poorer than estimation because $\%$ ee of lithium enolate 4, produced at least in 89% yield, should be 97% ee. In addition, it was not clear why significant amounts of 2b and 2c were produced.

Bidentate DME as an additive was similar to THF, giving 7a with 82% ee in 70% yield (entry 3). DMSO was a better additive, giving anti-7a with 95% ee, albeit in a decreased 51% yield and 2c in 30% yield at room temperature for 1 h (entry 4). DMF was also a good additive, giving anti-7a in 60% yield with high 94% and 95% ee and $99: 1 \mathrm{dr}$ in the absence and presence of HMPA, respectively (entries 5 and 6). ${ }^{2}$ When the quantity of DMF was decreased to 30 equiv, alkylation became sluggish and after 18 h gave anti-7a with lower 88% ee and $86: 14$ dr in 57% yield, 2b in 3% yield, and 2 c in 10% yield (entry 7). DMPU was the best additive among those examined, giving anti-7a with 95% ee and $99: 1 \mathrm{dr}$ in 73% yield, but along with 2 b in 2% and $\mathbf{2 c}$ in 13% yield (entry 8). ${ }^{2}$

The lower yield and poorer $\%$ ee production of 7 a compared with 5 a , and the production of $\mathbf{2 b}$ and $\mathbf{2 c}$ in significant amounts implied a couple of possibilities: (1) incomplete conjugate addition reaction of lithium amide $\mathbf{1}$ with $\mathbf{2 a}$ at the time of addition of the additive, resulting in $\mathbf{1}$ and $\mathbf{2 a}$ remaining in the reaction mixture, led to the progression of further conjugate addition reactions without chirality control, and/or (2) addition of the additives to a completed reaction mixture, resulting in retro-Michael-type reac-
tion of $\mathbf{4}$ to $\mathbf{1}$ and 2a, and again conjugate addition but without chirality control. Since the 89% high yield production of $\mathbf{5 a}$ with 97% ee was certainly confirmed by the isolation (Table 1, entry 1), it would be nonsense to doubt the incomplete conjugate addition of $\mathbf{1}$ to $\mathbf{2 a}$. Yet, this was shown not to be true by quenching the reaction with hydrogen chloride $(\mathrm{HCl}) /$ methanol, instead of aqueous ammonium chloride (Table 1, entry 1).

2.2. Quenching of the Conjugate Addition Reaction with Hydrogen Chloride/Methanol or Aqueous Ammonium Chloride

The conjugate addition reaction of $\mathbf{1}$ with 2a was quenched with $\mathrm{HCl} /$ methanol instead of aqueous ammonium chloride after 3 h at $-78^{\circ} \mathrm{C}$ to give, to our surprise, a mixture of $\mathbf{5 a}$ with 97% ee in 54% yield and $\mathbf{2 a}$ in 39% recovery yield (Table 1, entry 9). A prolonged 15 h reaction was not sufficient to complete the reaction, giving 5a with 98% ee in 79% yield and recovering $\mathbf{2 a}$ in 18% yield (entry 10). The previously established reaction conditions, that is, at $-78^{\circ} \mathrm{C}$ for 1.5 h and additional 2 h at $-40^{\circ} \mathrm{C}$, gave 5a with 95% ee in 75% yield, $\mathbf{2 a}$ in 5% recovery, and $\mathbf{2 b}$ in 12% yield (entry 11). These incomplete conjugate addition reactions rationalize the poorer $\%$ ee of 7 a because chiral diether $\mathbf{3}$ is kicked out from chelation and chiral ligand-free conjugate addition proceeded upon the addition of lithium coordinating additives like THF, DME, DMSO, DMF, HMPA, and DMPU at the alkylation step.

Fortunately, the reaction at $-65^{\circ} \mathrm{C}$ for 15 h gave 5a with 98% ee in 91% yield along with very small amounts of $\mathbf{2 a}$ and $\mathbf{2 b}$ (entry 12). Use of smaller amounts of $\mathbf{1}$ (1.5 equiv) and $\mathbf{3}$ (1.8 equiv) led to the successful production of $\mathbf{5 a}$ with 96% ee in 96% yield and trace amounts of $\mathbf{2 a}$ and $\mathbf{2 b}$ (entry 13). Under these specified conjugate addition conditions 7 a of 98% ee was satisfactorily obtained in 89% yield by adding DMPU as the best activator of lithium enolate 4, as described previously (entry 14). ${ }^{2}$

Production of deBoc products $\mathbf{2 b}$ and $2 \mathbf{c}$ from 4 rather than directly from 2 a would be possible at a higher temperature $-40^{\circ} \mathrm{C}$ by nucleophilic attack of lithium amide 1 to an activated vinylogous type urethane carbonyl group of 4, as shown in Scheme 1. This could explain the absence of the formation of a deBoc product of 5a.

Scheme 1. Production of deBoc product 2b from 4.
These reaction profiles above indicate the incomplete conjugate addition reaction of $\mathbf{2 a}$ with $\mathbf{1}$ at $-78^{\circ} \mathrm{C}$. When DMPU was used as an activator, a retro-Michael type reaction would not be possible. By adding $\mathrm{HCl} /$ methanol as a quencher, the progress of the conjugate addition could be determined (Table 1, entry 9).

The remaining problem was to clarify what was happening in the reaction mixture after the addition of aqueous ammonium chloride, resulting in the high yield production of 5a. Although the reason for the increased yield by the aqueous ammonium chloride quench (Table 1 , entry 1 vs entry 9) is not fully clear, it could be that the reaction mixture becomes a heterogeneous iceliquid suspension upon the addition of aqueous ammonium chloride at $-78^{\circ} \mathrm{C}$, as shown in Figure 1. Upon removal of the cooling bath, the green color of the ice-liquid suspension changed gradually to brown, violet, yellow, and pale yellow (two-phase solution) during 20 min , suggesting that the quenching process required that period of time. Because of the slow hydrolysis of lithium amide 1 under heterogeneous suspension conditions, the remaining complex of $\mathbf{1 - 3}$ could undergo conjugate addition under a gradually elevating temperature to give $\mathbf{5 a}$ with relatively high \% ee in high yield. In contrast, a methanolic hydrogen chloride quench immediately gave a pale yellow solution, indicating almost spontaneous protonation of the reactive anionic species to stop the reaction.

Figure 1. Heterogeneous Suspension to Two-Phase Solution (Table 1, entry 1) at $0,5,7,9$, and 20 min after Aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ Quench at $-78^{\circ} \mathrm{C}$ and Cooling Bath Removal.
N-Substituted indolylpropenoates 2 other than N-Boc 2a were examined as a substrate in asymmetric conjugate amination. The conjugate addition of $\mathbf{1}$ to N-Ts enoate $2 \mathbf{e}\left(\mathrm{R}^{1}=\mathrm{Ts}\right)$ at $-78{ }^{\circ} \mathrm{C}$ for 3.5 h gave 5 e with 90% ee in 83% yield (Table 2, entry 2), lower than that of N-Boc-enoate 2a giving 5a with 97% ee in 89% yield after 15 min (Table 1, entry 1). The reaction progress of 2 e could be followed by TLC monitoring, and indicated that the reaction was not so fast during TLC sampling and spotting. The reaction of electron-donating N - p-methoxybenzyl $\left(\mathrm{R}^{1}=\mathrm{PMB}\right)$ enoate 2 f was much slower and did not proceed at $-78^{\circ} \mathrm{C}$, but did proceed at $-40^{\circ} \mathrm{C}$ for 4 h to give $\mathbf{5 f}$ with 45% ee in 85% yield (entry 3).

The observed order of reactivity of $\mathbf{2 a} \sim \mathbf{2 e}>\mathbf{2 f}$ seems to be consistent with the electron-withdrawing and -donating nature of the N -substituents. The electron-withdrawing nature of N -Boc and N Ts groups, which block the lone pair electrons of the indole nitrogen from mesomerism with the dienoate system, would be the origin of the higher reactivity than $\mathbf{2 f}$. On the other hand, poorer electrophilicity of $\mathbf{2 f}$ than that of $\mathbf{2 a}$ and $\mathbf{2 e}$ could be explained by the mesomeric effect of the indole nitrogen lone pair electrons. These results indicated that electron-withdrawing N-protecting groups, which allow for the reaction to proceed at a lower temperature, are desirable for obtaining higher $\%$ ee of products.

Table 2. Enantioselectivity and Reactivity Dependency on N Substituent of 3-Indolylpropenoate 2. ${ }^{a}$

1^{b}	$\mathbf{2 a}$	Boc	$-78^{\circ} \mathrm{C}, 0.25 \mathrm{~h}$	$\mathbf{5 a}$	89%	97%
2	$\mathbf{2 e}$	Ts	$-78^{\circ} \mathrm{C}, 3.5 \mathrm{~h}$	$\mathbf{5 e}$	83%	90%
3	$\mathbf{2 f}$	PMB	$-40^{\circ} \mathrm{C}, 4 \mathrm{~h}$	$\mathbf{5 f}$	85%	45%

${ }^{a}$ With 3 equiv of $\mathbf{1}$ and 3.6 equiv of $\mathbf{3}$. Quenched with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$. Less than 3\% recovery of $\mathbf{2} .^{b}$ Quoted from ref. 2

2.4. Asymmetric Conjugate Addition of Lithium Alkoxyethylamides.

Because an N-hydroxyethyl intermediate is required for the total synthesis of $(-)$-kopsinine, we examined the performance of hydroxyethylamide equivalents $\mathbf{8 a - c}$ in asymmetric conjugate addition. The reaction of TMS-amide $\mathbf{8 a}$ bearing a p methoxybenzyl (PMB) protection group with $\mathbf{2 a}$ did not proceed at $-78{ }^{\circ} \mathrm{C}$, but at $-40^{\circ} \mathrm{C}$ for 5 h gave product 9 a with only 13% ee in 79% yield (Table 3, entry 1). Bulkier TBS-amide 8b bearing a bulky trityl protection group was designed to prevent intramolecular five-membered chelate formation of the oxygen atom to lithium by bulkiness around the oxygen atom, ${ }^{4}$ because the five-membered chelation kicks out chiral diether $\mathbf{3}$ from the lithium amide- 3 complex; ${ }^{5}$ however, the reaction did not proceed at $-78^{\circ} \mathrm{C}$, but at $-40^{\circ} \mathrm{C}$ for 10 h , giving $9 \mathbf{b}$ with only 9% ee in 9% yield (entry 2). When sterically less hindered $\mathbf{8 c}$, having no TBS group, was utilized, the reaction proceeded at $-78^{\circ} \mathrm{C}$ to give ent-9b with only 17% ee in low yield (entry 3).

Table 3. Asymmetric Conjugate Addition of Lithium N (Alkoxyethyl)amide $8 .{ }^{a}$

entry	8/R ${ }^{2} / \mathrm{R}^{3}$	$\begin{gathered} T / t \\ { }^{\circ} \mathrm{C} / \mathrm{h} \end{gathered}$	9 yield/ee	$2 \mathbf{a}$ yield	$\begin{gathered} \mathbf{2 b} \\ \text { yield } \end{gathered}$
1	8a/PMB/TMS	$\begin{gathered} -78 / 12 \\ \text { then }-40 / 5 \end{gathered}$	$\begin{gathered} 9 \mathbf{9} \\ 79 \% / 13 \% \text { ee } \end{gathered}$	2\%	14\%
2	$\mathbf{8 b} / \mathrm{Ph}_{3} \mathrm{C} / \mathrm{TBS}$	$\begin{gathered} -78 / 17 \\ \text { then }-40 / 10 \end{gathered}$	$\begin{gathered} 9 \mathbf{b} \\ 9 \% / 9 \% \text { ee } \end{gathered}$	52\%	18\%
3	8c/ $/ \mathrm{Ph}_{3} \mathrm{C} / \mathrm{H}$	$-78 / 0.7$	$\begin{gathered} \text { ent-9b } \\ 18 \% / 17 \% \text { ee } \end{gathered}$	63\%	5\%

${ }^{a}$ With 3 equiv of $\mathbf{8}$ and 3.6 equiv of $\mathbf{3}$. Quenched with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$. The absolute configuration of $\mathbf{9}$ was tentatively assigned by analogy.

In these reactions, the deBoc product $\mathbf{2 b}$ was again observed whereas the deBoc product of $\mathbf{9}$ was not. It is likely that $\mathbf{2 b}$ came from a lithium enolate intermediate like 4, as shown in Scheme 1.

2.5. Cyclization to Piperidines.

Cyclization of anti-7a with mesyl chloride and triethylamine in methylene chloride at room temperature for 18 h gave piperidine cis-10 in 98% yield (Scheme 2). ${ }^{2}$ In the same way, syn-7a was cyclized into piperidine trans-10 in 83% yield. The coupling constants 5.2 and 10.1 Hz of the adjacent methine protons, respectively, indicated the relative configuration of cis- and trans10. ${ }^{6}$ The absolute configuration was confirmed by converting cis10 into (-)-kopsinine. ${ }^{2}$

Scheme 2. Cyclization to cis- and trans-Piperidines 10.

2.6. Attempted One-Pot $[N+2+3]$ Cyclization.

As shown in Scheme 2, an enolate trap with 6a and MsCl treatment of anti-7a gave cis-10 in three steps starting from 2a. Successful one-pot $[\mathrm{N}+2+3]$ cyclization of $\mathbf{2 a}$ to piperidine cis-10 used chloroiodopropane 6b as a C3 component (Scheme 3). ${ }^{2}$ 1,3Diiodopropane $6 \mathbf{c}$ as a much more reactive C 3 component, however, did not yield cis-10 and gave HI elimination product $\mathbf{7 b}$ in 90% yield.

Scheme 3. One-Pot Alkylation with 6.

2.7. Claisen Condensation for C2 Elongation of $\mathbf{1 0}$

The remaining synthetic tasks for the total synthesis of (-)kopsinine were (1) attachment of C2 to the ester moiety of cis-10 by Claisen condensation, (2) replacement of the N-Bn group with a hydroxyethyl equivalent, and (3) cyclization to the established intermediate 20. In our previous total synthesis, ${ }^{2}$ replacement of the Bn group with a hydroxyethyl equivalent was the first manipulation. In this work, however, Claisen condensation of cis-10 was examined to evaluate the effect of the N-substituent of the indole nitrogen.

The transesterification of t-butyl ester cis-10 under Fischer methyl esterification conditions proceeded smoothly with concomitant removal of the N-Boc group to give methyl ester cis11a in 94% yield (Scheme 4). The indole nitrogen of $c i s$-11a was separately protected by Boc, benzoyl (Bz), pivaloyl (Piv), benzyl (Bn), and PMB groups to give cis-11b-f as substrates for the Claisen condensation.

(a) $\mathrm{Boc}_{2} \mathrm{O}$, DMAP, $\mathrm{CH}_{3} \mathrm{CN}$; (b) $\mathrm{BzCl}, \mathrm{NaH}$, DMF; (c) PivCl, DMAP, $\mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (d) $\mathrm{BnBr}, \mathrm{NaH}$, DMF; (e) PMBCl, NaH , DMF

Scheme 4. N-Substituted Methyl Esters cis-11a-f.

A THF solution of N-Boc protected cis-11b was added at $-78{ }^{\circ} \mathrm{C}$ to a THF solution of 4 equiv of sodium enolate 12a $(\mathrm{M}=\mathrm{Na})$, generated in situ by treating methyl acetate with NaHMDS ${ }^{8}$, and the mixture was stirred at $-40^{\circ} \mathrm{C}$ for 2 h . After removal of the cooling bath, the mixture was further stirred for 1 h at room temperature (Table 4, entry 1). Disappointingly, Claisen product cis-13a $\left(\mathrm{R}^{4}=\mathrm{H}\right)$ was obtained in only 7% yield, and the major product was a $4: 1$ mixture of cis- and trans-11a in 80% yield without the recovery of $\mathbf{1 1 b}$. At room temperature, sodium enolate 12a or methoxide should isomerize cis-11b to trans-11b through a deprotonation-protonation sequence, and also attack the Boc group to give 11a and 13a. The reactions of $N-\mathrm{Bz} \mathrm{11c}$ at $-40^{\circ} \mathrm{C}$ for 2 h and at room temperature for another 2 h, and N-Piv 11d at room temperature for 15 h also resulted in N deprotection to give cis-11a in 86% and 95% yield, respectively (entries 2 and 3). N-Bn cis-11e at room temperature for 15 h and N-PMB cis-11f at $0{ }^{\circ} \mathrm{C}$ for 4 h and at room temperature for 2 h were converted to the desired $\mathbf{1 3 e}$ in 12% and $\mathbf{1 3 f}$ in 26% yield with recovery of a significant amount of starting and isomerized methyl esters (entries 4 and 5). Fortunately, lithium enolate 12b $(\mathrm{M}=\mathrm{Li})$ afforded the desired Claisen product $\mathbf{1 3 f}$ in 90% yield starting from cis-11f (entry 6).

Table 4. Claisen Condensation of $\mathbf{1 1}$.

			OMe 13		+ cis-11 + trans-11
entry	cis-11/R ${ }^{4}$	12/M	$T\left({ }^{\circ} \mathrm{C}\right) / t(\mathrm{~h})$	$\begin{aligned} & \hline \mathbf{1 3} / \mathrm{R}^{4} \\ & \text { yield } \end{aligned}$	11 yield (cis: trans)
1	11b/Boc	12a/Na	$\begin{gathered} -40 / 2 \\ \text { then } \mathrm{rt} / 1 \end{gathered}$	$\begin{gathered} \text { 13a/H } \\ 7 \% \end{gathered}$	$\begin{gathered} \text { 11a } \\ 80 \%(4: 1) \end{gathered}$
2	11c/Bz	12a/Na	$\begin{gathered} -40 / 2 \\ \text { then } \mathrm{rt} / 2 \end{gathered}$	0\%	$\begin{gathered} \text { 11a } \\ 86 \%(1: 0) \end{gathered}$
3	11d/Piv	12a/Na	$\mathrm{rt} / 15$	0\%	$\begin{gathered} \text { 11a } \\ 95 \%(1: 0) \end{gathered}$
4	11e/Bn	12a/Na	$\mathrm{rt} / 15$	$\begin{gathered} \text { 13e/Bn } \\ 12 \% \end{gathered}$	$\begin{gathered} \text { 11e } \\ 68 \%(0: 1) \end{gathered}$
5	11f/PMB	12a/Na	$\begin{gathered} 0 / 4 \\ \text { then } \mathrm{rt} / 2 \end{gathered}$	$\begin{gathered} \text { 13f/PMB } \\ 26 \% \end{gathered}$	$\begin{gathered} \text { 11f } \\ 74 \%(3: 7) \end{gathered}$
6	11f/PMB	12b/Li	$-40 / 1.5$ $\text { then } 0 / 14$	$\begin{gathered} \text { 13f/PMB } \\ 90 \% \end{gathered}$	0\%
7	11a/H	12b/Li	0/15	0\%	$\begin{gathered} \text { 11a } \\ 88 \%(1: 0)^{a} \end{gathered}$
8	11g/Li	12b/Li	rt/17	$\begin{gathered} \text { 13a/H } \\ 66 \% \end{gathered}$	$\begin{gathered} 11 \mathbf{a} \\ 8 \%(1: 0) \end{gathered}$
			 OMe		

Unfortunately, the reaction of N -protection free cis-11a with 16 equiv of $\mathbf{1 2 b}$ at $0{ }^{\circ} \mathrm{C}$ for 15 h resulted in the recovery of cis11a in 88% yield, along with self-Claisen condensation products 14 and 15 in 24% and 27% yield, respectively (entry 7). The production of $\mathbf{1 4}$ and $\mathbf{1 5}$ was rationalized by the reaction of $\mathbf{1 2 b}$ with methyl acetate, generated by protonation of $\mathbf{1 2 b}$ with the indole $\mathrm{N}-\mathrm{H}$ of 11a. Thus, this self-condensation could be avoidable by using lithiated 11a. To our delight, the reaction of N-lithiated cis$\mathbf{1 1 g}$, generated in situ by the lithiation of cis-11a with LiHMDS, with 16 equiv of $\mathbf{1 2 b}$ at room temperature for 17 h successfully produced 13a in 66% yield and cis-11a in 8% recovery (entry 8).

2.8. Construction of the Common Intermediate 20 of Kopsia Alkaloids

Towards Natsume's intermediates 18 and 20, ${ }^{\text {1d }} \mathbf{1 3 a}$ was N methoxycarbonylated to give indole 16 in 95% yield (Scheme 5). Hydrogenolysis of $\mathbf{1 6}$ removed the Bn group from the nitrogen to give secondary amine 17 , which was, without purification, hydroxyethylated to unstable 18. Mesylation of 18, followed by the tandem cyclization reported by Natsume ${ }^{1 \mathrm{~d}}$ afforded (-)-20, ${ }^{9}$ a pentacyclic common intermediate for kopsia alkaloids in 10% yield over 4 steps. The hydrogenolysis step, however, lacked reproducibility, and the rest of the three-step transformation was low-yielding, probably due to the concomitant presence of the secondary amine and ketoester moiety. The problem observed in this approach was overcome by postponing the Claisen condensation reaction after the completion of N-hydroxyethylation. ${ }^{2}$

Scheme 5. Construction of the Common Intermediate 20.

3. Conclusion

The reaction speed of chiral diether-mediated asymmetric aminolithiation of indolylpropenoate with lithium amide in toluene at a low temperature was substrate dependent. Completion of the reaction could be verified by a hydrogen chloride-methanol quench, but not by an aqueous ammonium chloride quench. The Claisen condensation was successfully conducted under proton source-free conditions. These findings led to the total synthesis of (-)-kopsinine.

4. Experimental section

4.1. General.

All melting points are uncorrected. Silica gel was used for column chromatography. NMR (500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$) was measured in CDCl_{3} unless otherwise mentioned. Chemical shifts and coupling constants are presented in ppm relative to tetramethylsilane and Hz , respectively. Abbreviations are as follows: s, singlet; d, doublet; t, triplet; m, multiplet; br, broad. ${ }^{13} \mathrm{C}$ peak multiplicity assignments were made based on DEPT data. IR spectroscopy of oil and solid samples were measured as neat liquid films and KBr pellets, respectively. The wave numbers of maximum absorption peaks of IR spectroscopy are presented in cm^{-1}. DMSO, DMF, and DMPU were distillated prior to use. TMSCl was freshly distilled from CaH_{2} prior to use. Dehydrated solvents were purchased and used without further desiccation. Other reagents were purchased and used as received.

4.2. Starting Materials

N-Benzyltrimethylsilylamine, ${ }^{10}$ 2-trityloxyethylamine, ${ }^{11} \mathbf{2 a},{ }^{2}$ $\mathbf{3},{ }^{12} \mathbf{5 f},{ }^{13}$ and $\mathbf{6 a}{ }^{14}$ were prepared according to reported procedures.
4.2.1. (E)-tert-Butyl 1-p-Toluenesulfonylindole-3propenoate (2e)

The reported procedure ${ }^{13}$ using 1-p-toluenesulfonylindole-3carbaldehyde ${ }^{15}(13.5 \mathrm{~g}, 45 \mathrm{mmol})$, instead of $1-p$ -methoxybenzylindole-3-carbaldehyde, gave the title compound $(15.4 \mathrm{~g}, 86 \%)$ as colorless prisms of $\mathrm{mp} 139.5-140.5^{\circ} \mathrm{C}: \mathrm{R}_{f}=0.6$ (hexane/AcOEt 4/1). ${ }^{1} \mathrm{H}$ NMR: $1.54(9 \mathrm{H}, \mathrm{s}), 2.35(3 \mathrm{H}, \mathrm{s}), 6.45$ ($1 \mathrm{H}, \mathrm{d}, J=16.2$), $7.23-7.39(4 \mathrm{H}, \mathrm{m}), 7.68(1 \mathrm{H}, \mathrm{d}, J=16.2)$, $7.71-7.81(4 \mathrm{H}, \mathrm{m}), 8.00(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: $21.5\left(\mathrm{CH}_{3}\right), 28.2$ $\left(\mathrm{CH}_{3}\right), 80.5(\mathrm{C}), 113.8(\mathrm{CH}), 118.4(\mathrm{C}), 120.4(\mathrm{CH}), 120.7(\mathrm{CH})$, $124.0(\mathrm{CH}), 125.4(\mathrm{CH}), 127.0(\mathrm{CH}), 128.0(\mathrm{CH}), 128.3(\mathrm{C})$, $130.1(\mathrm{CH}), 134.5(\mathrm{CH}), 134.9$ (C), 135.7 (C), 145.5 (C) 166.5 (C). IR: 2978, 1705, 1636, 1366, 1150, 980. EIMS m/z: $397\left(\mathrm{M}^{+}\right)$, $324(\mathrm{M}-\mathrm{O} t-\mathrm{Bu})$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 66.48$; H , 5.83 ; N, 3.52. Found: C, 66.34; H, 5.87; N, 3.36.
4.2.2. N-Trimethylsilyl(2-p-methoxybenzyloxyethyl)amine

To a solution of 2-p-methoxybenzyloxyethylamine ${ }^{16}(14 \mathrm{~g}, 77$ $\mathrm{mmol})$ in THF $(155 \mathrm{~mL})$ was added a 1.64 M hexane solution of $\mathrm{BuLi}(49 \mathrm{~mL}, 80 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ over 10 min , and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. Then TMSCl ($10 \mathrm{~mL}, 80 \mathrm{mmol}$) was added over 5 min , and the mixture was warmed up to rt and stirred for 3 h . Concentration and distillation $\left(200-205{ }^{\circ} \mathrm{C} / 0.2\right.$ $\mathrm{mmHg})$ gave the title compound $(7.0 \mathrm{~g}, 36 \%)$ as a colorless oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):-0.06(9 \mathrm{H}, \mathrm{s}), 0.69(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.89(2 \mathrm{H}, \mathrm{dt}, J=$ $8.1,5.7), 3.27(3 \mathrm{H}, \mathrm{s}), 3.30(2 \mathrm{H}, \mathrm{t}, J=5.7), 4.35(2 \mathrm{H}, \mathrm{s}), 6.80$ $(2 \mathrm{H}, \mathrm{d}, J=8.6), 7.23(2 \mathrm{H}, \mathrm{d}, J=8.6) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right): 0.14$ $\left(\mathrm{CH}_{3}\right), 42.0\left(\mathrm{CH}_{2}\right), 54.7\left(\mathrm{CH}_{3}\right), 72.9\left(\mathrm{CH}_{2}\right), 73.5\left(\mathrm{CH}_{2}\right), 114.0$ $(\mathrm{CH}), 129.4(\mathrm{CH}), 131.3(\mathrm{C}), 160.0(\mathrm{C}) . \mathrm{IR}: 3395,2955,1612$, 1512, 1250, 841. EIMS m/z: $253\left(\mathrm{M}^{+}\right), 222(\mathrm{M}-\mathrm{OMe}), 121$ (PMB). HRMS-FAB $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{Si}$, 254.1576; found, 254.1579.

4.2.3. N-tert-Butyldimethylsilyl(2-trityloxyethyl)amine

To a solution of 2-trityloxyethylamine ($2.5 \mathrm{~g}, 8.3 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}$ $(1.5 \mathrm{~mL}, 11 \mathrm{mmol})$, and DMAP ($20 \mathrm{mg}, 0.17 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(25$ mL) was added $\mathrm{TBSCl}(1.5 \mathrm{~g}, 10 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 19 h at rt . The resulting precipitate was removed by filtration. Volatile materials were removed by evaporation, and the residue was dried in vacuo $\left(70^{\circ} \mathrm{C} / 0.01 \mathrm{mmHg}\right)$ to give the title compound as a colorless oil ($2.2 \mathrm{~g}, 65 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}\right):-0.02(6 \mathrm{H}, \mathrm{s}), 0.51(1 \mathrm{H}, \mathrm{t}, J=8.0), 0.90(9 \mathrm{H}, \mathrm{s}), 2.94(2 \mathrm{H}$, $\mathrm{dt}, J=8.0,6.0), 3.11(1 \mathrm{H}, \mathrm{t}, J=6.0), 7.02-7.15(9 \mathrm{H}, \mathrm{m}), 7.55-$ $7.60(6 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: $-4.9\left(\mathrm{CH}_{3}\right), 18.5(\mathrm{C}), 26.6\left(\mathrm{CH}_{3}\right), 42.9$ $\left(\mathrm{CH}_{2}\right), 67.3\left(\mathrm{CH}_{2}\right), 86.7(\mathrm{C}), 127.5(\mathrm{CH}), 128.3(\mathrm{CH}), 129.2(\mathrm{CH})$, 144.9 (C). IR: 3410, 2931, 1450, 1072. EIMS m/z: 387 (M $2 \mathrm{Me}), 243\left(\mathrm{Ph}_{3} \mathrm{C}\right)$. The oil was used without further purification.

4.3. Table 1

4.3.1. Typical Procedure A (Entry 1). (-)-tert-Butyl (S)-3-Benzylamino-3-(1-tert-butoxycarbonylindol-3yl)propanoate (5a)

To a solution of N-benzyltrimethylsilylamine $(0.29 \mathrm{~mL}, 1.5$ $\mathrm{mmol})$ in toluene (4 mL), was added a 1.62 M hexane solution of $\mathrm{BuLi}(0.93 \mathrm{~mL}, 1.5 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ over 4 min , and the mixture was stirred for 30 min . Then a solution of chiral diether 3 (436 $\mathrm{mg}, 1.8 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added over 5 min , and after 30 min , a solution of enoate $\mathbf{2 a}(172 \mathrm{mg}, 0.5 \mathrm{mmol})$ in toluene (2 mL) was added over 6 min . The mixture was stirred for 15 min , and saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(1.5 \mathrm{~mL})$ was added. After 5 min , the cooling bath was removed, and the whole was allowed to warm up to rt. Then, saturated aq $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added, and the organic layer was separated. The aqueous layer was extracted with AcOEt, and the combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/AcOEt $16 / 1$ to $3 / 2$) gave the title compound ${ }^{2}$ ($200 \mathrm{mg}, 89 \%$) with 97% ee as a yellow oil, chiral ligand 3 (436 mg , quant) as colorless plates, $\mathbf{2 a}(1.6 \mathrm{mg}, 1 \%)$ as a yellow oil, and $2 \mathbf{b}^{17}(1.5 \mathrm{mg}, 1 \%)$ as a yellow oil. The enantiomeric excess of 5a was determined according to the previous report. ${ }^{2}$
4.3.2. Typical Procedure B (Entry 2). (-)-tert-Butyl (2S, 3S)-3-Benzylamino-3-(1-tert-butoxycarbonylin-dol-3-yl)-2-(3-hydroxypropyl)propanoate (syn-7a)

To a solution of N-benzyltrimethylsilylamine $(0.59 \mathrm{~mL}, 3.0$ $\mathrm{mmol})$ in toluene (8 mL), was added a 1.54 M hexane solution of $\mathrm{BuLi}(1.95 \mathrm{~mL}, 3.0 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ over 3 min , and the mixture was stirred for 30 min . A solution of chiral diether $3(872 \mathrm{mg}, 3.6$ $\mathrm{mmol})$ in toluene (4 mL) was added over 7 min , and after 30 min , a solution of enoate $\mathbf{2 a}(344 \mathrm{mg}, 1.0 \mathrm{mmol})$ in toluene $(4 \mathrm{~mL})$
was added over 6 min . The mixture was stirred for 1.5 h at $78{ }^{\circ} \mathrm{C}$ and further 2 h at $-40{ }^{\circ} \mathrm{C}$, and a solution of 3- $(t-$ butyldimethylsiloxy)-1-iodopropane (6a) ($2.4 \mathrm{~mL}, 10 \mathrm{mmol}$) and HMPA ($1.04 \mathrm{~mL}, 6 \mathrm{mmol})$ in THF $(18 \mathrm{~mL})$ was added over 30 min at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 2.5 h at $-40^{\circ} \mathrm{C}$, and saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ was added. The cooling bath was removed, and after the whole was warmed up to rt , saturated aq $\mathrm{NaHCO}_{3}(12 \mathrm{~mL})$ was added. The organic layer was separated, and the aqueous layer was extracted with AcOEt. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated to give a colorless oil $(4.7 \mathrm{~g})$. The oil was dissolved in THF (15 mL), and TBAF $\cdot 3 \mathrm{H}_{2} \mathrm{O}(4.7 \mathrm{~g}, 15 \mathrm{mmol})$ was added to the solution at rt . The mixture was stirred for 12 h , and saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(6 \mathrm{~mL})$ and saturated aq $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ were added. The whole was extracted with benzene $(30 \mathrm{~mL} \times 3)$. The combined organic layers were washed with water ($10 \mathrm{~mL} \times$ 3) and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/AcOEt $9 / 1$ to $1 / 1$) gave chiral ligand 3 (872 mg , quant) as colorless plates, $\mathbf{2} \mathbf{b}^{17}(13 \mathrm{mg}, 5 \%)$ as a pale yellow oil, anti-7a ${ }^{2}(333 \mathrm{mg}, 65 \%)$ as white powder of $\mathrm{mp} 160-$ $162{ }^{\circ} \mathrm{C}, \mathbf{2} \mathbf{c}^{2}(33 \mathrm{mg}, 11 \%)$ as a pale yellow oil, and the title compound $(28 \mathrm{mg}, 5 \%)$ as a pale yellow oil: $\mathrm{R}_{f}=0.2$ (hexane/AcOEt 3/2). $[\alpha]_{\mathrm{D}}{ }^{25}-14.1\left(c\right.$ 1.11, $\left.\mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR: $1.17(9 \mathrm{H}, \mathrm{s}), 1.48-$ $1.57(4 \mathrm{H}, \mathrm{m}), 1.67(9 \mathrm{H}, \mathrm{s}), 1.78-1.90(2 \mathrm{H}, \mathrm{m}), 2.84(1 \mathrm{H}, \mathrm{ddd}, J=$ $10.3,7.7,2.9), 3.59-3.62(3 \mathrm{H}, \mathrm{m}), 3.78(1 \mathrm{H}, \mathrm{d}, J=13.2), 4.14$ $(1 \mathrm{H}, \mathrm{d}, J=7.7), 7.21-7.33(7 \mathrm{H}, \mathrm{m}), 7.54(1 \mathrm{H}, \mathrm{s}), 7.67(1 \mathrm{H}, \mathrm{m})$, $8.17(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: $24.7\left(\mathrm{CH}_{2}\right), 27.6\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right)$, $30.6\left(\mathrm{CH}_{2}\right), 51.5\left(\mathrm{CH}_{2}\right), 51.6(\mathrm{CH}), 56.4(\mathrm{CH}), 62.2\left(\mathrm{CH}_{2}\right), 80.6$ $(\mathrm{C}), 83.7(\mathrm{C}), 115.3(\mathrm{CH}), 119.8(\mathrm{CH}), 120.2(\mathrm{C}), 122.5(\mathrm{CH})$, $124.2(\mathrm{CH}), 124.4(\mathrm{CH}), 127.0(\mathrm{CH}), 128.3(\mathrm{CH}), 128.4(\mathrm{CH})$, 129.4 (C), 135.7 (C) 139.7 (C), 149.6 (C), 173.6 (C). IR: 3402, 2977, 1728. EIMS m / z : $508\left(\mathrm{M}^{+}\right), 417(\mathrm{M}-\mathrm{Bn})$. HRMS-FAB $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{5}, 509.3015$; found, 509.3029. The enantiomeric excess was not determined.

4.4. Table 2

4.4.1. Entry 2. (-)-tert-Butyl (S)-3-Benzylamino-3-(1-p-toluenesulfonylindol-3-yl)propanoate (5e)

The typical procedure A of Table 1 using 2e ($397 \mathrm{mg}, 1.0$ mmol), instead of $\mathbf{2 a}$, gave the title compound ($418 \mathrm{mg}, 83 \%$) with 90% ee as a pale yellow oil: $\mathrm{R}_{f}=0.2$ (hexane/AcOEt 20/1). $[\alpha]^{25}{ }_{\mathrm{D}}-22.9\left(c \quad 1.30, \mathrm{CHCl}_{3}\right)$ for 96% ee. ${ }^{1} \mathrm{H}$ NMR: $1.35(9 \mathrm{H}, \mathrm{s})$, $1.90(1 \mathrm{H}, \mathrm{br}$ s $), 2.31(3 \mathrm{H}, \mathrm{s}), 2.66(1 \mathrm{H}, \mathrm{dd}, J=5.5,15.6), 2.78$ $(1 \mathrm{H}, \mathrm{dd}, J=8.6,15.6), 3.56(1 \mathrm{H}, \mathrm{d}, J=13.2), 3.65(1 \mathrm{H}, \mathrm{d}, J=$ 13.2), $4.37(1 \mathrm{H}, \mathrm{dd}, J=5.5,8.6), 7.18-7.33(9 \mathrm{H}, \mathrm{m}), 7.52(1 \mathrm{H}, \mathrm{s})$, $7.69(1 \mathrm{H}, \mathrm{d}, J=8.0), 7.74(2 \mathrm{H}, \mathrm{d}, J=8.6), 7.99(1 \mathrm{H}, \mathrm{d}, J=8.2)$. ${ }^{13} \mathrm{C}$ NMR: $21.5\left(\mathrm{CH}_{3}\right), 27.9\left(\mathrm{CH}_{3}\right), 42.2\left(\mathrm{CH}_{2}\right), 51.3\left(\mathrm{CH}_{2}\right), 51.5$ $(\mathrm{CH}), 80.8(\mathrm{C}), 113.9(\mathrm{CH}), 120.5(\mathrm{CH}), 123.1(\mathrm{CH}), 123.9(\mathrm{CH})$, $124.8(\mathrm{CH}), 126.8(\mathrm{CH}), 127.0(\mathrm{CH}), 128.2(\mathrm{CH}), 128.4(\mathrm{CH})$, 129.5 (C), 129.78 (C), 129.84 (CH), 135.3 (C) 135.7 (C), 140.2 (C), 144.9 (C), 171.0 (C). IR: 3332, 2978, 1728, 1597, 1450, 1381, 1119. EIMS m/z: $504\left(\mathrm{M}^{+}\right), 447(\mathrm{M}-t-\mathrm{Bu}), 413(\mathrm{M}-\mathrm{Bn})$, $389\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}_{2} t\right.$ - Bu$)$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$: C, 69.02; H, 6.39; N, 5.55. Found: C, 68.72; H, 6.37; N, 5.39. The enantiomeric excess was determined by HPLC (Daicel Chiralcel OD-H, 254 nm , hexane $/ i-\mathrm{PrOH} 50 / 1,1.0 \mathrm{~mL} / \mathrm{min}$, minor 17.3 min and major 23.4 min).

4.4.2. Entry 3. (-)-tert-Butyl (S)-3-Benzylamino-3-(1-p-methoxybenzylindol-3-yl)propanoate (5f)

The typical procedure A of Table 1 using $2 f(363 \mathrm{mg}, 1.0$ mmol), instead of $\mathbf{2 a}$, gave the title compound ($402 \mathrm{mg}, 85 \%$) with 45% ee as a pale yellow oil. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, IR, and MS were identical to those reported. ${ }^{13}$

4.5. Table 3

4.5.1. Entry 1. (-)-tert-Butyl (S)-3-(2-p-Methoxy-benzyloxyethylamino)-3-(1-tert-butoxycarbonylin-dol-3-yl)propanoate (9a)

The typical procedure A of Table 1 in 0.54 mmol scale using N-(2-p-methoxybenzyloxyethyl)trimethylsilylamine ($407 \mathrm{mg}, 1.6$ mmol), instead of N-benzyltrimethylsilylamine, gave the title compound ($233 \mathrm{mg}, 79 \%$) with 13% ee as a colorless oil: $\mathrm{R}_{f}=0.4$ (hexane/AcOEt 4/1). $[\alpha]^{25}$ D -1.81 . (c $1.00, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR: $1.37(9 \mathrm{H}, \mathrm{s}), 1.65(9 \mathrm{H}, \mathrm{s}), 2.08(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.68-2.81(4 \mathrm{H}, \mathrm{m})$, $3.50-3.56(2 \mathrm{H}, \mathrm{m}), 3.80(3 \mathrm{H}, \mathrm{s}), 4.38(1 \mathrm{H}, \mathrm{dd}, J=6.3,7.7), 4.42$ $(2 \mathrm{H}, \mathrm{s}), 6.86(2 \mathrm{H}, \mathrm{dd}, J=1.9,8.3), 7.19-7.32(4 \mathrm{H}, \mathrm{m}), 7.52(1 \mathrm{H}$, s), $7.72(1 \mathrm{H}, \mathrm{m}), 8.15(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: $28.0\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right)$, $42.6\left(\mathrm{CH}_{2}\right), 47.1\left(\mathrm{CH}_{2}\right), 52.1\left(\mathrm{CH}_{3}\right), 55.2(\mathrm{CH}), 69.3\left(\mathrm{CH}_{2}\right), 72.6$ $\left(\mathrm{CH}_{2}\right), 80.7(\mathrm{C}), 83.5(\mathrm{C}), 113.7(\mathrm{CH}), 115.2(\mathrm{CH}), 119.8(\mathrm{CH})$, 121.9 (C), $122.4(\mathrm{CH}), 123.2(\mathrm{CH}), 124.3(\mathrm{CH}), 129.2(\mathrm{C}), 129.3$ (CH), 130.4 (C), 135.8 (C), 149.7 (C), 159.1 (C), 171.1 (C). IR: 3325, 2978, 1736, 1365, 1157. FABMS $m / z: 525[\mathrm{M}+\mathrm{H}]^{+}$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{6}$: C, 68.68; H, 7.68; N, 5.34. Found: C, $68.48 ; \mathrm{H}, 7.68$; N, 5.32. The enantiomeric excess was determined by HPLC (Daicel Chiralcel AD-3, 254 nm , hexane $/ i-\mathrm{PrOH} 25 / 1$, $1.0 \mathrm{~mL} / \mathrm{min}$, minor 15.1 min and major 16.6 min).
4.5.2. Entry 2. (-)-tert-Butyl (S)-3-(2-(trityloxy)-ethylamino-3-(1-(tert-butoxycarbonyl)indol-3-yl)propanoate (9b)

The typical procedure A of Table 1 in 0.45 mmol scale using N-(2-trityloxyethyl)-tert-butyldimethylsilylamine ($559 \mathrm{mg}, 1.3$ mmol), instead of N-benzyltrimethylsilylamine, gave the title compound ($25 \mathrm{mg}, 9 \%$) with 9% ee as a yellow oil: $\mathrm{R}_{f}=0.5$ (hexane/AcOEt 4/1). $[\alpha]^{25}-2.88$. (c 1.10, CHCl_{3}). ${ }^{1} \mathrm{H}$ NMR: $1.39(9 \mathrm{H}, \mathrm{s}), 1.64(9 \mathrm{H}, \mathrm{s}), 2.07(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.69-2.83(2 \mathrm{H}, \mathrm{m})$, $2.74(2 \mathrm{H}, \mathrm{t}, J=5.4), 3.17-3.20(2 \mathrm{H}, \mathrm{m}), 4.38(1 \mathrm{H}, \mathrm{dd}, J=5.6$, 7.9), $7.18-7.42(17 \mathrm{H}, \mathrm{m}), 7.49(1 \mathrm{H}, \mathrm{m}), 7.72(1 \mathrm{H}, \mathrm{m}), 8.15(1 \mathrm{H}$, m). ${ }^{13} \mathrm{C}$ NMR: $28.0\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right), 42.3\left(\mathrm{CH}_{2}\right), 47.3\left(\mathrm{CH}_{2}\right)$, $52.1(\mathrm{CH}), 63.1\left(\mathrm{CH}_{2}\right), 80.7(\mathrm{C}), 83.5(\mathrm{C}), 86.5(\mathrm{C}), 115.2(\mathrm{CH})$, $119.9(\mathrm{CH}), 121.8(\mathrm{C}), 122.4(\mathrm{CH}), 123.3(\mathrm{CH}), 124.4(\mathrm{CH})$, $126.8(\mathrm{CH}), 127.7(\mathrm{CH}), 128.7(\mathrm{CH}), 129.0(\mathrm{C}), 135.8(\mathrm{C}), 144.1$ (C), 149.6 (C), 171.2 (C). IR: 3425, 2978, 1738, 1373, 1157. EIMS $m / z: 646\left(\mathrm{M}^{+}\right), 531\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}_{2} t-\mathrm{Bu}\right), 403\left(\mathrm{M}-\mathrm{CPh}_{3}\right)$. HRMS-FAB $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{41} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{5}, 647.3485$; found, 647.3499. The enantiomeric excess was determined after removal of the trityl group (vide infra).
4.5.3. Entry 3. (-)-tert-Butyl (R)-3-(2-(trityloxy)-ethylamino-3-(1-(tert-butoxycarbonyl)indol-3-yl)propanoate (ent-9b)

The typical procedure A of Table 1 using 2trityloxyethylamine ($455 \mathrm{mg}, \quad 1.5 \mathrm{mmol}$), instead of N benzyltrimethylsilylamine, gave the title compound (57 mg , $18 \%)$ with 17% ee as a yellow oil: $[\alpha]^{25}{ }_{\mathrm{D}}+5.63\left(c 1.10, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, IR, MS, and R_{f} were identical to those of $\mathbf{9 b}$. The enantiomeric excess was determined after removal of the trityl group (vide infra).
4.5.4. Determination of the ee of $9 \boldsymbol{b}$ and ent-9b. (-)-tert-Butyl (S)-3-(2-hydroxyethyl) amino-3-(1-tert-butoxycarbonylindol-3-yl)propanoate

To a solution of $\mathbf{9 b}(10 \mathrm{mg}, 0.015 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.6 \mathrm{~mL})$ was added TFA $(7 \mu \mathrm{~L}, 0.09 \mathrm{mmol})$ at $-10^{\circ} \mathrm{C}$. The mixture was stirred for 12 h at $-10^{\circ} \mathrm{C}$, and saturated aq $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ was added. The whole was extracted with AcOEt, and the organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/AcOEt $1 / 4$ to $0 / 1$) gave the title compound ($5.3 \mathrm{mg}, 85 \%$) with 9% ee as a colorless oil: $\mathrm{R}_{f}=0.1$ (hexane/AcOEt 3/2). $[\alpha]^{25}{ }_{\mathrm{D}}-1.96$. (c $0.53, \mathrm{CHCl}_{3}$). ${ }^{1} \mathrm{H}$ NMR: $1.42(9 \mathrm{H}, \mathrm{s}), 1.67(9 \mathrm{H}, \mathrm{s}), 1.81-1.97(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.73-2.79$ $(3 \mathrm{H}, \mathrm{m}), 2.85(1 \mathrm{H}, \mathrm{dd}, J=8.9,15.8), 3.57(1 \mathrm{H}, \mathrm{td}, J=4.8,11.1)$,
$3.67(1 \mathrm{H}, \mathrm{td}, J=5.4,11.1), 4.41(1 \mathrm{H}, \mathrm{dd}, J=4.6,8.9), 7.24(1 \mathrm{H}$, $\mathrm{m}), 7.32(1 \mathrm{H}, \mathrm{dd}, J=7.0,7.2), 7.54(1 \mathrm{H}, \mathrm{s}), 7.69(1 \mathrm{H}, \mathrm{m}), 8.16$ $(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: $28.0\left(\mathrm{CH}_{3}\right), 28.2\left(\mathrm{CH}_{3}\right), 42.1\left(\mathrm{CH}_{2}\right), 48.4$ $\left(\mathrm{CH}_{2}\right), 51.4(\mathrm{CH}), 61.2\left(\mathrm{CH}_{2}\right), 81.0(\mathrm{C}), 83.7(\mathrm{C}), 115.4(\mathrm{CH})$, $119.5(\mathrm{CH}), 121.7(\mathrm{C}), 122.5(\mathrm{CH}), 123.1(\mathrm{CH}), 124.5(\mathrm{CH})$, 128.9 (C), 135.8 (C), 149.6 (C), 171.3 (C). IR: 3363, 2978, 1728, 1373, 1157. EIMS $m / z: 404\left(\mathrm{M}^{+}\right), 359\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{OH}\right), 344$ ($\mathrm{M}-$ $\mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$), $289\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{CO}_{2} t\right.$-Bu). HRMS-FAB m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{5}, 405.2389$; found, 405.2386. The enantiomeric excess was determined by HPLC (Daicel Chiralcel AD-3, 254 nm , hexane $/ i-\operatorname{PrOH} 9 / 1,1.0 \mathrm{~mL} / \mathrm{min}$, minor 8.9 min and major 9.8 min).

4.6. Scheme 2

4.6.1. tert-Butyl (2S,3S)-1-Benzyl-2-(1-tert-butoxy-carbonylindol-3-yl)piperidine-3-carboxylate (trans10)

The procedure reported for cis-10 ${ }^{2}$ using syn-7 ($67 \mathrm{mg}, 0.13$ mmol), instead of anti-7, gave the title compound ($54 \mathrm{mg}, 83 \%$) as a colorless oil: $\mathrm{R}_{f}=0.8$ (hexane/AcOEt 2/1). ${ }^{1} \mathrm{H}$ NMR: 1.09 $(9 \mathrm{H}, \mathrm{s}), 1.61-1.69(3 \mathrm{H}, \mathrm{m}), 1.64(9 \mathrm{H}, \mathrm{s}), 1.92-2.02(2 \mathrm{H}, \mathrm{m}), 2.87$ $(1 \mathrm{H}, \mathrm{d}, J=13.2), 2.91-2.98(2 \mathrm{H}, \mathrm{m}), 3.55(1 \mathrm{H}, \mathrm{d}, J=10.1), 3.89$ $(1 \mathrm{H}, \mathrm{d}, J=13.2) 7.15-7.30(7 \mathrm{H}, \mathrm{m}), 7.50(1 \mathrm{H}, \mathrm{s}), 8.13(2 \mathrm{H}, \mathrm{m})$. ${ }^{13} \mathrm{C}$ NMR: $24.6\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{3}\right), 28.1\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{CH}_{2}\right), 50.2$ $(\mathrm{CH}), 52.6\left(\mathrm{CH}_{2}\right), 59.5\left(\mathrm{CH}_{2}\right), 63.4(\mathrm{CH}), 79.8(\mathrm{C}), 83.3(\mathrm{C})$, $115.0(\mathrm{CH}), 120.6(\mathrm{C}), 121.3(\mathrm{CH}), 122.3(\mathrm{CH}), 124.4(\mathrm{CH})$, $124.6(\mathrm{CH}), 126.5(\mathrm{CH}), 128.0(\mathrm{CH}), 128.8(\mathrm{CH}), 129.1(\mathrm{C})$, 136.0 (C), 139.3 (C), 149.5 (C), 173.4 (C). IR: 2977, 1728, 1366. EIMS $m / z: 490\left(\mathrm{M}^{+}\right), 399(\mathrm{M}-\mathrm{Bn})$. HRMS-FAB $m / z:[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{4}, 491.2910$; found, 491.2900. The relative configuration was determined on the basis of the coupling constants between the adjacent methine protons at $2.91-2.98 \mathrm{ppm}$ and $3.55 \mathrm{ppm}(J=10.1 \mathrm{~Hz})$.

4.7. Scheme 3

4.7.1. Typical Procedure. (-)-tert-Butyl (2R,3S)-2-Allyl-3-benzylamino-3-(1-tert-butoxycarbonylindol-3-yl)propanoate (7b)

To a stirred solution of N-benzyltrimethylsilylamine $(0.29 \mathrm{~mL}$, 1.5 mmol) in toluene (4 mL), was added a 1.62 M hexane solution of BuLi $(0.93 \mathrm{~mL}, 1.5 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ over 4 min . After 30 min , a solution of chiral diether $3(436 \mathrm{mg}, 1.8 \mathrm{mmol})$ in toluene $(2 \mathrm{~mL})$ was added over 5 min . After 30 min , a solution of enoate 2a ($172 \mathrm{mg}, 0.5 \mathrm{mmol}$) in toluene (2 mL) was added over 6 min , and the mixture was stirred for 15 h at $-65^{\circ} \mathrm{C}$. Then, a solution of 1,3-diiodopropane ($\mathbf{6 b}$) $(0.54 \mathrm{~mL}, 5 \mathrm{mmol})$ in DMPU (8 mL) was added over 22 min at $-78^{\circ} \mathrm{C}$, and the mixture was stirring at $-40{ }^{\circ} \mathrm{C}$. After 2 h , the reaction was quenched with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$, and the whole was stirred at rt for 5 min . Then, saturated $\mathrm{NaHCO}_{3}(12 \mathrm{~mL})$ was added, and the whole was stirred for 5 min . The organic layer was separated, and the aqueous layer was extracted with benzene ($10 \mathrm{~mL} \times 3$). The combined organic layers were washed with water $(10 \mathrm{~mL} \times 4)$ and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/AcOEt 100/1 to 4/1) gave chiral diether 3 (436 mg , quant) as colorless plates and the title compound ($221 \mathrm{mg}, 90 \%$) as colorless needles of $\mathrm{mp} 136-138{ }^{\circ} \mathrm{C}: \mathrm{R}_{f}=0.4$ (hexane/AcOEt 4/1). $[\alpha]^{25}{ }_{\mathrm{D}}-16.8\left(c 1.07, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H}$ NMR: $1.46(9 \mathrm{H}, \mathrm{s}), 1.69(9 \mathrm{H}, \mathrm{s})$, $1.74(1 \mathrm{H}, \mathrm{br}$ s), $2.05(1 \mathrm{H}, \mathrm{m}), 2.21(1 \mathrm{H}, \mathrm{m}), 2.88(1 \mathrm{H}, \mathrm{m}), 3.55$ $(1 \mathrm{H}, \mathrm{d}, J=12.8), 3.69(1 \mathrm{H}, \mathrm{d}, J=12.8), 4.05(1 \mathrm{H}, \mathrm{d}, J=9.8)$, 4.91-4.95 ($2 \mathrm{H}, \mathrm{m}$), $5.65(1 \mathrm{H}, \mathrm{m}), 7.16-7.35(7 \mathrm{H}, \mathrm{m}), 7.49(1 \mathrm{H}, \mathrm{s})$, $7.77(1 \mathrm{H}, \mathrm{m}), 8.16(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: $28.06\left(\mathrm{CH}_{3}\right), 28.08\left(\mathrm{CH}_{3}\right)$, $34.8\left(\mathrm{CH}_{2}\right), 51.3\left(\mathrm{CH}_{2}\right), 52.0(\mathrm{CH}), 56.6(\mathrm{CH}), 80.6(\mathrm{C}), 83.6(\mathrm{C})$, $115.3(\mathrm{CH}), 116.6\left(\mathrm{CH}_{2}\right), 119.9(\mathrm{CH}), 120.2(\mathrm{C}), 122.5(\mathrm{CH})$, $124.4(\mathrm{CH}), 124.5(\mathrm{CH}), 126.7(\mathrm{CH}), 128.11(\mathrm{CH}), 128.15(\mathrm{CH})$,
129.2 (C), 135.1 (CH), 136.0 (C), 140.4 (C), 149.6 (C), 173.6 (C). IR: 3120, 2985, 1732, 1712, 1450. EIMS $m / z: 490\left(\mathrm{M}^{+}\right), 399$ $(\mathrm{M}-\mathrm{Bn})$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4}: \mathrm{C}, 73.44 ; \mathrm{H}, 7.81 ; \mathrm{N}, 5.71$. Found: C, 73.54; H, 7.81; N, 5.59.

4.8. Scheme 4.

4.8.1. Methyl (2RS,3SR)-1-Benzyl-2-(indol-3-yl)pi-

 peridine-3-carboxylate (cis-11a)To a solution of (\pm)-cis-10 (1.15 g, 2.3 mmol) in $\mathrm{MeOH}(20$ $\mathrm{ml})$ was added a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}(0.66 \mathrm{~mL}, 12 \mathrm{mmol})$ in $\mathrm{MeOH}(19 \mathrm{~mL})$ over 15 min at rt , and the whole was stirred under reflux for 14 h . To the mixture, was added saturated aq $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ dropwise and then $\mathrm{AcOEt}(100 \mathrm{~mL})$ at rt. The organic layer was separated and the aqueous layer was extracted with AcOEt. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/AcOEt $4 / 1$ to $3 / 1$) gave the title compound ($768 \mathrm{mg}, 94 \%$) as colorless needles of $\mathrm{mp} 153-155{ }^{\circ} \mathrm{C}: \mathrm{R}_{f}=0.3$ (hexane/AcOEt 3/2). ${ }^{1}$ H NMR: $1.70(1 \mathrm{H}, \mathrm{m}), 1.85-2.05(3 \mathrm{H}, \mathrm{m})$, $2.52(1 \mathrm{H}$, ddd, $J=12.2,4.0,3.2), 2.62(1 \mathrm{H}, J=\mathrm{ddd}, 12.2,11.3$, $3.1), 3.15(1 \mathrm{H}, \mathrm{ddd}, J=11.0,5.0,4.8), 3.21(3 \mathrm{H}, \mathrm{s}), 3.30(1 \mathrm{H}, \mathrm{d}$, $J=14.0), 3.55(1 \mathrm{H}, \mathrm{d}, J=14.0), 4.84(1 \mathrm{H}, \mathrm{d}, J=4.8), 7.05(1 \mathrm{H}$, ddd, $J=8.3,7.0,1,3$), 7.16 (1 H , ddd, $J=8.3,7.0,1.3$), $7.19-7.31$ $(6 \mathrm{H}, \mathrm{m}), 7.35(1 \mathrm{H}, \mathrm{d}, J=8.3), 7.47(1 \mathrm{H}, \mathrm{d}, J=8.3), 8.14(1 \mathrm{H}, \mathrm{br}$ s). ${ }^{13} \mathrm{C}$ NMR: $22.1\left(\mathrm{CH}_{2}\right), 23.7\left(\mathrm{CH}_{2}\right), 45.8(\mathrm{CH}), 46.7\left(\mathrm{CH}_{2}\right)$, $51.1\left(\mathrm{CH}_{3}\right), 55.4(\mathrm{CH}), 59.3\left(\mathrm{CH}_{2}\right), 110.8(\mathrm{CH}), 119.2(\mathrm{CH})$, $119.3(\mathrm{CH}), 121.8(\mathrm{CH}), 122.7(\mathrm{CH}), 126.7(\mathrm{CH}), 128.0(\mathrm{C})$, 128.1 (CH), 128.7 (C), 128.8 (CH), 135.1 (C), 140.0 (C), 174.1 (C). IR: 3410, 3122, 2935, 2842, 1737, 1456. EIMS m/z: 348 $\left(\mathrm{M}^{+}\right), 257(\mathrm{M}-\mathrm{Bn})$. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}: \mathrm{C}, 75.83$; H , 6.94; N, 8.04. Found: C, 75.58; H, 7.00; N, 8.03.
4.8.2. Methyl (2RS, 3SR)-1-Benzyl-2-(1-tert-but-oxycarbonylindol-3-yl)piperidine-3-carboxylate (cis-11b)

To a stirred solution of cis-11a ($48 \mathrm{mg}, 0.14 \mathrm{mmol}$) and DMAP ($6.4 \mathrm{mg}, 0.052 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(1.4 \mathrm{~mL})$, was added $\mathrm{Boc}_{2} \mathrm{O}(0.063 \mathrm{~mL}, 0.28 \mathrm{mmol})$ dropwise at rt. After 30 min , to the mixture were added saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and saturated aq $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$. The aqueous layer was extracted with AcOEt. The combined organic layers were washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/AcOEt 9/1) gave the title compound ($56 \mathrm{mg}, 90 \%$) as yellow amorphous solid: $\mathrm{R}_{f}=0.6$ (hexane/AcOEt 4/1). ${ }^{1} \mathrm{H}$ NMR: $1.67(1 \mathrm{H}, \mathrm{m}), 1.71(9 \mathrm{H}, \mathrm{s}), 1.85-1.97$ $(3 \mathrm{H}, \mathrm{m}), 2.56(1 \mathrm{H}, \mathrm{ddd}, J=12.2,4.0,3.1), 2.69(1 \mathrm{H}, \mathrm{ddd}, J=$ $12.2,11.6,2.5), 3.13(1 \mathrm{H}, \mathrm{ddd}, J=9.8,6.0,4.6), 3.23(3 \mathrm{H}, \mathrm{s})$, $3.38(1 \mathrm{H}, \mathrm{d}, J=13.8), 3.46(1 \mathrm{H}, \mathrm{d}, J=13.8), 4.75(1 \mathrm{H}, \mathrm{d}, J=$ 4.6), $7.14-7.41(8 \mathrm{H}, \mathrm{m}), 7.70(1 \mathrm{H}, \mathrm{m}), 8.07(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: $21.8\left(\mathrm{CH}_{2}\right), 23.5\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{3}\right), 45.4(\mathrm{CH}), 46.9\left(\mathrm{CH}_{2}\right), 51.0$ $\left(\mathrm{CH}_{3}\right), 54.8(\mathrm{CH}), 59.3\left(\mathrm{CH}_{2}\right), 83.8(\mathrm{C}), 114.8(\mathrm{CH}), 116.2(\mathrm{C})$, $119.7(\mathrm{CH}), 122.1(\mathrm{CH}), 123.6(\mathrm{CH}), 124.2(\mathrm{CH}), 126.8(\mathrm{CH})$, 128.1 (CH), 128.8 (CH), 131.6 (C), 134.3 (C), 139.1 (C), 149.8 (C), 173.3 (C). IR (neat): 2947, 1736, 1450. EIMS $m / z: 448\left(\mathrm{M}^{+}\right)$, 347 ($\mathrm{M}-\mathrm{CO}_{2} t$ - Bu), 232 ($\mathrm{M}-N$-Boc indole). HRMS-FAB m / z : $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{4}, 449.2423$; found, 449.2440 .
4.8.3. Methyl (2RS, 3SR)-1-Benzyl-2-(1-benzoylin-dol-3-yl)piperidine-3-carboxylate (cis-11c)

To a stirred solution of cis-11a ($70 \mathrm{mg}, 0.20 \mathrm{mmol}$) in DMF $(2 \mathrm{~mL})$, was added $\mathrm{NaH}(60 \% \mathrm{w} / \mathrm{w}$ dispersion in mineral oil; 8 $\mathrm{mg}, 0.20 \mathrm{mmol})$ at rt . After $30 \mathrm{~min}, \mathrm{BzCl}(0.023 \mathrm{~mL}, 0.20 \mathrm{mmol})$ was added dropwise. After 15 h , another portion of $\mathrm{BzCl}(0.012$ $\mathrm{mL}, 0.10 \mathrm{mmol}$) was added. After 2 h , the reaction was quenched with water, and the aqueous layer was extracted with benzene. The combined organic layers were washed with water and brine,
and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/AcOEt $97 / 3$ to 90/10) gave the title compound (61 $\mathrm{mg}, 67 \%$) as pale yellow amorphous solid: $\mathrm{R}_{f}=0.6$ (hexane/AcOEt $7 / 3$). ${ }^{1}$ H NMR: $1.66(1 \mathrm{H}, \mathrm{m}), 1.77-1.92(3 \mathrm{H}, \mathrm{m}), 2.51$ (1 H , ddd, $J=12.5,4.3,4.0$), 2.56 (1 H , ddd, $J=12.5,10.4,3.0$), $3.14(1 \mathrm{H}$, ddd, $J=10.2,4.9,4.6), 3.27(3 \mathrm{H}, \mathrm{s}), 3.48(1 \mathrm{H}, \mathrm{d}, J=$ 14.0), $3.52(1 \mathrm{H}, \mathrm{d}, J=14.0), 4.71(1 \mathrm{H}, \mathrm{d}, J=4.9), 7.22-7.79$ $(14 \mathrm{H}, \mathrm{m}), 8.36(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: $22.4\left(\mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{2}\right), 45.0$ $(\mathrm{CH}), 47.2\left(\mathrm{CH}_{2}\right), 51.1\left(\mathrm{CH}_{3}\right), 55.1(\mathrm{CH}), 59.3\left(\mathrm{CH}_{2}\right), 116.0(\mathrm{CH})$, $117.8(\mathrm{C}), 119.6(\mathrm{CH}), 123.5(\mathrm{CH}), 125.0(\mathrm{CH}), 125.4(\mathrm{CH})$, $126.9(\mathrm{CH}), 128.2(\mathrm{CH}), 128.6(\mathrm{CH}), 128.7(\mathrm{CH}), 129.4(\mathrm{CH})$, 131.6 (C), 132.1 (CH), 134.6 (C), 135.4 (C), 139.5 (C), 168.5 (C), 173.3 (C). IR (neat): 2947, 1735, 1690. EIMS $m / z: 452$ (M ${ }^{\dagger}$), 361 $(\mathrm{M}-\mathrm{Bn}), 347(\mathrm{M}-\mathrm{Bz})$. HRMS-FAB $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}, 453.2178$; found, 453.2160.

4.8.4. Methyl (2RS, 3SR)-1-Benzyl-2-(1-pivaloylin-

 dol-3-yl)piperidine-3-carboxylate (cis-11d)To a stirred solution of cis-11a ($70 \mathrm{mg}, 0.20 \mathrm{mmol}$) and DMAP ($30 \mathrm{mg}, 0.24 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$, were added $\mathrm{Et}_{3} \mathrm{~N}$ $(0.049 \mathrm{~mL}, 0.34 \mathrm{mmol})$ and $\operatorname{PivCl}(0.051 \mathrm{~mL}, 0.40 \mathrm{mmol})$ dropwise at $0{ }^{\circ} \mathrm{C}$. After the mixture was stirred for 15 h at rt , another portion of DMAP ($49 \mathrm{mg}, 0.40 \mathrm{mmol}$) and $\mathrm{PivCl}(0.051,0.40$ mmol) were added, and the whole was stirred for further 3 h . The reaction was quenched by addition of saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and saturated aq $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$. The aqueous layer was extracted with AcOEt. The combined organic layers were washed with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/AcOEt 97/3 to 95/5) gave the title compound ($74 \mathrm{mg}, 81 \%$) as colorless oil: $\mathrm{R}_{f}=0.6$ (hexane/AcOEt 4/1). ${ }^{1} \mathrm{H}$ NMR: $1.51(9 \mathrm{H}, \mathrm{s}), 1.70(1 \mathrm{H}, \mathrm{m}), 1.86$ $(1 \mathrm{H}, \mathrm{m}), 1.95-1.99(2 \mathrm{H}, \mathrm{m}), 2.51(1 \mathrm{H}$, ddd, $J=12.5,4.3,4.0)$, $2.68(1 \mathrm{H}$, ddd, $J=12.5,10.1,3.1), 3.16(1 \mathrm{H}, \mathrm{ddd}, J=7.3,7.3$, $4.9), 3.28(3 \mathrm{H}, \mathrm{s}), 3.55(2 \mathrm{H}, \mathrm{s}), 4.63(1 \mathrm{H}, \mathrm{d}, J=4.9), 7.18-7.43$ $(8 \mathrm{H}, \mathrm{m}), 7.83(1 \mathrm{H}, \mathrm{s}), 8.48(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: $22.5\left(\mathrm{CH}_{2}\right), 23.1$ $\left(\mathrm{CH}_{2}\right), 28.6\left(\mathrm{CH}_{3}\right), 41.2(\mathrm{C}), 44.2(\mathrm{CH}), 47.4\left(\mathrm{CH}_{2}\right), 51.2\left(\mathrm{CH}_{3}\right)$, $55.4(\mathrm{CH}), 59.0\left(\mathrm{CH}_{2}\right), 117.0(\mathrm{CH}), 117.6(\mathrm{C}), 119.2(\mathrm{CH}), 123.2$ $(\mathrm{CH}), 123.9(\mathrm{CH}), 125.2(\mathrm{CH}), 126.9(\mathrm{CH}), 128.2(\mathrm{CH}), 128.7$ (CH), 130.1 (C), 136.2 (C), 138.9 (C), 175.0 (C), 177.0 (C). IR: 2947, 1736, 1690. EIMS $m / z: 432\left(\mathrm{M}^{+}\right), 375(\mathrm{M}-t$-Bu), $341(\mathrm{M}$ $-\mathrm{Bn})$. HRMS-FAB m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}$, 433.2491; found, 433.2501.

4.8.5. Methyl (2RS,3SR)-1-Benzyl-2-(1-benzylindol-

 3-yl)piperidine-3-carboxylate (cis-11e)To a suspension of $\mathrm{NaH}(60 \% \mathrm{w} / \mathrm{w}$ dispersion in mineral oil; $38 \mathrm{mg}, 0.95 \mathrm{mmol}$), washed with pentane, in DMF (4 mL) was added cis-11a ($250 \mathrm{mg}, 0.72 \mathrm{mmol}$) in DMF (3 mL) over 5 min at $0^{\circ} \mathrm{C}$. After the mixture was stirred for 25 min at $\mathrm{rt}, \mathrm{BnBr}(0.10$ $\mathrm{mL}, 0.86 \mathrm{mmol}$) was added dropwise. After 1.2 h , to the mixture was added water. The aqueous layer was extracted with benzene. The combined organic layers were washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/AcOEt $9 / 1$ to $4 / 1$) gave the title compound (273 $\mathrm{mg}, 87 \%$) as colorless solids of $\mathrm{mp} 128.0-128.5^{\circ} \mathrm{C}: \mathrm{R}_{f}=0.6$ (hexane/AcOEt 3/2). ${ }^{1}$ H NMR: $1.69(1 \mathrm{H}, \mathrm{m}), 1.85-2.00(3 \mathrm{H}, \mathrm{m})$, $2.50(1 \mathrm{H}$, ddd, $J=12.0,4.0,3.3), 2.60(1 \mathrm{H}, J=\mathrm{ddd}, 12.0,10.0$, $3.1), 3.16(1 \mathrm{H}, \mathrm{ddd}, J=11.0,4.8,4.6), 3.19(3 \mathrm{H}, \mathrm{s}), 3.32(1 \mathrm{H}, \mathrm{d}$, $J=14.0), 3.53(1 \mathrm{H}, \mathrm{d}, J=14.0), 4.84(1 \mathrm{H}, \mathrm{d}, J=4.8), 5.33(2 \mathrm{H}$, s), $7.02-7.06(3 \mathrm{H}, \mathrm{m}), 7.12(1 \mathrm{H}, \mathrm{m}), 7.20-7.30(10 \mathrm{H}, \mathrm{m}), 7.49$ $(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: $22.2\left(\mathrm{CH}_{2}\right), 23.6\left(\mathrm{CH}_{2}\right), 45.9(\mathrm{CH}), 46.9$ $\left(\mathrm{CH}_{2}\right), 49.9\left(\mathrm{CH}_{2}\right), 50.9\left(\mathrm{CH}_{3}\right), 55.5(\mathrm{CH}), 59.5\left(\mathrm{CH}_{2}\right), 109.4$ $(\mathrm{CH}), 110.7$ (C), $119.1(\mathrm{CH}), 119.5(\mathrm{CH}), 121.7(\mathrm{CH}), 126.4$ $(\mathrm{CH}), 126.7(\mathrm{CH}), 127.0(\mathrm{CH}), 127.5(\mathrm{CH}), 128.1(\mathrm{CH}), 128.7$ (CH), $128.8(\mathrm{CH}), 130.0(\mathrm{C}), 135.6$ (C), 137.8 (C), $140.0(\mathrm{C})$, 173.8 (C). IR (neat): 3028, 2947, 2804, 1734, 1454. EIMS m / z :
$438\left(\mathrm{M}^{+}\right), 347(\mathrm{M}-\mathrm{Bn})$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 79.42; H, 6.89; N, 6.39. Found: C, 79.38; H, 6.83; N, 6.27.
4.8.6. Methyl (2RS,3SR)-1-Benzyl-2-(1-p-methoxy-benzylindol-3-yl)piperidine-3-carboxylate (cis-11f)

To a stirred suspension of $\mathrm{NaH}(60 \% \mathrm{w} / \mathrm{w}$ dispersion in mineral oil; $32 \mathrm{mg}, 0.80 \mathrm{mmol}$), washed with pentane, in DMF (3 mL) was added cis-11a ($200 \mathrm{mg}, 0.57 \mathrm{mmol}$) in DMF (3 mL) over 9 min at $0^{\circ} \mathrm{C}$. After $20 \mathrm{~min}, \mathrm{PMBCl}(0.087 \mathrm{~mL}, 0.63 \mathrm{mmol})$ was added dropwise. After the mixture was stirred for 80 min at rt , the reaction was quenched with water. The aqueous layer was extracted with benzene. The combined organic layers were washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/AcOEt 90/10 to 85/15) gave the title compound ($233 \mathrm{mg}, 86 \%$) as colorless solids of mp $122.0-123.0{ }^{\circ} \mathrm{C}: \mathrm{R}_{f}=0.6$ (hexane/AcOEt $3 / 2$). ${ }^{1} \mathrm{H}$ NMR: 1.67 $(1 \mathrm{H}, \mathrm{m}), 1.81-2.00(3 \mathrm{H}, \mathrm{m}), 2.49(1 \mathrm{H}, \mathrm{ddd}, J=11.4,4.0,3.6)$, $2.60(1 \mathrm{H}$, ddd, $J=12.0,11.4,2.5), 3.13(1 \mathrm{H}, \mathrm{m}), 3.15(3 \mathrm{H}, \mathrm{s})$, $3.31(1 \mathrm{H}, \mathrm{d}, J=13.8), 3.51(1 \mathrm{H}, \mathrm{d}, J=13.8), 3.68(3 \mathrm{H}, \mathrm{s}), 4.83$ $(1 \mathrm{H}, \mathrm{d}, J=4.1), 5.21(2 \mathrm{H}, \mathrm{s}), 6.78(2 \mathrm{H}, \mathrm{d}, J=8.9), 6.94(2 \mathrm{H}, \mathrm{d}, J$ $=8.9), 7.00-7.24(9 \mathrm{H}, \mathrm{m}), 7.47(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: $22.1\left(\mathrm{CH}_{2}\right)$, $23.6\left(\mathrm{CH}_{2}\right), 45.8(\mathrm{CH}), 46.8\left(\mathrm{CH}_{2}\right), 49.3\left(\mathrm{CH}_{2}\right), 50.7\left(\mathrm{CH}_{3}\right), 55.0$ $\left(\mathrm{CH}_{3}\right), 55.4(\mathrm{CH}), 59.3\left(\mathrm{CH}_{2}\right), 109.4(\mathrm{CH}), 110.4(\mathrm{C}), 114.0(\mathrm{CH})$, $118.9(\mathrm{CH}), 119.4(\mathrm{CH}), 121.5(\mathrm{CH}), 126.5(\mathrm{CH}), 126.8(\mathrm{CH})$, 127.6 (CH), 127.9 (CH), 128.7 (CH), 129.5 (C), 129.6 (C), 135.4 (C), 139.5 (C), 158.9 (C), 173.5 (C). IR (neat): 3024, 2939, 1736. EIMS m/z: $468\left(\mathrm{M}^{+}\right), 377(\mathrm{M}-\mathrm{Bn}), 347(\mathrm{M}-\mathrm{PMB})$. Anal. Calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, $76.90 ; \mathrm{H}, 6.88$; N, 5.98. Found: C, 76.90; H, 6.94; N, 5.95.

4.9. Table 4

4.9.1. Typical Procedure (Entry 4). Methyl 3((2RS, 3SR)-1-Benzyl-2-(1-benzylindol-3-yl)piperi-din-3-yl)-3-oxopropanoate (13e)

To a stirred 0.5 M THF solution of NaHMDS ($12.4 \mathrm{~mL}, 6.2$ mmol), was added AcOMe ($0.49 \mathrm{~mL}, 6.2 \mathrm{mmol}$) in THF (6 mL) over 10 min at $-78^{\circ} \mathrm{C}$. After 1 h , cis- $\mathbf{1 1 e}(170 \mathrm{mg}, 0.39 \mathrm{mmol})$ in THF (6 mL) was added over 10 min , and the mixture was stirred for 15 h at rt . The reaction was quenched with saturated aq $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (DIOL silica gel MB100-40/75, hexane/AcOEt 15/1) gave 13e (23 mg , 12%) as yellow solids of $\mathrm{mp} 138.5-140.0{ }^{\circ} \mathrm{C}: \mathrm{R}_{f}=0.4$ (hexane/AcOEt 3/2). ${ }^{1}$ H NMR: $1.67(1 \mathrm{H}, \mathrm{m}), 1.81-1.97(3 \mathrm{H}, \mathrm{m}), 2.45$ (1 H , ddd, $J=11.9,4.3,4.0$), $2.56(1 \mathrm{H}, \mathrm{ddd}, J=11.9,11.3,2.5)$, $2.99(1 \mathrm{H}, \mathrm{d}, J=15.5), 3.35(1 \mathrm{H}, \mathrm{d}, J=15.5), 3.36(1 \mathrm{H}, \mathrm{d}, J=$ $13.5), 3.37(1 \mathrm{H}, \mathrm{m}), 3.52(3 \mathrm{H}, \mathrm{s}), 3.58(1 \mathrm{H}, \mathrm{d}, J=13.5), 4.85(1 \mathrm{H}$, d, $J=4.4), 5.32(2 \mathrm{H}, \mathrm{s}), 7.03(1 \mathrm{H}, \mathrm{m}), 7.06-7.30(13 \mathrm{H}, \mathrm{m}), 7.46$ $(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: $22.1\left(\mathrm{CH}_{2}\right), 23.2\left(\mathrm{CH}_{2}\right), 46.8\left(\mathrm{CH}_{2}\right), 47.6$ $\left(\mathrm{CH}_{2}\right), 50.1\left(\mathrm{CH}_{2}\right), 52.0\left(\mathrm{CH}_{3}\right), 52.6(\mathrm{CH}), 55.1(\mathrm{CH}), 59.2\left(\mathrm{CH}_{2}\right)$, $109.8(\mathrm{CH}), 119.1(\mathrm{CH}), 119.6(\mathrm{CH}), 122.0(\mathrm{CH}), 126.5(\mathrm{CH})$, $126.8(\mathrm{CH}), 127.6(\mathrm{CH}), 127.6(\mathrm{CH}), 128.2(\mathrm{CH}), 128.6(\mathrm{C})$, 128.7 (CH), 128.8 (CH), 129.2 (C), 135.7 (C), 137.4 (C), 139.4 (C), 167.7 (C), 203.3 (C). IR (neat): 3031, 2947, 1744, 1705, 1620, 1450. EIMS $m / z: 480\left(\mathrm{M}^{+}\right), 389(\mathrm{M}-\mathrm{Bn})$. HRMS-FAB $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}, 481.2491$; found, 481.2498: and trans-11e ($115 \mathrm{mg}, 68 \%$) as yellow solids of $\mathrm{mp} 108.0-$ $109.5{ }^{\circ} \mathrm{C}: \mathrm{R}_{f}=0.6$ (hexane/AcOEt 3/2). ${ }^{1} \mathrm{H}$ NMR: $1.61-1.72(3 \mathrm{H}$, $\mathrm{m}), 1.97-2.04(2 \mathrm{H}, \mathrm{m}), 2.87(1 \mathrm{H}, \mathrm{d}, J=13.4), 2.98-3.09(2 \mathrm{H}, \mathrm{m})$, $3.27(3 \mathrm{H}, \mathrm{s}), 3.68(1 \mathrm{H}, \mathrm{d}, J=10.4), 3.92(1 \mathrm{H}, \mathrm{d}, J=13.4), 5.23$ $(1 \mathrm{H}, \mathrm{d}, J=16.2), 5.29(1 \mathrm{H}, \mathrm{d}, J=16.2), 7.01-7.25(14 \mathrm{H}, \mathrm{m})$, $8.06(1 \mathrm{H}, \mathrm{br} \mathrm{s}) .{ }^{13} \mathrm{C}$ NMR: $24.7\left(\mathrm{CH}_{2}\right), 28.8\left(\mathrm{CH}_{2}\right), 49.7\left(\mathrm{CH}_{2}\right)$, $50.6(\mathrm{CH}), 51.0\left(\mathrm{CH}_{3}\right), 52.6\left(\mathrm{CH}_{2}\right), 59.2\left(\mathrm{CH}_{2}\right), 62.6(\mathrm{CH}), 109.6$ (CH), 115.6 (C), $119.1(\mathrm{CH}), 120.9(\mathrm{CH}), 121.8(\mathrm{CH}), 126.4$ $(\mathrm{CH}), 126.5(\mathrm{CH}), 127.0(\mathrm{C}), 127.2(\mathrm{CH}), 127.4(\mathrm{CH}), 127.9$
(CH), $128.6(\mathrm{CH}), 128.9(\mathrm{CH}), 136.9(\mathrm{C}), 137.7(\mathrm{C}), 139.7(\mathrm{C})$, 175.0 (C). IR (neat): $3420,3028,2945,2790,1732,1454$. EIMS $m / z: 438\left(\mathrm{M}^{+}\right), 347(\mathrm{M}-\mathrm{Bn})$. Anal. Calcd for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 79.42; H, 6.89; N, 6.39. Found: C, 79.51; H, 6.90; N, 6.42.

4.9.2. Entry 1. Methyl 3-((2RS,3SR)-1-Benzyl-2-

 (indol-3-yl)piperidin-3-yl)-3-oxopropanoate (13a)To a stirred 0.5 M THF solution of NaHMDS ($2.0 \mathrm{~mL}, 1.0$ $\mathrm{mmol})$, was added AcOMe ($0.079 \mathrm{~mL}, 1.0 \mathrm{mmol}$) in THF (1 mL) over 3 min at $-78^{\circ} \mathrm{C}$. After 1 h, cis $\mathbf{- 1 1 b}(112 \mathrm{mg}, 0.25 \mathrm{mmol})$ in THF (1 mL) was added over 4 min , and the mixture was stirred for 2 h at $-40^{\circ} \mathrm{C}$. Then the cooling bath was removed, and the mixture was stirred for further 1 h . The reaction was quenched with saturated aq $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$, and the aqueous layer was extracted with AcOEt. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/AcOEt $4 / 1$ to $3 / 2$) gave 11a (70 mg , 80% cis/trans $4 / 1$) as yellow oil and the title compound (8 mg , 7%) as yellow gum: $\mathrm{R}_{f}=0.3$ (hexane/AcOEt 3/2). ${ }^{1} \mathrm{H}$ NMR: 1.69 $(1 \mathrm{H}, \mathrm{m}), 1.81-1.99(3 \mathrm{H}, \mathrm{m}), 2.46(1 \mathrm{H}, \mathrm{ddd}, J=12.2,4.0,3.2)$, $2.56(1 \mathrm{H}, \mathrm{ddd}, J=12.2,11.0,2.5), 2.99(1 \mathrm{H}, \mathrm{d}, J=15.6), 3.34$ $(1 \mathrm{H}, \mathrm{d}, J=13.7), 3.36(1 \mathrm{H}, \mathrm{d}, J=15.6), 3.37(1 \mathrm{H}, \mathrm{m}), 3.52(3 \mathrm{H}$, s), $3.57(1 \mathrm{H}, \mathrm{d}, J=13.7), 4.85(1 \mathrm{H}, \mathrm{d}, J=4.5), 7.05-7.46(10 \mathrm{H}$, $\mathrm{m}), 8.34(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: $22.1\left(\mathrm{CH}_{2}\right), 23.1\left(\mathrm{CH}_{2}\right), 46.6\left(\mathrm{CH}_{2}\right)$, $47.9\left(\mathrm{CH}_{2}\right), 52.0\left(\mathrm{CH}_{3}\right), 52.6(\mathrm{CH}), 54.9(\mathrm{CH}), 59.0\left(\mathrm{CH}_{2}\right), 111.2$ $(\mathrm{CH}), 118.7(\mathrm{CH}), 119.7(\mathrm{CH}), 122.1(\mathrm{CH}), 123.3(\mathrm{CH}), 126.8$ $(\mathrm{CH}), 128.2(\mathrm{CH}), 128.3(\mathrm{C}), 128.6(\mathrm{C}), 128.7(\mathrm{CH}), 135.2(\mathrm{C})$, 139.4 (C), 167.8 (C), 203.7 (C). IR: 3039, 2947, 1743, 1704. EIMS $m / z: 390\left(\mathrm{M}^{+}\right), 358(\mathrm{M}-\mathrm{MeOH}), 299(\mathrm{M}-\mathrm{Bn})$. HRMSFAB $m / z:[M+H]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}, 391.2022$; found, 391.2014.
4.9.3. Entry 5. Methyl 3-((2RS,3SR)-1-Benzyl-2-(1-p-methoxybenzylindol-3-yl)piperidin-3-yl)-3oxopropanoate (13f)

The typical procedure using cis-11f ($50 \mathrm{mg}, 0.11 \mathrm{mmol}$), instead of cis-11e, gave the title compound ($14 \mathrm{mg}, 26 \%$) as a yellow oil: $\mathrm{R}_{f}=0.4$ (hexane/AcOEt 3/2). ${ }^{1} \mathrm{H}$ NMR: $1.67(1 \mathrm{H}, \mathrm{m})$, $1.81-1.98(3 \mathrm{H}, \mathrm{m}), 2.45(1 \mathrm{H}, \mathrm{ddd}, J=11.9,4.0,3.1), 2.56(1 \mathrm{H}$, ddd, $J=11.9,11.0,2.4), 2.97(1 \mathrm{H}, \mathrm{d}, J=15.6), 3.34(1 \mathrm{H}, \mathrm{d}, J=$ $15.6), 3.35(1 \mathrm{H}, \mathrm{m}), 3.37(1 \mathrm{H}, \mathrm{d}, J=13.4), 3.52(3 \mathrm{H}, \mathrm{s}), 3.56(1 \mathrm{H}$, $\mathrm{d}, J=13.4), 3.76(3 \mathrm{H}, \mathrm{s}), 4.85(1 \mathrm{H}, \mathrm{d}, J=4.4), 5.23(1 \mathrm{H}, \mathrm{d}, J=$ $15.9), 5.27$ ($1 \mathrm{H}, \mathrm{d}, J=15.9$), $6.82(2 \mathrm{H}, \mathrm{d}, J=8.9), 6.99(2 \mathrm{H}, \mathrm{d}, J$ $=8.9), 7.05-7.31(9 \mathrm{H}, \mathrm{m}), 7.45(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: $22.2\left(\mathrm{CH}_{2}\right)$, $23.2\left(\mathrm{CH}_{2}\right), 46.8\left(\mathrm{CH}_{2}\right), 47.6\left(\mathrm{CH}_{2}\right), 49.6\left(\mathrm{CH}_{2}\right), 52.0\left(\mathrm{CH}_{3}\right), 52.6$ $(\mathrm{CH}), 55.1\left(\mathrm{CH}_{3}\right), 55.2(\mathrm{CH}), 59.2\left(\mathrm{CH}_{2}\right), 109.6(\mathrm{C}), 109.8(\mathrm{CH})$, $114.2(\mathrm{CH}), 119.1(\mathrm{CH}), 119.5(\mathrm{CH}), 121.9(\mathrm{CH}), 126.8(\mathrm{CH})$, $127.5(\mathrm{CH}), 127.8(\mathrm{CH}), 128.2(\mathrm{CH}), 128.7(\mathrm{CH}), 129.2(\mathrm{C})$, 129.4 (C), 135.6 (C), 139.5 (C), 159.1 (C), 167.8 (C), 203.3 (C). IR: 3024, 2931, 1744, 1712, 1612. FABMS $m / z: 511$ (M + H). HRMS-FAB $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{4}, 511.2597$; found, 511.2604.

4.9.4. Entry 7. Methyl 5-Hydroxy-2-methoxycar-bonyl-5-methyl-3-oxocyclohexen-1-acetate (15)

The typical procedure using a solution of LiHMDS (2.8 mL , $1.9 \mathrm{mmol})$, AcOMe ($0.14 \mathrm{~mL}, 1.7 \mathrm{mmol}$) in THF (1.5 mL), and cis-11a ($37 \mathrm{mg}, 0.11 \mathrm{mmol}$) in THF (1.6 mL), instead of a solution of NaHMDS (6.2 mmol), AcOMe $(6.2 \mathrm{mmol})$ in THF, and cis-11e (0.39 mmol) in THF, respectively, followed by column chromatography (hexane/AcOEt 17/3) gave cis-11a (33 mg , $88 \%)$ as a colorless solid, $14^{18}(23 \mathrm{mg}, 24 \%)$ as a colorless oil, and the title compound ($24 \mathrm{mg}, 27 \%$) as a colorless oil: $\mathrm{R}_{f}=0.1$ (hexane/AcOEt 7/3). ${ }^{1} \mathrm{H}$ NMR: $1.33(3 \mathrm{H}, \mathrm{s}), 2.64(1 \mathrm{H}, \mathrm{d}, J=$ $15.6), 2.65(1 \mathrm{H}, \mathrm{d}, J=15.6), 2.82(1 \mathrm{H}, \mathrm{d}, J=16.2), 2.94(1 \mathrm{H}, \mathrm{d}$, $J=16.2), 3.54(2 \mathrm{H}, \mathrm{s}), 3.70(3 \mathrm{H}, \mathrm{s}), 3.74(3 \mathrm{H}, \mathrm{s}), 3.99(1 \mathrm{H}, \mathrm{br} \mathrm{s})$. ${ }^{13} \mathrm{C}$ NMR: $27.3\left(\mathrm{CH}_{3}\right), 44.5\left(\mathrm{CH}_{2}\right), 50.4\left(\mathrm{CH}_{2}\right), 51.7\left(\mathrm{CH}_{3}\right), 52.1$
$\left(\mathrm{CH}_{2}\right), 52.3\left(\mathrm{CH}_{3}\right), 70.1(\mathrm{C}), 136.1(\mathrm{C}), 163.2(\mathrm{C}), 167.3(\mathrm{C})$, 172.5 (C), 203.2 (C). IR: 3510, 2954, 1736. FABMS $m / z: 257$ (M $+\mathrm{H})$. HRMS-FAB $m / z:[M+H]^{+}$calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{6}, 257.1025$; found, 257.1026.

4.9.5. Entry 8. Methyl 3-((2RS,3SR)-1-Benzyl-2-(indol-3-yl)piperidin-3-yl)-3-oxopropanoate (13a)

To a stirred solution of $\mathbf{1 1 a}(1.0 \mathrm{~g}, 2.9 \mathrm{mmol})$ in THF $(11 \mathrm{~mL})$, was added a 1.0 M THF solution of LiHMDS (5.7 mL , 5.7 mmol) over 3 min at $-78{ }^{\circ} \mathrm{C}$. After 1 h , the solution was added over 5 min to a preformed solution of enolate, prepared from AcOMe ($3.7 \mathrm{~mL}, 47 \mathrm{mmol}$) and LiHMDS $(1.1 \mathrm{~g}, 66 \mathrm{mmol})$ in THF (180 mL) at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 17 h at rt , and saturated aq $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ was added. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (DIOL silica gel MB100-40/75, hexane/AcOEt $6 / 1$ to $3 / 1$) gave the title compound ($727 \mathrm{mg}, 66 \%$) as a yellow gum and 11a (82 $\mathrm{mg}, 8 \%$) as a pale yellow oil.

4.10. Scheme 5

4.10.1. Methyl 3-((2RS,3SR)-1-Benzyl-2-(1-meth-oxycarbonylindol-3-yl)piperidin-3-yl)-3-oxopropanoate (16)

To a stirred solution of $\mathbf{1 3 a}(640 \mathrm{mg}, 1.6 \mathrm{mmol})$ in THF (32 mL) was added a 1.0 M THF solution of LiHMDS ($4.9 \mathrm{~mL}, 4.9$ mmol) over 3 min at $-78{ }^{\circ} \mathrm{C}$. After $40 \mathrm{~min}, \mathrm{NCCO}_{2} \mathrm{Me}(0.50 \mathrm{~mL}$, 6.2 mmol) was added over 2 min . After 20 min , the reaction was quenched with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$, and the whole was warmed up to rt. After addition of saturated aq $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, the organic layer was separated, and the aqueous layer was extracted with AcOEt. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (DIOL silica gel MB100-40/75, hexane/AcOEt $9 / 1)$ gave the title compound ($701 \mathrm{mg}, 95 \%$) as yellow oil: $\mathrm{R}_{f}=$ 0.4 (hexane/AcOEt 3/2). ${ }^{1}$ H NMR: $1.70(1 \mathrm{H}, \mathrm{m}), 1.81-2.03(3 \mathrm{H}$, $\mathrm{m}), 2.50(1 \mathrm{H}$, ddd, $J=12.5,4.0,4.0), 2.62(1 \mathrm{H}$, ddd, $J=12.5$, $11.0,3.1), 3.05(1 \mathrm{H}, \mathrm{d}, J=15.5), 3.31(1 \mathrm{H}, \mathrm{d}, J=15.5), 3.36(1 \mathrm{H}$, ddd, $J=10.2,5.2,4.6), 3.41(1 \mathrm{H}, \mathrm{d}, J=13.7), 3.54(3 \mathrm{H}, \mathrm{s}), 4.04$ $(3 \mathrm{H}, \mathrm{s}), 4.05(1 \mathrm{H}, \mathrm{d}, J=13.7), 4.76(1 \mathrm{H}, \mathrm{d}, J=4.6), 7.11-7.41$ $(8 \mathrm{H}, \mathrm{m}), 7.63(1 \mathrm{H}, \mathrm{s}), 8.17(1 \mathrm{H}, \mathrm{m}) .{ }^{13} \mathrm{C}$ NMR: $21.9\left(\mathrm{CH}_{2}\right), 22.9$ $\left(\mathrm{CH}_{2}\right), 46.6\left(\mathrm{CH}_{2}\right), 47.6\left(\mathrm{CH}_{2}\right), 52.0(\mathrm{CH}), 52.1\left(\mathrm{CH}_{3}\right), 53.8$ $\left(\mathrm{CH}_{3}\right), 54.2(\mathrm{CH}), 59.0\left(\mathrm{CH}_{2}\right), 115.1(\mathrm{CH}), 116.2(\mathrm{C}), 119.3(\mathrm{CH})$, $123.0(\mathrm{CH}), 124.9(\mathrm{CH}), 127.0(\mathrm{CH}), 128.3(\mathrm{CH}), 128.4(\mathrm{CH})$, 128.7 (CH), 131.1 (C), 134.7 (C), 138.9 (C), 151.3 (C), 167.5 (C), 202.8 (C). IR: 3024, 2954, 1743, 1628. EIMS $m / z: 448\left(\mathrm{M}^{+}\right), 357$ ($\mathrm{M}-\mathrm{Bn}$). HRMS-FAB $m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}$, 449.2076; found, 449.2062.

4.10.2. (\pm)-20-Deethyl-2 1 , 16β-dihydro-17-oxovincadifformine (20)

A suspension of $\mathbf{1 6}(43 \mathrm{mg}, 0.096 \mathrm{mmol})$ and $\mathrm{Pd} / \mathrm{C}(10 \mathrm{wt} \%$, $34 \mathrm{mg}, 0.032 \mathrm{mmol})$ in $\mathrm{HCO}_{2} \mathrm{H}(1.8 \mathrm{~mL})$ was stirred for 5 h at rt and filtrated through a celite pad, which was successively washed with MeOH . The combined filtrate and washings were concentrated. To the residue, was added saturated aq $\mathrm{Na}_{2} \mathrm{CO}_{3}(3 \mathrm{~mL})$, and the whole was extracted with AcOEt. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give yellow oil $(29 \mathrm{mg})$.

The residual yellow oil was dissolved in $\mathrm{CH}_{3} \mathrm{CN}(1.8 \mathrm{~mL})$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}(61 \mathrm{mg}, 0.58 \mathrm{mmol})$ and 2-iodoethanol ($45 \mu \mathrm{~L}, 0.58$ mmol) were added. The mixture was stirred for 21 h at $60^{\circ} \mathrm{C}$, and water (3 mL) and benzene were added. The organic layer was separated, and the aqueous layer was extracted with benzene.

The combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give yellow oil (29 mg).

The residual yellow oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.13 \mathrm{~mL}, 0.96 \mathrm{mmol})$ and $\mathrm{MsCl}(8.9 \mu \mathrm{~L}, 0.12 \mathrm{mmol})$ were added. After 20 h , the reaction was quenched with water (3 mL), and the organic layer was separated. The aqueous layer was extracted with AcOEt, and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to give yellow oil (16 mg).

The residual yellow oil was dissolved in THF (1.0 mL) and HMPA (0.20 mL), and a 1.0 M solution of $\mathrm{KO} t-\mathrm{Bu}$ in THF (0.24 $\mathrm{mL}, 0.24 \mathrm{mmol}$) was added over 1 min at -78 C . The mixture was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$ and then 1 h at rt , and the reaction was quenched with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(0.5 \mathrm{~mL})$ and saturated aq $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with AcOEt. The combined organic layers were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration and column chromatography (hexane/AcOEt 4/1) gave the title compound ($3.0 \mathrm{mg}, 10 \%$) as colorless oil. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, IR, and MS were identical to those reported. ${ }^{9}$

Acknowledgments

We are grateful to JSPS and JST for financial support.

References and notes

1 Asymmetric total synthesis: (a) Magnus, P.; Brown, P.; J. Chem. Soc., Chem. Commun. 1985, 184. (b) Jones, S. B.; Simmons, B.; Mastracchio, A.; MacMillan, D. W. C. Nature 2011, 14, 183. Racemic total synthesis: (c) Kuehne, M. E.; Seaton, P. J. J. Org. Chem. 1985, 50, 4790. Formal synthesis: (d) Ogawa, M.; Kitagawa, Y.; Natsume, M. Tetrahedron Lett. 1987, 28, 3985. (e) Wenkert, E.; Pestchanker, M. J. J. Org. Chem. 1988, 53, 4875.
2 Harada, S.; Sakai, T.; Takasu, K.; Yamada, K.; Yamamoto, Y.; Tomioka, K. Chem. Asian J. 2012, 7, 2196.
3 (a) Sakai, T.; Kawamoto, Y.; Tomioka, K. J. Org. Chem. 2006, 71, 4706. (b) Suzuki, M.; Kawamoto, Y.; Sakai, T.; Yamamoto, Y.; Tomioka, K. Org. Lett. 2009, 11, 653.
4 Yamashita, M.; Yamada, K.; Tomioka, K. J. Am. Chem. Soc. 2004, 126, 1945.
5 (a) Yamamoto, Y.; Suzuki, H.; Yasuda, Y.; Iida, A.; Tomioka, K. Tetrahedron Lett. 2008, 49, 4582. (b) Yamamoto, Y.; Yasuda, Y.; Oulyadi, H.; Maddaluno, J.; Tomioka, K. Tetrahedron 2010, 66, 2470.

6 A coupling constant between the corresponding methine protons of a compound similar to cis-10a was reported to be 5 Hz : Natsume, M.; Utsunomiya, I. Tetrahedron 1985, 41, 2115.
7 Davis, F. A.; Chao, B.; Fang, T.; Szewczyk, J. M.; Org. Lett. 2000, 2, 1041.
8 Wannagat, U.; Niederprüm, H. Chem. Ber. 1961, 94, 1540.
9 Wenkert, E.; Orito, K.; Simmons, D. P.; Ardisson, J.; Kunesch, N.; Poisson, J. J. Org. Chem. 1983, 48, 5006.
10 Watanabe, Y.; Nishiyama, K.; Zhang, K.; Okuda, F.; Kondo, T.; Tsuji, Y. Bull. Chem. Soc. Jpn. 1994, 67, 879.
11 Tanaka, T.; Yamada, Y.; Ikehara, M. Tetrahedron Lett. 1986, 27, 5641.

12 Mizuno, M.; Kanai, M.; Iida, A.; Tomioka, K. Tetrahedron 1997, 53, 10699.
13 Sakai, T.; Yamada, K; Tomioka, K; Chem. Asian J. 2008, 3, 1486.
14 David, T.; Lars, H. Tetrahedron 1998, 54, 7907.
15 Palwinder, S.; Matinder, K.; Wolfgang, H. Eur. J. Med. Chem. 2010, 45, 4968.
16 Andrew, J. H.; Bruce, F. M.; Jianzhong, Z.; Nadezhda, A.; William, B. G.; Bruce, J. S.; Brian, D. S.; Alexander, U.; Michael, J. W.; Richard, C. B.; Rick, T. S. J. Med. Chem. 2006, 49, 4098.

17 Grimster, N. P.; Gauntlett, C.; Godfrey, C. R. A.; Gaunt, M. J. Angew. Chem., Int. Ed. 2005, 44, 3124.
18 Baumhof, P.; Mazitschek, R.; Giannis, A. Angew. Chem., Int. Ed. 2001, 40, 3672.

[^0]: * Corresponding author. Tel.: +81-774-65-8676; fax: +81-774-65-8658; e-mail: tomioka@pharm.kyoto-u.ac.jp

